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Abstract

Decisions based on basic geometric entities can only be optimal, if their uncertainty is

propagated trough the entire reasoning chain. This concerns the construction of new entities

from given ones, the testing of geometric relations between geometric entities, and the

parameter estimation of geometric entities based on spatial relations which have been found

to hold.

Basic feature extraction procedures often provide measures of uncertainty. These un-

certainties should be incorporated into the representation of geometric entities permitting

statistical testing, eliminates the necessity of specifying non-interpretable thresholds and

enables statistically optimal parameter estimation. Using the calculus of homogeneous co-

ordinates the power of algebraic projective geometry can be exploited in these steps of

image analysis.

This review collects, discusses and evaluates the various representations of uncertain
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geometric entities in 2D together with their conversions. The representations are extended

to achieve a consistent set of representations allowing geometric reasoning. The statistical

testing of geometric relations is presented. Furthermore, a generic estimation procedure is

provided for multiple uncertain geometric entities based on possibly correlated observed

geometric entities and geometric constraints.
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1 Introduction

1.1 Motivation

Geometric entities derived from digital images are inherently uncertain. A rigor-

ous and consistent treatment of these uncertainties is necessary for efficient and

successful spatial reasoning in 2D and 3D.

Basic geometric 2D elements are points, straight lines, and straight line segments,

especially when observing man-made objects with straight line preserving cam-

eras. These elements are used for calibration, orientation, object localization, ob-

ject reconstruction, or as parts of intermediate representations for further image

interpretation.

This paper is concerned with basic 2D entities. Decisions based on these elements

can only be optimal in case the uncertainty is propagated through the reasoning

chain. E.g., when using point correspondences for determining the relative orien-

tation of cameras, the parameters of the resulting essential or fundamental matrix
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will be uncertain, which needs to be known when reconstructing the objects 3D

form. Or, another example, when finding correspondences of points or line seg-

ments or when grouping such geometric entities for 3D reconstruction, the quality

of all decisions depends on the exploitation of the uncertainty of the given or de-

rived entities.

Reasoning with uncertain geometric entities appears in three forms:

(1) constructing new elements from given ones, e.g., when determining the inter-

section point of two given lines,

(2) testing geometric relations between geometric elements, e.g., when checking

the collinearity of three points, and

(3) estimating parameters of geometric elements based on spatial relations, which

have been found to hold, e.g., when fitting a straight line through points which

were found to be incident to that line at the same time considering the paral-

lelism to another line.

Obviously, representing geometric entities using homogeneous coordinates, thus

exploiting the power of algebraic projective geometry, is of great advantage, es-

pecially when using straight line preserving cameras, cf. (Hartley and Zisserman,

2000). This advantage, however, is not so obvious anymore in case the geometric

entities are uncertain, cf. (Förstner, 2005): the redundancy of the representation,

e.g., three homogeneous coordinates for a point in two dimensions, leads to sin-

gular distributions and requires additional constraints during estimation. Moreover,

straight line segments are not basic elements of the projective space. They are rather

aggregates of geometric entities and no canonical representation seems to exist;

e.g., one may choose a point pair or a point together with a direction and a length

as representation.
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Furthermore, geometric entities with measures of uncertainty which are the result

of basic feature extraction procedures are given in representations which require

proper transformations into homogeneous entities. Therefore, alternative represen-

tations of uncertain geometric entities have to be discussed.

This paper discusses representations of basic uncertain geometric 2D entities to-

gether with their use in geometric reasoning. Special emphasis is given to straight

lines and straight line segments and their various representations. Especially, straight

line segments require an aggregate of entities with different distributions in order

to cope with tests on containment and overlap. We restrict our discussion to 2D

entities, namely points, straight lines and straight line segments. The generalization

to 3D entities is straight forward though involving.

1.2 Previous Work

Exploiting uncertainty for 2D-features has a long history.

Treating the uncertainty of points shows the least diversity: Uncertainty is repre-

sented by the second moments of the probability density function (p.d.f.), i.e., the

covariance matrix Σxx of the coordinates x. The principle of maximum entropy

implies that the coordinates of a point follow a Gaussian distribution. Visualization

uses either the confidence ellipse or the ellipse (x − µx)TΣ−1
xx (x − µx) = 1 with

the bounding box having side lengths 2σx and 2σy.

Transferring uncertainty to homogeneous coordinates x = [u, v, w]T has been pro-

posed by several authors, cf. (Collins, 1993; Criminisi, 2001; Kanatani, 1995). The

Bingham distribution (Bingham, 1974), useful for bi-directional data, thus unori-

ented homogeneous vectors, usually is replaced by a Gaussian distribution. How-
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ever, requiring that homogeneous entities have singular covariance matrices in all

cases leads to inconsistencies and does not reflect the true nature of homogeneous

vectors, namely being linear subspaces in IR2, thus only representing the direction

λx.

Unfortunately only few image processing methods for extracting interest points

yield covariances as, e.g., the one in (Förstner and Gülch, 1987). The validity of

such covariances has often be discussed. A study into the accuracy of corner points

is contained in (Rohr, 1992). The bias of point detectors has been discussed in

(Schmid et al., 2000). Suggestions for simplifications, such as assuming indepen-

dent and identically distributed coordinates are common. A discussion of the effect

of such simplifications has been done in (Kanazawa and Kanatani, 2001), however

not taking into account the fact that point operators do not necessarily lead to points

with round confidence ellipses, e.g., when following the proposal of Köthe (2003)

who requires the smallest eigenvalue to show a local maximum.

Uncertain straight lines have received increasing interest. Also here a covariance

matrix Σll may be used to represent the p.d.f. of the two line parameters. As they

usually represent the position and the direction of the line in some way, e.g., using

the distance d of the line from the origin and the direction φ of the normal in the

Hessian form, the dimension of the two standard deviations differ, e.g., being ra-

diants and meters or pixels, respectively. As direct visualization of the covariance

matrix Σ(φ, d) is not intuitive, visualization of the line uncertainty is usually done

by the confidence hyperbola, representing the confidence regions across the line of

all points on the line. The design of the hourglass filter proposed in (Köthe, 2003)

follows this characteristic. Early discussions of the uncertainty of a 2D straight line

described by such a hyperbolic error band can be found in (Wolf, 1938). This repre-
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sentation has repeatedly been used for visualization (Faugeras, 1993) especially of

epipolar lines, cf. (Zhang, 1998; Ochoa and Belongie, 2006). Furthermore, Utcke

(1998) shows the advantages for the representation of a straight line with its cen-

troid, which leads to a representation analogous to uncertain points.

Straight line segments with attached uncertainty are used frequently, especially for

3D-reconstruction of man made objects, cf. (Noronha and Nevatia, 2001) or for

grouping, cf. (Crevier, 1999; Fuchs and Förstner, 1995; Estrada and Jepson, 2004).

