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Trajectory Reconstruction Using Long Sequences of Digital 
Images From an Omnidirectional Camera 
BENNO SCHMEING1, THOMAS LÄBE2 & WOLFGANG FÖRSTNER3 

Wir präsentieren einen Ansatz, um lange Bildfolgen einer omnidirektionalen Kamera mittels 
Bündelausgleichung auszuwerten. Wir nutzen Bilder des Multikamerasystems Ladybug3 von 
PointGrey, welches aus sechs Einzelkameras besteht. Die gegenseitige Überdeckung 
aufeinanderfolgender Bilder ist groß; Verknüpfungen zwischen weit entfernten Bildern 
kommen nur über Schleifenschlüsse zustande. Zwei Probleme sind zu lösen: (1) Die 
Bündelausgleichung muss Bilder einer omnidirektionalen Kamera verarbeiten und (2) 
Ausreissersuche und Näherungswertbestimmung müssen mit der speziellen 
Aufnahmegeometrie umgehen können. Wir lösen Problem (1) indem wir die Einzelkameras 
der Ladybug zu einer virtuellen Kamera zusammenfassen und für die Bündelausgleichung 
ein sphärisches Modell verwenden. Die Ausreisserdetektion (2) erfolgt über lokale 
Bündelausgleichungen benachbarter Bilder und anschließende robuste 
Gesamtbündelausgleichung. Ein Inertialnavigationssystem liefert die benötigten 
Näherungswerte für die Kamerapositionen. 
 
We present a method to perform bundle adjustment using long sequences of digital images 
from an omnidirectional camera. We use the Ladybug3 camera from PointGrey, which 
consists of six individual cameras pointing in different directions. There is large overlap 
between successive images but only a few loop closures provide connections between distant 
camera positions. We face two challenges: (1) to perform a bundle adjustment with images 
of an omnidirectional camera and (2) implement outlier detection and estimation of initial 
parameters for the geometry described above. Our program combines the Ladybug’s 
individual cameras to a single virtual camera and uses a spherical imaging model within the 
bundle adjustment, solving problem (1). Outlier detection (2) is done using bundle 
adjustments with small subsets of images followed by a robust adjustment of all images. 
Approximate values in our context are taken from an on-board inertial navigation system. 

1 Introduction and Motivation 

Trajectory reconstruction as well as structure from motion (SfM) are both intensively 
investigated. Many approaches rely on bundle adjustment, estimating both the camera positions 
and orientations as well the coordinates of 3D scene points. 
Usually, the functional model of the bundle adjustment is based on a planar pinhole model. 
Hence, the bundle adjustment uses 2D image points as observations. We present a spherical 
camera model for bundle adjustment that uses 3D directions in the camera system as 
observations. Thus, we are able to model classical planar pinhole cameras as well 
omnidirectional cameras, e.g. multi-camera systems or catadioptric cameras having a single 
viewpoint. 
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1.1 Related work 
For pinhole cameras with planar sensor there are many existing packages for fully automatic 
bundle adjustment, e.g. the system of MAYER (2008), AURELO (LÄBE & FÖRSTNER, 2006) or the 
BUNDLER (SNAVELY ET AL., 2006). New developments focus on minimizing computational effort 
and handling large data sets. FRAHM ET AL. (2009) present an approach to process data sets up to 
the scale of millions of images. 
However, although much work was done on the calibration of omnidirectional cameras, few 
publications address the topic of bundle adjustment for omnidirectional cameras. For multi-
camera systems, the images from the system’s single cameras are often processed separately, e.g. 
(LEE, 2009). Publications that present bundle adjustment for catadioptric cameras are for 
example (LHUILLIER, 2005) and (RITUERTO ET AL., 2010). Both consider for the cameras’ special 
characteristic by sophisticated calibration functions. 

1.2 Experimental setup 
We have several sequences of images taken with the Ladybug3 multi-camera system (see Figure 
1). The Ladybug3 is mounted on a hand-guided platform together with an Inertial Measurement 
Unit (IMU), odometer and GPS. Using the odometer data, the Ladybug3 is triggered once per 
meter. Since it is a multi-camera system, the Ladybug makes six images at a time. We use four 
(left rear, left front, right front and right rear) which have clear sight and can be expected to 
support the orientation process. We want to determine the camera trajectory from these images 
using a bundle adjustment. 
 

