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Abstract

This paper presents a method for detecting complex man-made-objectagesm  The detection model is a
bayesian net that aggregates cliques of image regions which may ama@nplex object. Observable attributes
of the regions are derived from a rich symbolic image description contaipoigts, lines and regions as basic

features including their relations. The model captures the dependertye aégion aggregates on the features
and their relations with respect to observability due to occlusions and tppetive deformations. Cliques are

classified using MAP estimation. Up to now, the model captures cliques wathwo and three regions which is

sufficient for detecting polyhedral objects. The model allows to detectomate multiple appearances of object
classes. The joint distribution of the Bayesian net is determined in a Sapdiearning step based on images with
annotated regions. The method is realized and demonstrated for the deteichioilding roofs in aerial images.

1. Introduction

Object detection and categorization is an important challange in the areanplter vision. The solution re-
guires methods of statistics, machine learning and basic computer vision atgoritBraphical models are an
increasingly accepted model in this area.

Many current approaches for object detection and categorizatiom fieatures which are defined in a global
or local way. Some approaches learn fixed sets of features [14]fiored=ooccurance measures [15]. Other
approaches model appearance probabilities of features [16, 2138, 4ften equipped with scale invariant feature
detectors.

In the domain of building detection and extraction from aerial images therenatieods which address the
problem often using specialized features of aerial images [5, 13, 11].

The presented approach is using features and their spatial relatioasia®bservations which are stored in a
feature adjacency graph. According to the image model of [6] the exttacimogeneous image regions represent
the piecewise smooth regions while points and lines are representing thattlisies between those regions.
Although the discontinuities carry the main information [1] they are spatially tiedthmg via the regions. By
doing this it is possible to insert spatial constraints in the semantic net whichddasthe reasoning.

This helps to detect objects by limiting the search space and build a coverrpratttion over the image. The
cover of interpretation is of special importance if a interpretation of the imagedded instead of categorizing
the whole image by finding the most likely class. In this case every relevgatti the image has to be detected,
where relevance is bounded by the minimum size of the feature detectiosy3ieen is scale invariant for smaller
changes of the scale because only the spatial relations instead of the Isimgtb of the detected features are of
importance.



2 Approach

The approach is motivated by the image model described in [6]. This maglehas objects to be homogeneous,
piecewise smooth segments in the image. These segments are assumed talbd bgwliscontinuities that are
piecewise smooth boundary lines and points that are either boundary giindgs$h curvature or junction points.

Most man-made-objects can be modeled in this way if they are mapped at theal sqale.

This approach is based on the homogeneous regions which connezatine$ spatially. Every region is a seed
point for the classification, the points and lines are treated only as oltises/éor these regions. Thus, image
parts where are discontinuities but no homogeneous regions are ddbustassification in this approach.

Due to occlusions in the image or failures of the feature detectors featusebenaot or wrong extracted.
To overcome these deficiency, a probabilistic approach is chosenefoharbayes net is used to represent the
probability of appearance of objects and their features. The net idosegregate features that are introduced in
the net as observations.

At the moment the approach is still focused on cliques of one, two and tdjaeeat regions in the feature
graph. This is the most simple setup to provide a consistent cover of classifiover polyhedral objects.

Inside the cliques the neighbor relations can be modeled as markov rareldmitice the relations are sym-
metric.

2.1 Model

The probabilistic detection is modeled as a bayes net that consists of theée 1&n the leaves on the bottom
level of the net are nodes that are instantiated with the observationsdieriv of the feature adjacency graph. The
middle level consists of nodes representing the type of cliques. The tdphege are aggregated to the object-
node that represents the class. Due to the three types of cliques théneardifferent bayes nets representing the
structure of observations. A bayes net for two- and three-cliques woieonly consist of adjacent regions. The
neighborhood of adjacent regions delivers several new obseamgahat make bigger cliqgues more reasonable.

There are observations only concerning single regions like symmetry dbilredary lines, corner points and
textural parameters. The adjacency gives observations like the rattbe ofgions size, symmetry between the
regions and their texture and in the ternary neighborhood again ratios/amdetries can be observed.

To deal with nodes of varying dimensionality of the Cliques-node we canttrsadimension as an additional
object-node in a dynamical bayes net that represents the probabilityrésesp a certain clique.

The joint distribution represented by the bayes net can be written as

p(O,C, R|F) = p(O|C; R, F)p(C, R|F)p(R| F)

Where O stands for Objects, C for Cliques , R for Regions and F for Fesatu

2.2 Learning

The task of learning is to estimate the parameters of the probability densities indbe af the bayes net. The
goal is to find the best distribution to explain the observations.