The uncertainty refers to the position and direction of the straight line as well as

to the position of the end points. The uncertainty of the end points is mostly repre-

sented using tolerances, often ignoring the uncertainty in direction. In the context

of quality measures in geoinformation systems Shi (Shi, 1998; Shi and Liu, 2000)

represents uncertainty using standard deviations. The fields used in tensor voting

(Guy and Medioni, 1996, 1997) may be interpreted as the p.d.f. of the end points.

In contrast to points and straight lines no commonly accepted representation for

straight line segments seems to exist. In Section 5 we propose two useful repre-

sentations for uncertain straight line segments, based on the proposal in (Beder,

2004).

Spatial reasoning with uncertain geometric entities has been explored intensively

by Kanatani (1994; 1995). He presents techniques for geometric reasoning using

homogeneous representations of geometric entities in 2D and 3D. Singular co-

variance matrices of joins and intersections in homogeneous coordinates resulting

from the normalization of the homogeneous vectors are enforced. Also optimal

ML-estimates for lines through collinear uncertain points and intersection points of

concurrent uncertain straight lines are given. These estimates are restricted to a sin-

gle geometric entity and uncorrelated observed geometric entities. The estimation
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procedure presented in Section 7 covers generalizations to multiple entities and full

covariances.

In (Clarke, 1998) solutions for the constrained minimization problems are given

using homogeneous coordinates. The shape of the error band of a straight line is

discussed as well as the error propagation for the construction of geometric entities

and the covariance matrices for homogeneous representations. Compact representa-

tions of algebraic projective geometry for representing uncertain geometric entities

have been exploited in (Förstner et al., 2000) and used for testing and estimation

in (Heuel, 2004). The representation of uncertain axes and directions in IRn for

arbitrary n is intensively discussed in (Mühlich, 2005).

Applying statistical representations of the uncertainty of geometric entities often

has been found to make reasoning easier, especially setting thresholds. First at-

tempts are published in (Collins, 1993). By taking into account the uncertainty of

image features in the process of grouping, the result of the subsequent object recog-

nition was shown to be enhanced (Utcke, 1998). In (Criminisi, 2001) reasoning with

uncertainty is integrated in all steps of image analysis.

1.3 Goals, Outline and Notation

Goals. The paper has the following goals:

• Collect, discuss and evaluate the various representations for uncertain geometric

entities. Such a review is missing in the literature but is useful for a large variety

of applications.

• Extend the representations to achieve a consistent set of representations. This

set allows a wide variety of spatial reasoning processes on uncertain geometric
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entities, especially for constructing new entities and testing spatial relations.

• Provide a generic estimation procedure for multiple uncertain geometric enti-

ties based on possibly correlated observed geometric entities and geometric con-

straints. The proposed procedure can handle uncertain homogeneous vectors to-

gether with possibly singular covariance matrices extending the hitherto known

techniques w.r.t. the continuous use of homogeneous representations.

Outline. The paper is organized as follows: The Sections 2 and 3 discuss the var-

ious representations of uncertain 2D points and straight lines. The uncertainties of

constructions are derived in Section 4 preparing the representations of uncertain

straight line segments given in Section 5. The conversions between these repre-

sentations are derived. Specific test statistics and hypotheses for various geometric

relations between the entities are given in Section 6. The estimation procedure for

multiple homogeneous geometric entities is derived and discussed in Section 7.

Notation. Homogeneous vectors are denoted with upright boldface letters, e.g.

l or H, Euclidean vectors and matrices with slanted boldface letters, e.g. x or R.

For homogeneous coordinates ’=’ means an assignment or an equivalence up to

a scaling factor λ 6= 0. We distinguish between the name of a geometric entity

denoted by a calligraphic letter, e.g. x and its representation, e.g., x or x. With

the skew-symmetric matrix S(x) = Sx the cross product Sxy = x × y of

two vectors x and y is represented. We make use of the basic rule for variance-

covariance propagation: Given the first and second moments µx and Σxx of a

stochastic variable x (underscored) the first and second moment of a differentiable

function y = f(x) with Jacobian J = ∂f/∂x|µx are obtained as µy = f(µx) and

Σyy = JΣxxJ
T+O (|Σxx|/|x|2). This is rigorous for linear functions y = Jx+a
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and a good approximation up to terms of second and higher order if the function is

smooth and the variances are small — for a discussion of these approximations cf.

(Förstner, 2005). We will use the two-argument version of the arctangent function

atan2(·, ·) in case we want to enforce the result to be in the correct quadrant.

2 Representation of Uncertain Points

This section collects Euclidean and homogeneous representations for uncertain 2D

points x most commonly used and their corresponding conversions.

2.1 Euclidean Representations

Among the Euclidean representations we discuss the well-known classical Eu-

clidean representation, namely coordinate pairs, and a centroid form which reflects

the uncertain result of feature extraction procedure.

2.1.1 Uncertain Euclidean point

An uncertain Euclidean point in the plane can be represented by the coordinate pair

x = [x, y]T and its uncertainty by the corresponding covariance matrix

Σxx =


σ2
x σxy

σyx σ2
y

 .

Thus we have the representation

x : {x,Σxx} . (1)
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Observe, that we treat the coordinates x as a sample taken from some arbitrary

distribution M characterized by its mean and covariance, thus x ∼ M(µx,Σxx).

Of course, x may be also the result of an estimation process together with the

corresponding covariance matrix. As a special case, taking a sample results in an

estimate for the expected value µ̂x = x.

Fig. 1 shows a point and its uncertainty drawn as the standard confidence ellipse,

being (y − x)TΣ−1
xx (y − x) = 1 with points y on the ellipse, thus choosing the

significance level of the confidence ellipse such that the right side is 1, cf. (Mikhail,

1976, p. 29). 1 The lengths of the semi-axes are the standard deviations σu =
√
λ1

and σv =
√
λ2 of the point in a local uv-coordinate system, λi being the two eigen-

values of Σxx. The angle α = 1/2 arctan(2σxy/(σ
2
x−σ2

y)) denotes the direction of

the major axis.

2.1.2 Centroid form

The centroid form is a simple and minimal description of the uncertain point x and

consists of the 5-tuple

x : {x, y, α; σu, σv} .

This representations contains three geometric parameters namely x, y and α, and

two standard deviations as parameters in contrast to the above Euclidean represen-

tation with two geometric parameters and three statistical parameters to specify the

second moments.

Euclidean and centroid representation only differ in their representation of the un-

certainty. With the eigenvalues λi of Σxx we have σu =
√
λ1, σv =

√
λ2, and

1 A representation for the error ellipse in homogeneous coordinates is given below.
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Fig. 1. A point and its standard confidence ellipse. The semi-axes are the minimum and

maximum directional standard deviations. The standard deviation σs into an arbitrary di-

rection is given by the distance from the origin to the tangent of the ellipse perpendicular

to that direction. Therefore, the bounding box has side lengths 2σx and 2σy, adapted from

(Mikhail, 1976, p. 29).

α = 1/2 arctan(2σxy/(σ
2
x − σ2

y)). For the inverse transformation we simply need

to rotate the axis-parallel ellipse with covariance matrix Diag (σ2
u, σ

2
v) by α.