  

Figure 1: Ladybug3 camera arrangement. Left: picture of the Ladybug3. Right: Sketch of the camera 
arrangement: Five cameras are arranged horizontally, the sixth one points upwards. The x and y axis 
define the Ladybug reference frame. 
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1.3 Problems to solve 
Since there is very little overlap between the view fields of the Ladybug’s single cameras, a 
conventional bundle adjustment of the individual trajectories yields separate, diverging 
trajectories (see Section 3.2 for an example). Therefore, you must either add restrictions to 
enforce the stable mutual orientation of the single cameras within the bundle adjustment or 
combine the single cameras into a spherical virtual camera. We do the latter and transform the 
image coordinates from the cameras into directions within a common reference system, taking 
into account, that the projection centers of the individual cameras are distinct and not identical to 
the viewing center of the spherical camera. This has the advantage that the number of unknowns 
for the camera parameters decreases significantly in comparison to the approach of using 
restrictions. The model can also be used for omnidirectional cameras with a different mechanical 
setup. For a strict formulation of a multi-camera system, see (SCHNEIDER ET AL., 2011). 
The geometry and size of the data set is a second problem. For long sequences of images with no 
or just very little observations between far away images, the bundle adjustment becomes 
numerically instable. Hence, outlier detection and provision of reliable approximate values is 
crucial. Usually, the generation of approximate values is based on relative orientations between 
pairs of images: Starting with a pair of images the other images are subsequently added. 
However, during long sequences of images, errors due to Random Walk and drift effects 
accumulate resulting in huge inconsistencies at loop closures. Therefore we currently use the 
data from the IMU, odometer and GPS to compute approximate values. 

2 Description of our approach 

2.1 Planar and spherical model for bundle adjustment 
The functional model for bundle adjustment with a standard planar pinhole camera is based on 
the collinearity equation, which describes the projection of the points from the 3D 
photogrammetric system into the image: 

[ ]XXIKRx ~~
0−= λ  (1) 

Here, X~  stands for the object points (in 3D homogeneous coordinates), x~  stands for the image 
points (2D homogenous coordinates). The matrices K , R  and 0X  are the calibration and rotation 
matrix of the camera respectively the position of the camera projection center. The unknown 
scale factor λ  usually is eliminated by expressing (1) using the Euclidean coordinates. This does 
not allow to use viewing rays orthogonal or nearly orthogonal to the viewing direction. Eq. (1) is 
used for all image points observed in all cameras exposed at all times. 
Unlike a pinhole camera, omnidirectional cameras generate observations in all directions. 
Therefore, we cannot use 2D image coordinates to describe these observations. Instead, we 
define the spherical model that uses normalized three dimensional directions: 

[ ]( )XXIRNm s
w

s ~
0−=  (2) 

with ( )...N  normalizing a vector to unit length. In our context we split R  into two parts: s
wR  

describes the rotation from the world system into the spherical camera and v
sR describes the 
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rotation from the spherical camera into the individual virtual cameras. In equation (2), we do not 
need v

sR , as sm  is defined in the spherical camera system. Section 2.2 explains the computation 
of sm  from vx . 
In the bundle adjustment, we now minimize the Euclidian distances between the observed and 
computed directions: 

[ ]( ) 2

0
~min∑ −−=Φ XXIRNm T

W  

This is equivalent to minimizing the sum of squares of all directional differences between 
observed directions and adjusted directions, see MOURAGNON et al. (2009). Since equation (2) 
still represents the collinearity equation, we can use established and proven algorithms to solve 
the bundle adjustments subtasks, e.g. determining the relative orientation between cameras. 

2.2 Combining the pinhole cameras to a spherical camera 
We use the multi-camera system Ladybug3, which consists of six cameras4 pointing in different 
directions thus observing a great deal of the sphere. However, the projection centers of the 
Ladybug’s six cameras don’t coincide but feature a radial shift of about 4 cm (see Figure 1). 
Therefore, we first transform the observations into virtual cameras whose projection centers 
coincide with the ladybug reference system’s origin. In the second step, we merge the virtual 
(pinhole) cameras into a single spherical camera. The whole process is shown in Figure 2. 