To determine the distribution of the bayes net nodes there is a supervisgddestep. As input for the learning
step images are provided, in which the regions of the extracted featureeadyagraph are annotated. This
annotation determines the class of the object represented by the featdieslane in this case by a supervisor.

The so annotated images are learnt in a simple bayesian learning step [$dagds the distribution in every
involved node. where the maximum likelihood over the parameters is seatghedarg max,p(O, C, R|F).



2.3 Classification

The classification starts with a random region in the feature graph. Thed@&bservations are introduced in the
leave nodes of the bayes net and the information is propagated througétthiehis produces a hypothesis about
the evidence of the region at the top level node of the net. Because tedigee types of nets for the different
cligues and several possibilities in the feature graph to instantiate the$esgnaydtiple hypotheses are generated
in the top level node. These are rated in a MAP estimation to search for theprobsible explanation. The so
classified regions are labeled and the algorithm continues until all regiersteeled.

Thus there must be at least two categories to decide between, thereys allwackground class that models
all objects that are not covered by the other classes. The problensHiein other probabilistic approaches to
parametrize the classs distribution.

3 Implementation

The Feature extraction is based on three disjunct programs. First treepmist detector that uses interest points
[6]. The line detector fits lines through edge pixels that come out of a thidesth edge filter [7, 10]. As a third
step homogeneous regions are detected where the variance in a textatgenwenputed with color histograms
is below a threshold calculated out of the image noise. Thus the three deteaverto work together, they are run
in aboves order, where in the following results is made a cut when detectézguae at a position where a more
important feature has been detected.

With the result of the feature detectors the feature adjacency graph is Dldtfeature adjacency graph is a
planar graph with the features as nodes. Vertices in the graph mean tfeatives are adjacent. This adjacency
is computed by the exoskeleton of the features [8]. The vertices are ttituith the distance and variance of
the exoskeleton.

The observations which are derived from the feature adjacench grape.g. the symmetry of boundary lines,
texture parameters, number of boundary lines and holes, number ifr qgooimés and number of neighbors for a
single region. For a two region neighborhood there are the ratios besimgtexture and moments of the regions
and the shape and length of the shared boundary. The ternary cligaeltiitional observations like symmetries
of the shared boundary lines and ternary ratios of the above features.
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Figure 1: A cut out of the feature adjacency graph. The lines mark tberebd two- and three-cliques.



Figure 2: feature extraction on an aerial image with a larger building. Ttiea®d points, lines and regions are
shown.

4 Results

The experiments were done with aerial images of suburban and urbangedhe figure 1 shows the extracted
points, lines and regions. Figure 2 shows the adjacency between thase$e The foundation for learning from
which the distribution of the net is estimated is in this case about a square kiloohetigburban houses. The
houses extracted by a semiautomatic tool for building extraction and bge&d in the image as a annotated
layer of the image. The figure 4 shows results of the classification of twe phraerial images. The detected
categories are house, street and background/vegetation.

5. Conclusions and Outlook

This paper presents an approach for the detection and classificatibjeofsin images that can create a cover of
interpretation over the image regions. This is from importance if the detectigaps a reconstruction...

The presented approach is not for the categorization of the image libefdetection of multiple objects in the
image. This is for example needed if the following step is a reconstruction pidimbilistic model can handle
errors of the feature extraction, of the supervising teacher in the lgpstep and the perspective deformations.

The extraction of the feature adjacency graph is a well understooaanidiplemented algorithm. By inserting
the spatial aggregation of features the number of generated hypothd®gd low in contrast to other methods.
This keeps the computational overhead of the bayes net small.

For the future work there will be some tests necessary regarding the apdeletection rate in image databases
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Figure 3: the same image showing the adjacency of the extracted features

to explore the limits of the approach. To make the detection more robust thesirpeints can be replaced by
some scale and rotation invariant feature points.

The next step for the detection and classification will be to expand the bayesth a dynamic part. With this
the net will be able to model complex polyhedral objects even if they areeadjas each other. It is possible to
expand the net until the top level node represents the entire sceneif e in most cases irrelevant due to the
high number of possible states, it can be very helpful in the context ofuitainy extraction to know whether the
extraction takes place on the country side, on a suburban or urbag $nghe context of an Al-System it would
be possible here to choose the algorithms to examine the hypotheses.
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