2.2 Homogeneous Representations

Using homogeneous coordinates for representing geometric entities is of great ad-

vantage for spatial reasoning. The pure homogeneous representation of a point as a

vector, possibly normalized, is presented. Furthermore, we discuss the conic form

which represents the standard confidence region as a homogeneous matrix. This im-

plicit representation may be used e.g. as interface for a plotting routine accepting

general conics.
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2.2.1 Homogeneous Vector and its Covariance Matrix

The homogeneous representation of a point x is

x : {x,Σxx} . (2)

The homogeneous coordinates of points in the plane are the elements of the 3-

vectors

x =


x0

xh

 =



u

v

w


:=



λx

λy

λ


(3)

subject to the constraint |x|2 = u2 + v2 + w2 6= 0. When deriving homogeneous

coordinates from Euclidean coordinates, the factor λ 6= 0 can be chosen arbitrarily,

either as fixed or stochastic value. Homogeneous coordinates with w = 0 repre-

sent points at infinity. The vector x can be split into an Euclidean part x0 and a

homogeneous part xh.

The covariance matrix Σxx of the homogeneous coordinates u, v and w has in gen-

eral rank 3, unless certain constraints are imposed on x. We will see below, that

plain variance propagation may lead to both, full rank and singular matrices for ho-

mogeneous coordinates, cf. the dicussion in (McGlone et al., 2004) and (Förstner,

2005).
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For the transformation equations x→ x : x = u/w and y = v/w the corresponding

Jacobian at x reads

J(x) =
∂x

∂x
=


1

w
0 − u

w2

0
1

w
− v

w2



leading to the covariance matrix Σxx = J(µx)ΣxxJ
T(µx).

For the inverse transformation [x, λ] → x, which includes the possibly stochastic

factor λ, we have the Jacobian

Jh,eλ =
∂x
∂x

,
∂x
∂λ

=



λ 0 x

0 λ y

0 0 1



because of the Eq. 3. This leads to the covariance matrix

Σxx = Jh,eλ(x, λ)


Σxx Σxλ

Σλx σ2
λ

J
T
h,eλ(x, λ)

assuming λ to be stochastic and possibly correlated to x.

In case Σxx is regular, Σxx has rank three only if the factor λ is assumed to be

stochastic and if it is not 100 % correlated with the coordinates.
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Only when assuming λ to be deterministic, we obtain the classical singular covari-

ance matrix of a homogeneous point (Criminisi, 2001)

Σxx = λ2



σ2
x σxy 0

σyx σ2
y 0

0 0 0


= λ2


Σxx 0

0T 0

 . (4)

2.2.2 Conic representation of a point

A further representation of an uncertain point is the confidence ellipse represented

as homogeneous symmetric matrix

x : Cxx

as plotted in Fig. 1. This representation uses the fact that each conic can be rep-

resented by a 3 × 3-matrix when using homogeneous coordinates and results in

an implicit representation for both the mean and the covariance matrix. Thus for

points with homogeneous coordinates y = [u, v, w]T, which sit on a conic we have

au2 + bv2 + 2cuv + 2duw + 2evw + fw2 = 0 or yTCxxy = 0 with the matrix

Cxx =



a c d

c b e

d e f


.

The uncertainty of the homogeneous 3-vector x can be represented by the 3 × 3-

covariance matrix Σ xx in the (u, v, w)-space. The covariance matrix again can
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be represented as an ellipsoid E being a special type of a quadric Q , cf. Fig. 2.

If centered at 0, E is represented as yTΣ−1
xx y = k2 with y = [u, v, w]T and k

depending on the significance level. When viewed from the origin, the contour of

the ellipsoid in the (x, y)-plane w = 1 is a conic.

x
e

s

u,v

x,y

x

w

1

O

x

x

Fig. 2. Euclidean and spherical normalization. The Euclidean (x, y)-plane is embedded in

the 3D (u, v, w)-space, sitting at w = 1. Normalization is projection to the plane w = 1

or to the unit sphere respectively. The uncertainty of the the 3-vector x is represented as an

ellipsoid. Its projection leads to singular 3 × 3-covariance matrices, indicated by the flat

line segments. The equivalence of the representations is guaranteed in case the uncertainty

of the direction from the origin O is the same.

For the conversion from the purely homogeneous representation to the conic rep-

resentation we consider the quadric representation of the ellipsoid E which can be

either use the points Y with their homogeneous coordinates Y on the ellipsoid or

the tangent planes A to the ellipsoid with their homogeneous coordinates A, i.e.

Q : YTQY = 0 or ATQ∗A = 0 (5)
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where Q∗ is the adjoint matrix of the 4×4-quadric matrix Q. The second represen-

tation is to be preferred here, as we do not want to restrict to regular quadrics.

With Y = λ[yT, 1]T and Q(k) = Diag
(
k−2Σ −1

xx ,−1
)

the equivalence is given and

the dual quadric is the symmetric 4× 4-matrix

Q∗(k) =


k2Σxx 0

0T −1

 (6)

which describes the confidence region also in case Σxx is singular. Eq. 6 represents

the confidence ellipsoid of the stochastic homogeneous vector x however centred

at the origin.

We now want to determine the confidence ellipse of x in the plane w = 1. It

represents the uncertainty of the Euclidean coordinates [x, y]T. Equivalently we

may represent the uncertainty by the direction of the line through the origin and

the point [x, y, 1]T, which may be visualized by a confidence cone centred at the

origin and being tangential to the confidence ellipsoid of the point x = [u, v, w]T.

Therefore the confidence ellipse may be derived treating the origin as the projection

centre of a pinhole camera with the plane w = 1 as image plane and projecting the

ellipsoid into the apparent contour in the image plane w = 1.

This geometric configuration of the origin, the image plane w = 1, and the confi-

dence ellipsoid can be shifted such that the confidence ellipsoid sits in the origin

and the centre of the projection is at −x. Then the central projection of a point

[u, v, w] onto the plane w = 1 can be represented by the 3 × 4 projection matrix

P = [I3| − x]. Without proof (cf. Hartley and Zisserman, 2000, p. 201) the contour

C of a general quadric Q can be determined by C = (PQ∗PT)∗. Thus the conic is
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Cxx(k) =
(
k2Σxx − xxT

)∗
and with k = 1 we obtain the standard conic centred at

x

Cxx =
(
Σxx − xxT

)∗
. (7)

This relation is valid for a general covariance matrix Σxx and thus generalizes the

literally identical relation given in (Ochoa and Belongie, 2006), where the deriva-

tion uses the standard form of the covariance matrix in Eq. 4.