 

Figure 2: Combining the pinhole cameras to a spherical camera. The Ladybug consists of six cameras 
(left) of which we use four (middle left). Each camera is transformed into a virtual camera whose 
projection center coincides with the origin of the camera system (shown for camera 0, middle right). 
Finally the individual virtual planar cameras are fused into a virtual spherical camera, where the original 
image coordinates are represented as unit direction vectors (right). 

2.2.1 Transformation from real to virtual pinhole cameras 
When transforming the observations from real to virtual pinhole cameras, the dislocation of the 
cameras’ projection centers results in a concentric point wise distortion. We implement this 
effect by applying equation (3): 

mv x
dd

dx ⋅
∆+

=  (3) 

Here, the Euclidean vectors mx  and vx  describe the measured image positions respectively their 
projections into the virtual cameras and ∆d is the known offset between the individual real and 

                                                 
4 We use only four cameras: The rear camera’s view is blocked by equipment and the operator moving 

the camera platform. The top camera observes mainly sky. 
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the virtual camera. The distances parallel to the line of sight d  are determined using forward 
intersection with other neighboring images. 

2.2.2 Transformation from virtual cameras into the spherical camera 
The transformation from the virtual cameras into the spherical camera is done by a rotation 
accounting for the virtual camera’s orientation (compare equations (1) and (2)): 

( )( )v
r
c xKRNm ⋅⋅= −− 11  (4) 

To define r
cR , we use calibration data from the manufacturer. 

2.2.3 Accuracy of the directions in the ladybug reference system 
Generally, the measurement accuracy of the point detector (Lowe 2004) is approximately 1/3 
pixel. We need to clarify in how far errors occurring during the transformation of an image point 
into the virtual camera of the Ladybug reference system may downgrade the accuracy. 
The accuracy of the transformation into the virtual camera depends on the accuracy dσ  of the 
distances parallel to the line of sight d  determined by forward intersection. The uncertainty of 
the length of the baselines B  directly influences the uncertainty of the distance d . Hence, dσ  
depends both on the accuracy of the intersection and the relative accuracy of the baselines. For 
the recording situations faced here ( 1=B m, %1/ =BBσ , 1>d m) we obtain standard deviations 
of the shift between xv and xm less than 0.1 pel. Thus, with the exception of gross errors, the 
transformation into virtual cameras does not downgrade the accuracy noticeable. 
The effect of the transformation into the ladybug reference system is assessed using error 
propagation for equation (4). Since we miss reliable information about the accuracy of the 
manufacturer calibration, we assumed pessimistic values (projection center accuracy 1mm, 
camera orientation 0.1°) resulting in accuracies of about 1 pel. In Section 3, we will see that the 
actual accuracies are substantially better. 

2.3 Workflow 
We start with a data set consisting of: 

- rectified images (compensated nonlinear distortion) 

- approximate position and orientation of the Ladybug3 at every triggering point 

- calibration data with arrangement of Ladybug’s single cameras. 

To determine the camera trajectory, we perform the steps listed below: 

- Extraction of interest points according to (LOWE, 2004) 

- Matching the interest points: Matching all images against each other is a massive task. 
Using the trajectory from the IMU, odometer and GPS, we can limit the number of pairs 
to be matched. Only image pairs whose computed fields of view provide enough overlap 
(here: 50%) are matched. 

- Merging the pinhole cameras to a spherical camera: To merge the pinhole cameras, we 
follow the steps in Section 2.2. In order to do the transformation into the virtual cameras, 
we need to determine 3D coordinates in the camera system by forward intersection with 
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all linked images. The camera orientations are computed using the 5-point algorithm 
presented in (NISTER, 2004) and RANSAC (FISCHLER & BOLLES, 1981). The scale factor 
is set using the baseline length measured by the IMU and odometer. 

- Generation of approximate values: Using the trajectory from the IMU, odometer and GPS 
(see Section 2.4) and the pairs of points from the matching, we compute approximate 
coordinates for the object points by intersection. 