For the conversion of the conic to the centroid representation the homogeneous

matrix Cxx = (Cij) of a conic representing a standard confidence ellipse can be

decomposed, leading to the angle

φ =
1

2
arctan (2C12/(C22 − C11)) (8)

and the centroid

x0 = −


C11 C12

C21 C22



−1 
C13

C23

 = −C−1c. (9)

The standard deviations σu and σv relate to the eigenvalues λi of the centered conic

C/C33 where C = (Cij) = M−TCxxM−1 with the motion matrix

M =


Rφ x0

0T 1

 . (10)

We obtain σu =
√
λ1 and σv =

√
λ2.
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2.2.3 Normalization

The ambiguity of the homogeneous representation may be eliminated by normal-

ization. One usually distinguishes Euclidean and spherical normalization. The re-

sultant uncertain 3-vectors are still homogeneous, however, due to the normaliza-

tion they are guaranteed to have a rank 2 covariance matrix. Normalizations lead to

further homogeneous representations. They can be used as a surrogate of Eq. 2. We

therefore directly give the corresponding Jacobians and covariances here.

Euclidean Normalization. Homogeneous coordinates of a point can be trans-

formed into Euclidean coordinates with the relation in Eq. 3. The corresponding

Euclidean normalization operation

xe = Ne(x) = x/xh (11)

transforms the homogeneous vector such that its homogeneous part has the Eu-

clidean norm 1. To extend the normalization operation to uncertain points, variance

propagation has to be applied to Eq. 11. With the Jacobian evaluated at x

J e(x) =
∂Ne(x)

∂x
=

1

x2
h


xhI2 −x0

0T 0



this normalization in our special case reads

x : {xe,Σe
xx} =

{
x/xh, J e(µx)ΣxxJ

T
e (µx)

}
.

as the variance propagation requires the Jacobians to be taken at the expected val-

ues.
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Spherical Normalization. Normalization of a homogeneous vector x to unit length

with the help of the operator

Ns(x) = x/|x| (12)

is called spherical normalization, whereas |·| denotes the vector norm. This normal-

ization operation is identical for all geometric entities and will be presented here

exemplary for a point x. For the result all coordinates are lying on the unit sphere

S2 being a classical representation of the projective plane IP2. The orientation of

the vector is preserved.

Employing variance propagation with the Jacobian at x

J s(x) =
∂Ns(x)

∂x
=

1

|x|

[
I3 −

xxT

xTx

]

this normalization operation reads

x : {xs,Σs
xx} =

{
x/|x|, J s(µx)ΣxxJ

T
s (µx)

}
.

The ambiguity with respect to the sign of the normalization has no effect on the

result of the error propagation.

2.2.4 Conditioning

In order to avoid numerical difficulties, homogeneous entities should be trans-

formed such that the Euclidean part is significantly smaller than the homogeneous

part, cf. (Hartley, 1997). This transformation is called conditioning as the condition

number of the resulting matrix is closer to 1. One way is to apply a translation and
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a scaling leading to the representation

x : {xc,Σc
xx} = {Tcx, TcΣxxTT

c }

with the homography

Tc =



1 0 −xc

0 1 −yc

0 0 s


(13)

containing adequate parameters, e.g., the centroid [xc, yc]
T of all points of concern

and the maximum distance s of these points to this centroid. Conditioning is also

of major importance when estimating geometric entities, cf. Section 7.

3 Representation of Uncertain Straight Lines

3.1 Euclidean Representations

Of the various Euclidean representations of a 2D straight line l (Bronstein and

Semendjajew, 1991) we only discuss two, the Hessian normal form and a special

point-direction form.
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3.1.1 Hessian normal form.

With the direction φ of the normal to the straight line and the distance d of the line

to the origin the Hessian normal form

x cos (φ) + y sin (φ)− d = 0 (14)

can be specified. We obtain the representation

l : {h,Σhh}

with the parameters h = [φ, d]T and the covariance matrix

Σhh =


σ2
φ σφd

σdφ σ2
d

 ,

where in general σφd 6= 0 holds. The visualization of the parameter vector [φ, d] as

point leads to the well-known Hough representation (Duda and Hart, 1972). With

the Hessian normal form an uncertain straight line l therefore can be represented

by the 5-tuple

l : {φ, d; σφ, σd, σφd}.

The uncertain straight line can be visualized by the set of all 1D-confidence regions

of points on the line measured across the line. This establishes the confidence region

of the uncertain line. It has a hyperbolic shape. It can be shown to be identical to the

envelope of all lines represented by the points on the standard confidence ellipse of

Σhh.

21



The confidence region can be determined from the standard deviation σn of the

distance n = x cos (φ) +y sin (φ)−d of some fixed point [x, y]T from the line. It is

given by σ2
n(m) = m2σ2

φ+ 2mσφd+σ2
d with the distance m = x sin (φ)−y cos (φ)

of the point along the line, measured from the point xf on the line closest to the

origin (cf. Fig. 3). The minimum standard deviation σq = minm(σn(m)) is reached

at the point x0 with

m0 = −σφd
σ2
φ

, σφ > 0 (15)

and has the value σ2
q = σ2

d − σ2
φd/σ

2
φ. In case we use the confidence regions

(−σn,+σn) we obtain the standard confidence region for the uncertain line.

3.1.2 Centroid Representation

The above suggests a centroid representation for lines analogue to the centroid rep-

resentation for points. Its centroid is the point x0 with the representation [x0, y0]
T.

In addition we use the direction α = φ − π/2 of the line. This fixes a local mn-

coordinate system where the m-axis points in the direction of the line and n in the

direction of its normal, pointing to the left side of the line. The standard deviation

σα of the direction and the minimum standard deviation σq across the line define

the standard confidence region.

The centroid representation of a straight line thus consists of the 5-tuple

l : {x0, y0, α; σα, σq} . (16)

The parameters of the centroid form (Eq. 16) with α = φ − π/2 result from the
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xf

d

σd
l

φ

α

σα

x0

σq

m

n
m0

Fig. 3. Uncertain straight line l and its hyperbolic error band. The point xf has the shortest

distance d to the origin and a distance ofm0 to the point x0 with smallest standard deviation

σq across the line with the orientation φ = α+π/2. The position of the point with the lowest

variance σ2
q depends on the covariance σφd. For σq = 0 and σα = 0 resp. the dashed lines

form the error region.

Hessian normal form via the transformation


x0

y0

 = RT
α


m0

d



with the location [m0, d] (cf. Eq. 15) of the centroid in a coordinate system situated

in the origin and being parallel to the mn-system.
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The parameters of the Hessian normal form result from the centroid form with
m0

d

 = Rα


x0

y0

 ,

φ = α + π/2, σφd = −m0σ
2
φ (cf. Eq. 15), and σ2

d = m2
0σ

2
φ + σ2

q .

3.2 Homogeneous Representations

3.2.1 Homogeneous Vector and its Covariance Matrix

The homogeneous representation of the uncertain line is given by

l : {l,Σll}

with the 3-vector

l =


lh

l0

 =



a

b

c


:= λ



cos (φ)

sin (φ)

−d


(17)

subject to the constraint a2 + b2 + c2 6= 0. In case the homogeneous coordinates are

derived from the Hessian normal form the factor λ 6= 0 can be chosen arbitrarily,

either fix or stochastic. In case a2 + b2 = 0 we obtain the line at infinity. The Eu-

clidean part l0 obviously depends on the origin of the coordinate system, whereas

the homogeneous part lh is independent of the choice of the origin. With the homo-

geneous coordinates xe = [u, v, w]T for points and the homogeneous 3-vector for a
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straight line l the incidence can be expressed by

x · l = xTl = lTx = 0.

The covariance matrix Σll of the parameters a, b and c of the straight line in general

has rank 3 unless certain constraints are imposed on l. This is the reason why one

must allow the factor λ to be chosen stochastic, in order to be able to achieve a rank

3 matrix Cll by error propagation from the Hessian parameters, which otherwise

would only lead to a rank 2 covariance matrix, cf. the discussion in (Förstner, 2005).

The parameters of the Hessian normal form can be derived from the homogeneous

coordinates by φ = atan2 (b, a) and d = −c/
√
a2 + b2. Again, the covariance

matrix of the parameters results from variance propagation Σhh = J(µl)ΣllJ
T(µl)

with

J(l) =


−b
s2

a

s2
0

ca

s3

cb

s3

−1

s



and s2 = a2 + b2. The covariance matrix in general has rank two.

For the inverse transformation we fix the arbitrary factor
√
a2 + b2 = 1 and obtain

l =



a

b

c


=



cos (φ)

sin (φ)

−d


.
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The Jacobian and its null space is given by

J(h) =
∂l
∂h

=



− sin (φ) 0

cos (φ) 0

0 −1


,

N (J(h)) =



cos (φ)

sin (φ)

0



with h = [φ, d]T. The null space of the resulting rank two covariance matrix Σll =

J(µh)ΣhhJ
T(µh) is [µT

lh
, 0]T.

3.2.2 Conic representation of a straight line.

A further representation of an uncertain line is the hyperbolic error band being the

set of (normalized) confidence regions across the line of all points on the line, as

plotted in Fig. 3. For points y with homogeneous coordinates y = [u, v, w]T holds

yTClly = 0 and thus we may represent the hyperbola as

l : Cll .

We use the possibility to represent a conic, here a hyperbola, by a 3 × 3-matrix.

Moreover, one can show, that this definition of the hyperbola is identical to the

envelope of all lines of the standard confidence ellipse, e.g. hTChhh = 1, of the

line parameters.
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Exploiting the principle of duality, cf. (Hartley and Zisserman, 2000) and (McGlone

et al., 2004), and using Eq. 7 the standard confidence hyperbola for the uncertain

line referring to l is given by

Cll = Σll − l lT,

cf. (Ochoa and Belongie, 2006). Again this relation holds for general Σll.

With the rotation angle and the translation (Eqn. 8 and 9) the motion matrix M can

be computed (Eq. 10). The standard deviations σα and σq result from the eigen-

values of the normalized matrix C/C33 with C = (Cij) = M−TCllM−1, namely

σq =
√
λ1 and σα =

√
−λ2. Note, that for hyperbolas the second eigenvalue is

negative.

3.2.3 Normalization

Also here Euclidean and spherical normalization can be used. As the spherical nor-

malization of lines is equivalent to points, we only give the Euclidean normalization

and the corresponding representation of the uncertain line. Again, it may replace

the general homogeneous representation.

Division of a homogeneous line vector by the norm of its homogeneous part yields

the Euclidean representation of a straight line which is closely related to the Hessian

normal form. The Euclidean normalized homogeneous representation of a line is

l : {le,Σe
ll}
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with the line parameters

le = Ne(l) =
l
|lh|

=
1√

a2 + b2



a

b

c


=



cos (φ)

sin (φ)

−d


,

if |lh| 6= 0.

With the Jacobian

J e(l) =
∂Ne(l)
∂l

=
1

|lh|


I2 − lhl

T

h

|lh|2
0

− l0l
T
h

|lh|2
1



we obtain the covariance matrix Σe
ll = J e(µl)ΣllJ

T
e (µl). Once again, the ambiguity

in the sign of the result has no influence on the result of the variance propagation.

3.2.4 Conditioning

With the conditioning matrix for points (Eq. 13) the conditioned line representation

is l : {T−T
c l, T−T

c ΣllT−1
c }.Observe, that the parameters xc, yc and s in Tc cannot

easily be derived from given lines only.

4 Construction of Uncertain 2D Points and Straight Lines

Join and intersection of points and lines are basic, and mutually dual, operations.

Uncertainty propagation is easy due to the bi-linearity of the relations. These con-

structions are needed for the derivation of the representations for uncertain straight
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line segments given in the next section.

4.1 Straight line from two points

A straight line l is constructed by the join of two points x and y realized by the

cross product

l = x× y = Sxy = −Syx. (18)

In general the two points are uncertain and correlated. Starting from the uncertain

point pair

{p,Σpp} =




x

y

 ,

Σxx Σxy

Σyx Σyy




(19)

and the Jacobian J(p) = ∂l/∂p = [−S(y),S(x)] we can derive the covariance

matrix Σll = J(µp)ΣppJ
T(µp). In case the two points are uncorrelated we obtain

Σll = S(µy)ΣxxST(µy) + S(µx)ΣyyST(µx).

The covariance matrix Σll has full rank, cf. (McGlone et al., 2004), Subsection

2.3.5.2. In order to be able to interpret the covariance matrix one must allow for

uncertain scale factors when deriving homogeneous coordinates from Euclidean

coordinates. The scale factor here is uncertain, as the length of the cross product

depends on two uncertain vectors, however, the length of the vector l is of no con-

cern.
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4.2 Point from two straight lines

A point x results from the intersection of two straight lines l and m realized by the

cross product

x = l×m = Slm = −Sml.

Starting from the uncertain line pair {r,Σrr}, i.e., r = [lT,mT]T and the Jaco-

bian J(r) = ∂x/∂r = [−S(m),S(l)] we can derive the covariance matrix Σxx =

J(µr)ΣrrJ
T(µr) which also in general has full rank.

5 Representation of Uncertain Straight Line Segments

Straight line segments play a central role in image analysis. They can only be rep-

resented as aggregates of points or lines. No homogeneous representation is known

to the authors.

5.1 Representing line segments using points pairs

The most natural representation for a straight line segment is s : {x , y} based on

its two end points x and y . In principle any representation described in Section 3 is

applicable. In the Euclidean case this means, that a line segment is represented as

s : {p; Σpp}

with p = [x1, x2, y1, y2]
T and the corresponding covariance matrix which in gen-

eral has rank 4. This amounts in fourteen parameters for an uncertain line segment
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in the plane. Some of those parameters may be assumed zero, if for example the

end points are assumed to be uncorrelated. Note also, that the line segment has a

direction defined as pointing from x to y .

In homogeneous coordinates, the line segment is represented using its two end

points in homogeneous representation as

s : {p; Σpp}

with

p =


x

y

 and Σpp =


Σxx Σxy

Σyx Σyy

 .