- Data cleaning: The pairs of points from the matching of images feature a significant 
number of outliers. Most – but not all – are detected during the relative orientation of the 
images. To clean the dataset from the remaining outliers, we execute local bundle 
adjustments with about 20 spherical cameras and use the resulting residuals for blunder 
detection. 

- Global bundle adjustment: Depending on the size of the dataset, it may be necessary to 
call the final bundle adjustment (including all virtual cameras) more than once and do 
again a blunder detection in every iteration. 

2.4 Generating approximate values  
In Section 1.3, we have stated that random walk and drift effects are a problem when generating 
approximate values for long image sequences by adding up relative orientations. This problem 
can be solved by portioning the sequence into smaller subsequences, which are dealt separately 
and combined afterwards. 
Here, we use a GPS sensor and an Inertial Measurement Unit (IMU) to determine approximate 
values for the Ladybug’s exterior orientation. The data from the IMU is used to determine a 
precise trajectory by dead reckoning. GPS is used to fix the datum. 
The resulting trajectory is very precise locally, but errors add up creating significant deviations 
both due to random walk and drift effects (see Table 1). However, the trajectory is well capable 
for generating approximate values. 

Longitudinal component Lateral component Height component 
-0.1647 m 1.0210 m -0.2983 m 

Table 1: Loop closure error from the IMU and GPS for a 778 m long trajectory. The data was recorded 
during the measurement for Section 3.3. 

2.5 Implementation Issues 
Since we use directions as observations (3 coordinates instead of 2 image coordinates) we cannot 
use a standard bundle adjustment package (without modifications). We therefore use the free 
available package SBA (source code open) (LOURAKIS, A. & ARGYROS, A.A, 2009). It allows to 
define the observation function together with the Jacobians w. r. t. the parameters. We implement 
the model described in Section 2.1 in SBA. Since SBA uses a sparse Levenberg-Marquardt 
implementation, it is also suitable for large datasets. In addition to our blunder elimination, we 
call SBA in an iterative scheme with a reweighting procedure in between to robustify the bundle 
adjustment. 
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3 Results  

We use three data sets to evaluate the validity and performance of our approach: 
- We demonstrate that the bundle adjustment yields the same results with the spherical 

camera model as with the planar model when applied to images taken with a classical 
pinhole camera. 

- We demonstrate the higher robustness and consistency when modeling a spherical 
camera instead of several pinhole cameras to process data from an omnidirectional 
camera (here: the Ladybug3). 

- We demonstrate that our approach is capable of dealing with large data sets. 

3.1 Comparison of planar and spherical projection model 
We first want to investigate the impact of the different projections models, planar and spherical 
model, on the result of the bundle adjustment. We perform bundle adjustment of a test dataset 
(„City hall Leuven“) which is available at http://cvlab.epfl.ch/data/strechamvs. The dataset 
consists of 7 images with known calibration parameters that show a scene with detailed texture. 
We use the following three approaches: 

1. Bundle adjustment with the free available software BUNDLER (see 
http://phototour.cs.washington.edu/bundler ) 

2. Bundle adjustment with our in-house software called AURELO (LÄBE & FÖRSTNER, 2006), 
which uses SBA for bundle adjustment. 

3. Using exact the same set of observations as in the previous approach, but transforming 
the image coordinates into directions before minimizing the residuals of the directions in 
the bundle adjustment using the spherical model. 

To compare the resulting orientation parameters, we use the approach of DICKSCHEID ET AL. 
(2008). We report the consistency measure c here, which can be interpreted as the average factor 
between the differences of the orientation parameters and their accuracies described by the full 
covariance matrix of the orientation parameters. The consistency measure between results (1) 
and (2) is c12 =6.7, assuming the same covariance matrix for BUNDLER as for AURELO, because 
BUNDLER does not deliver accuracies, between result (2) and (3) c23 =0.74. This shows that 
optimizing directions has a very small influence on the result (c23 < 1, so the differences are 
smaller than their assumed distribution indicated by the covariance matrices). Using another 
program and thus another set of observations has a much stronger influence (c23>> c12), which 
mainly is due to the different ways to eliminate blunders. 