This covariance matrix may have rank four, five or six, with the null space depend-

ing on the normalization as described above. Observe, we have written the line

segment p with an upright letter to indicate the two points being represented with

homogeneous coordinates; however, the complete 6-vector is not a homogeneous

quantity, as the two parts x and y may be scaled independently.

5.2 Representing line segments using line triplets

Another useful representation for line segments uses a line triplet namely the straight

line l joining its end points and the two delimiting lines m and n going perpendic-

ularly through the end points (see Fig. 4), thus s : {l ,m , n}. Again any representa-

tion from Section 3 is applicable. Using a homogeneous representation, this means

31



s

m

nx

y

l

Fig. 4. shows a straight line segment s delimited by two straight lines m and n going

perpendicularly through the end points x and y . The corresponding error region of s results

from the intersection of the hyperbolic error bands of the straight line l and the delimiting

lines m and n .

that a line segment is represented as line triplet

s : {t; Σtt}

with

t =



l

m

n


and Σtt =



Σll Σlm Σln

Σml Σmm Σmn

Σnl Σnm Σnn


.

Not every such 9-vector with corresponding covariance matrix is actually a line

segment, because of the perpendicularity constraint. In the homogeneous repre-

sentation the latter is easily formulated by stating, that the above represents a line

segment if and only if the two conditions
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lTC∗∞m = 0 and lTC∗∞n = 0 (20)

hold, with the dual conic C∗∞ = Diag (1, 1, 0) of the circular points, cf. (Hartley

and Zisserman, 2000, p. 33f). The two conditions imply also a specific null space

of the covariance matrix. Since C∗∞m = λC∗∞n are linearly dependent, the null

space induced by the perpendicularity constraints is two-dimensional reducing the

rank of Σtt by two. Therefore, the rank of Σtt may be four, five, or six with the

extra null space depending on the normalization of the three lines. As expected,

this agrees exactly with the degrees of freedom for the representation using points.

Note also, that end points at infinity are possible with this representation, then m

or n are the line at infinity [0, 0, 1]T, which always fulfills the orthogonality con-

straints.

It is often convenient to fix the orientation of the two lines m and n : the directions

of the lines m and n should be parallel to the normal of l . These constraints can be

written as

lTC∗∞R⊥m > 0 and lTC∗∞R⊥n > 0

with the rotation matrix

R⊥ =



0 1 0

−1 0 0

0 0 1


(21)

rotating the normal of a line into the direction of the line.
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In the following we derive the conversion from the point pairs to the line triplets

representation. Given a line segment in point pair representation (Eq. 19), the three

elements of the line triplet can be expressed as

t =



l

m

n


=



Sxy

sgn(yh)Uxy

−sgn(xh)Uyx



with the matrices Ux = SxC∗∞Sx and Uy = SyC∗∞Sy (cf. Section 5.2).

The sgn(·)-factors are necessary to ensure the correct orientation of the lines m and

n. While the expression for l is bilinear in x and y, the expression for the bounding

lines m and n are quadratic in x and y.

First we prove these relations, then we give the Jacobian J tp(p) = ∂t/∂p.

The directed line l from x to y is constructed by Eq. 18. Therefore, we have the

following Jacobians evaluated at p = [xT, yT]T

J lx(p) = −S(y) and J ly(p) = S(x).

The bounding line m through x perpendicular to l is constructed as follows: from

Eq. 20 follows directly, that the point x′ = C∗∞l must sit on m . Therefore m is

obtained by connecting the two points x and x′. Taking care of the sign as described

above, this yields

m = sgn(yh)Sxx′ = sgn(yh)SxC∗∞Sxy = sgn(yh)Uxy
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with

Ux = SxC∗∞Sx =


−x2

hI2 xhx0

xhx
T
0 −xT

0x0

 .

This expression is linear in y but not in x. Therefore, the Jacobian is

Jmx(p) = sgn(yh)


xhyhI2 yhx0 − 2xhy0

xhy
T
0 − 2yhx

T
0 xT

0y0



for variance propagation. The Jacobian with respect to y is given by Jmy(p) =

sgn(yh)U(x).

The construction of the second delimiting straight line n is done completely analo-

gous to the line m by swapping the roles of x and y. We have n = −sgn(xh)Uyx.

Again this is linear in x but not in y. The Jacobians are

Jnx(p) =
∂n
∂x

= −sgn(µxh
)U(y)

and

Jny(p) = sgn(xh)


xhyhI2 xhy0 − 2yhx0

yhx
T
0 − 2xhy

T
0 yT

0x0

 .
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Therefore, the complete Jacobian is

J tp(p) =
∂t
∂p

=



J lx J ly

Jmx Jmy

Jnx Jny



yielding the covariance matrix Σtt = J tp(µp)ΣppJ
T
tp(µp).

Conversely, given a line segment with homogeneous line representation, the corre-

sponding line segment in homogeneous point representation is obtained by inter-

secting the line l with the lines m and n to obtain the two end points. The relation

is bilinear yielding

p =


x

y

 = Jpt(t) t =


−Sm Sl O

−Sn O Sl





l

m

n



leading to the covariance matrix Σpp = Jpt(µt)ΣttJ
T
pt(µt).

5.3 Centroid representation of the line segment

A third commonly used representation describes a line segment by the coordinates

of its centre x0, its direction α and its length ` leading to

s : {c,Σcc}
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with c = [x0, α, `]
T and the corresponding covariance matrix Σcc — again yielding

a total maximum of fourteen parameters, some of them possibly being zero under

certain independence assumptions.

The centroid representation is Euclidean. Therefore, we give the conversion to and

from Euclidean point pairs, as the conversion from homogeneous to Euclidean

points is always possible in case of real, thus non-ideal points.

Given a line segment in Euclidean point representation the coordinates of the center

are x0 = (x+ y)/2, the angle with the x-axis is α = arctan(y2 − x2)/(y1 − x1),

and the length is ` =
√

(y − x)T(y − x). The covariance is obtained as Σcc =

J cp(µp)ΣppJ cp(µp)
T with the Jacobian J cp = ∂c/∂p being easily derived.

Given a line segment in centroid representation the Euclidean coordinates of the

end points are obtained as

x = x0 −
`

2


sin(α)

cos(α)

 , y = x0 +
`

2


sin(α)

cos(α)



and the covariance matrix of the Euclidean point pair is Σpp = JpcΣccJ
T
pc with the

Jacobian Jpc = ∂p/∂c being easily derived.

6 Statistical Testing

A key advantage of representing entities together with their uncertainties is the

possibility of statistical testing. This eliminates the necessity of specifying non-

interpretable thresholds: only a single confidence probability is required.
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Statistical tests can be used in our context

• as a sieve to eliminate relations which are likely not to hold, but also,

• to derive conjectures.

In the following specific test statistics and hypothesis for various geometric re-

lations between the entities are given. We follow the classical testing procedures

according to Neyman and Pearson (Neyman and Pearson, 1933), as we have no

prior probabilites for alternative hypotheses, and therefore in general cannot apply

Bayesian testing, cf. (Jeffreys, 1961).