3.2 Using a single spherical camera instead of separate pinhole cameras 
Processing all images of the Ladybug’s single cameras in one bundle adjustment does not deliver 
reliable and consistent results, as to be expected. In order demonstrate this, we use a small test 
dataset of 15 equally spaced positions where images of 4 cameras of the Ladybug were taken. 
For the first test, we simply put all 60 images in our in-house software AURELO. As a second test 
case we used the new developed approach described above. The resulting trajectories of both 
tests are depicted in Figure 3. The single cameras’ estimated projection centers are not centered 
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around the Ladybug’s true positions but scatter strongly. The main problem is the small overlap 
between the Ladybug’s cameras’ fields of view. Thus there are few observations connecting 
images from different cameras. In case one camera’s trajectory is broken, it can hardly be 
restored using the other cameras. Especially for narrow curves, this is a distinct possibility. 
Combining the images increases the probability of connecting all positions dramatically.  
Summarizing, the spherical camera model is both more consistent, because the rigidity of the 
arrangement of the Ladybug’s single cameras is considered, and robust, because there is a lower 
risk that a trajectory breaks. 

Figure 3: Visualization of a trajectory with 15 positions and 60 images. Left: Using each image separately 
without any constraints. Right: Combining the cameras to one virtual camera per position. Note the 
equally spaced result on the right which is much more accurate than the left one. 

3.3 Processing a large data set 
Here, we will show that our approach is capable of processing a large data set. The data set 
consists of three loops around a University Bonn library building (see Figure 4). There is a total 
of 778 triggering points (3112 pictures) geotagged by an Inertial Measurement Unit (IMU) and 
GPS. Before outlier detection, we start with observations to 130.466 putative object points. After 
outlier detection, 463.722 observations to 91.792 object points remain. 

 
Figure 4: The data set for Section 3.3 was captured during three loops around the Branch Library for 
Medicine, Science and Agriculture of the University Bonn (drawn in yellow). 
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The bundle adjustment runs without problems and estimates the parameters for the exterior 
orientation for every triggering position.  
The first parameter to assess the validity of the bundle adjustment results is the a posteriori 
variance factor. The bundle adjustment results in an a posteriori variance of 0.06° for the 
spherical camera system respectively 0.64 pel for the pinhole cameras, which compares well 
with the values from the tests performed above and with the value reported in (SCHNEIDER ET 
AL., 2011). Thus, there is no hint for undetected outliers or other problems, such as failed 
convergence, reaching a local optimum etc. 
In the setup shown here, the standard deviations of the estimated projection centers increase up 
to 20 cm at the triggering positions furthermost from the point we used to fix the datum. 

4 Conclusion and outlook 

We have presented an algorithm to perform a bundle adjustment for omnidirectional cameras. 
The spherical camera model is both simple and easily adaptable to several kinds of cameras. 
With the procedures from Section 2.2 we expanded it so that we can process data from multi-
camera systems like the Ladybug3. 
Testing the spherical camera model on both publically available and own data sets, we have 
shown that: 

- Using the spherical camera models yields the same results as standard bundle adjustment 
algorithms for images from pinhole cameras. 

- When processing images from omnidirectional cameras like the multi-camera system 
Ladybug3, merging the different pinhole cameras into a single virtual spherical camera 
yields better robustness and consistency of the results. 

- The workflow proposed here is also capable of processing large data sets. 
Several problems have been identified, but not solved yet: 

- Actually, the local bundle adjustments do not test all observations. Here, a scheme to 
improve the ratio between computational effort and completeness is preferable. 

- Except for the bundle adjustment in SBA, the procedure is not optimized for low 
computation times.  

- Depending on the quality of the approximate camera orientations and positions, the 
process of generating the virtual image needs to be iterated to yield accurate corrections 
when transforming the observations into the virtual cameras. 

- There appears to be no generally method to obtain approximate values. The generation of 
approximate values is solved both for narrow (using a Kalman-Filter) and wide-baseline 
imagery (e.g. Snavely et al., 2006). However, the image sequence from Section 3.3 is a 
mixture of both where classical methods are likely to fail. 
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