6.1 Testing Relations Between Points and Straight Lines

We discuss the testing of the relations between points and straight lines based on

the representations derived in the preceding sections, cf. Fig. 5.

l
mn o

xtyt

ztw
t

Fig. 5. Different relations between points and straight lines. The point z is incident to the

line l , because it is within the confidence region of l . The point x is left of the line l and

the point w is right of the line l . The two uncertain points x and y are considered equal

as are the two uncertain lines l and m . The lines l and n are perpendicular and the lines l

and o are parallel.
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6.1.1 Incidence of points and straight lines

We test the null-hypothesis H0 : x ∈ l that a point x lies on a line l . The test

statistic is

z = d/σd ∼ N(0, 1)

with

d(x , l ) = sgn(xh)xTl = sgn(xh)lTx

and its variance

σ2
d = µT

x Σllµx + µT
l Σxxµl.

Observe, we in general do not have access to the means µx and µl. Therefore, one

can approximate the means by the sample value x and l. In case the hypothesis H0

is not rejected, the effect of this approximation is of second order. In case H0 is

rejected, the effect can be large, cf. (Heuel, 2004).

This test statistic T shows, that a point lies on the positive or left side of the line,

thus the same side as the normal of the line,

x ∈+ l if d(x , l ) > 0

and on the negative or right side of the line, thus the opposite side as the normal of

the line,

x ∈− l if d(x , l ) < 0.

We thus have three alternatives:
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(1) Ha1 : x ∈+ l : We test H0 against the alternative that the point x lies on the

left side of l . The corresponding rejection region is R1 : z > φS with the

S-quantile φS of the normal distribution. Thus the probability of rejecting H0,

in case it actually is true, is S. If this test is not rejected we may conjecture

x ∈− l or H0. Observe, this conjecture is the negation of the alternative

hypothesis.

(2) Ha2 : x ∈− l : We test H0 against the alternative that the point x sits on the

right side of l . The corresponding rejection region is R2 : z < −φS . If this

test is not rejected we may conjecture x ∈+ l or H0.

(3) Ha3 : x 6∈ l : We test H0 against the alternative that the point does not lie

on the line. The corresponding rejection region is R3 : |z| > φS . If this test

is not rejected we may conjecture x ∈ l . This test is logically equivalent to

the union of the first and the second test, as x 6∈ l = (x ∈+ l ) ∧ (x ∈− l ).

However, using the same significance levels S1,2 for the one-sided tests and S3

for the two-sided tests leads to different acceptance regions. The acceptance

regions are only identical if 1− S3 = 2(1− S1,2) is chosen.

6.1.2 Identity of two points and two lines

We test the null-hypothesis H0 : x = y that two points x and y are identical. The

test statistic is

T = dTΣ−1
dd d ∼ χ2

2

with the 2-vector (for Sx cf. below)

d(x , y) = Sxy = −Syx
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and the covariance matrix

Σdd = S(µx)ΣyyST
(µx) + S(µy)ΣxxST

(µy).

This test statistic results from Eq. 18 as in case the two points are identical the join-

ing line is indefinite and thus l = S(x)y = −S(y)x = 0. As the skew symmetric

matrices have rank two, two rows must be selected to avoid linear dependent con-

ditions. For the sake of numerical stability it is reasonable to select the two rows,

which contain the elements with maximum absolute values. We denote this reduced

matrices as Sx. In case the points are not at infinity one can select the first two rows,

yielding

Sx =


0 −x3 x2

x3 0 −x1

 .

If for two points x and y we have T > χ2
2,S with the S-quantile of the χ2

2-

distribution, the null-hypothesis H0 : x = y will be rejected in favour of the

alternative hypothesis Ha : x 6= y . If the test is not rejected, we may conjecture

x = y .

For duality reasons the same reasoning applies for testing the equality of straight

lines l and m , using the fact, that two lines define no intersection point, i.e., are

identical, if and only if

d(l,m) = Slm = −Sml = 0. (22)
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6.1.3 Orthogonality and parallelism of straight lines

We test the null-hypothesis

H0 : l ⊥ m

that two lines l and m are orthogonal 2 . The test statistic is

z = d⊥/σd⊥ ∼ N(0, 1)

with

d⊥(l,m) = lTC∗∞m = mTC∗∞l = 0

and its variance

σ2
d⊥ = µT

l C∗∞ΣmmC∗∞µl + µT
mC∗∞ΣllC∗∞µm.

If the test statistic for two lines is not rejected one may conjecture l ⊥ m .

In a similar manner we may test the hypothesis H0 : l ||m versus the alternative

Ha : l 6 ||m . The test statistic is

z = d||/σ
||
d ∼ N(0, 1)

with

d||(l ,m) = lTC∗∞R⊥m = mTR⊥TC∗∞l

2 Here m is a line independently observed from l and is not to be confused with the

bounding line of a line segment.
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and its variance

σ2
d|| = µT

l C∗∞R⊥ΣmmR
T
⊥C∗∞µl

+ µT
mR

T
⊥C∗∞ΣllC∗∞R⊥µm

with the rotation matrix in Eq. 21. In case the test statistic for two lines is not

rejected we may conjecture l ||m .

6.2 Testing Straight Line Segments

In Section 5 it was shown, how line segments can be represented as aggregates

of either homogeneous points or homogeneous lines. Therefore, also the tests are

combinations of the tests presented in the previous sections, cf. Fig. 6.

6.2.1 Incidence of points and line segments

For the incidence a point x and a line segment s = (l ,m , n) we have the equiva-

lence

x ∈ s ⇐⇒ (x ∈ l ) ∧ (x ∈+ m) ∧ (x ∈− n)

where ∧ denotes the logical ”and”. Thus testing, whether a point sits on a line

segment is a composition of three elementary tests.

6.2.2 Intersection of two line segments

Checking if two line segments s and t intersect, is a little more involved. It requires

to use two representations of a straight line segment at the same time

s = (xs, ys) = (ls,ms, ns)
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Fig. 6. Different relations involving straight line segments. The point z is incident to the

line segment s , because it is incident to the line l and between the two delimiting lines

m and n . The line segment t is equal to the line segment s , because their end points are

identical. The line segments s and w overlap, because the two lines are identical and the

delimiting line m is between the two end points of w . The line segments s and r are parallel

and overlap, because the line m is between the end points of r and the two lines are parallel.

The line segment u intersects the line segment s and vice versa, because their end points

are on the two different sides of the respective other line segment. The line segment s and v

overlap and are orthogonal, because in addition to intersection the two lines are orthogonal.

t = (xt, yt) = (lt,mt, nt)

which fortunately are easily convertible as shown in Section 5. The idea is, that

two line segments intersect, if and only if the end points of the first segment lie

on different sides of the line defined by the second segment and vice versa, cf.

(Cormen et al., 1990, p. 889f). One has the equivalence relation

intersect(s , t )⇐⇒((
(xs ∈− lt) ∧ (ys ∈+ lt)

)
∨
(
(xs ∈+ lt) ∧ (ys ∈− lt)

))
∧
((

(xt ∈− ls) ∧ (yt ∈+ ls)
)
∨
(
(xt ∈+ ls) ∧ (yt ∈− ls)

))
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where ∨ denotes the logical ”or” operation. Thus between four and eight tests are

required.

Combining statistical tests with the various representations given one is able to

formulate many more useful hypotheses. Among them are the following:

(1) Collinearity of line segments with overlap requires up to five tests

(2) Equality of line segments requires up to four tests

(3) Orthogonality of line segments with overlap requires up to five tests

(4) Parallelism of line segments with overlap also requires up to five tests

Please observe the simple transfer of the deterministic tests to the statistical tests.

Other tests may be set up similarly.

7 Estimation of Geometric Entities from Uncertain Observations

This last section deals with the statistical estimation of atomic or composed entities

from observed atomic or composed uncertain geometric entities.

Well known estimation techniques in geometric computation (e.g. Chojnacki et al.,

2001; Kanatani, 1994; Matei and Meer, 2000) usually only deal with single homo-

geneous vectors, such as points or transformations. These estimation techniques,

such as algebraic minimization, total least squares, renormalization, or heteroscedas-

tic regression cannot easily be generalized to the estimation of multiple homoge-

neous entities with multiple constraints, which is necessary for composed geomet-

ric entities such as straight line segments.

The set up proposed in the following is much more general, as it can handle multiple

homogeneous vectors and multiple constraints. Yet, this advantage is balanced by
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the need for approximate values for the unknown parameters.

The motivation behind the proposed estimation scheme is to allow the direct use

of geometric constraints using homogeneous representations for both, observed as

well as estimated entities. These constraints either between observed and unknown

entities or among unknown parameters directly define the basic equations for a

statistically optimal estimation scheme. For numerical reasons conditioning of the

unknown entities is required, e.g., centering and scaling, using the conditioning

matrix Tc, cf. Eq. 13 in Section 2.2.4.

In the following a general estimation model and the corresponding iterative pa-

rameter estimation procedure will be derived, which is suitable for handling uncer-

tain projective entities. It is based on the so-called Gauß-Helmert-model (Helmert,

1872), cf. (Mikhail, 1976; Heuel, 2004; McGlone et al., 2004), which employs con-

straints between observed and unknown parameters.

7.1 General Adjustment Model with Constraints

The model consists of a functional model for the unknown parameters and the ob-

servations, a stochastic model for the observations, an optimization criterion, and

an iterative estimation procedure for non-linear problems.

7.1.1 Mathematical model

Functional model. We introduce three types of constraints for the true observa-

tions l̃ and the true unknown parameters p̃: conditions g(l̃, p̃) = 0 for the obser-

vations and parameters, constraints k(l̃) = 0 for the observations, and restrictions

h(p̃) = 0 for the parameters.
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The error-free observations l̃ are related to the observations l by l̃ = l + ṽ, where

the true corrections ṽ are unknown. Since the true values remain unknown they are

replaced by their estimates p̂, l̂ and v̂ in the following. The estimated corrections

are negative residuals. Thus, together we have the three constraints

g(l̃, p̃) = 0, h(p̃) = 0, and k(l̃) = 0.

Stochastic model. An initial covariance matrix Σ
(0)
ll of the observations is as-

sumed to be known which subsumes the statistical properties of the observations.

Thus, l is assumed to be normally distributed l ∼ N(l̃,Σll). The matrix is assumed

to be related to the true covariance matrix Σll by

Σll = σ2
0Σ

(0)
ll

with the possibly unknown variance factor σ2
0 (Koch, 1999). This factor can be

estimated from the estimated corrections v̂.

This model is more general than the well known estimation techniques in two re-

spects:

(1) It makes the simultaneous estimation of more than one geometric entity pos-

sible.

The common algebraic optimizers including their statistically rigorous vari-

ants reduce the estimation to an eigenvalue problem, possibly generalized or

iterative. Thus only one quadratic constraint may directly be included. There-

fore, only single geometric entities may be estimated. Also, two or more con-

straints cannot be introduced, preventing the simultaneous estimation of mul-

tiple entities or entities with two or more constraints, such as the fundamental
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matrix.

(2) It allows the consistent handling of arbitrary covariance matrices for the ob-

served and the estimated entities.

This can be a big advantage. An example is the estimation of the mean m

of two points x1 and x2 (cf. Fig. 7). Assume they are given as homogeneous

vectors x1 = [x1, y1
, 1]T and x2 = [x2, y2

, 1]T with uncertain Euclidean co-

ordinates, thus singular covariance matrices Σxixi
of the form of Eq. 4 and

the estimated mean should be spherically normalized, thus |m̂|2 − 1 = 0

should hold. When minimizing Ω(m) = 1
2

∑
i(xi − m)TΣ−xixi

(xi − m) un-

der the given constraints one needs to decide on the choice of the generalized

inverse. Choosing the pseudo inverse would lead to

Σ+
xixi

=


Σ−1
xixi

0

0T 0

 .

This inverse covariance matrix can be represented as an infinitely elongated,

cylindrical confidence ellipsoid in (u, v, w)-space, with the infinitely long axis

being parallel to the w axis. Yet, this would allow the homogeneous part of xi

to vary arbitrarily and in case the point lies outside the unit circle it would lead

to extremely high values of Ω.

The reason for this situation is the inconsistency between the different con-

straints. Therefore, it is necessary that the explicit constraints, e.g., for nor-

malizing the result, and the implicit constraints, i.e., those contained in the

uncertainty matrices Σ−, are consistent. This can be achieved under the fol-

lowing conditions (cf. Fig. 8):

(a) Normalize the given entities, say x, spherically, leading to, say xs, cf.

Eq. 12. Then the null space of their covariance matrix Σxsxs = J s(x)ΣxxJ
T
s (x)
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is the normalized entity. This allows to include elements at infinity into

the estimation process.

(b) Use the pseudo inverse of the spherically normalized entities as uncer-

tainty matrix in the maximum likelihood estimation. As its null space g

is known and normalized to 1, say g = xs, it may be derived from, say


Σ+
xsxs xs

(xs)T 0

 =


Σxsxs xs

(xs)T 0



−1

. (23)

(c) In case iterations are necessary, change the covariance matrices of the

spherically normalized observed entities to the fitted observations, say x̂.

I.e., use

Σxsxs = J s(x̂)ΣxxJ
T
s (x̂)

and its pseudo inverse from Eq. 23 with the null space of the fitted obser-

vations, say x̂. This guarantees the external and internal constraints to be

consistent (not shown in Fig. 8).

O

1
e

x
e

1

x,y

w

u,v

x
2x

e
x

e
x

e
x

e^

xx
^ s

Fig. 7. Impossible situation for estimation: The shaded areas represent the confidence re-

gions of the pseudo inverse of the classical covariance matrix of an Euclidean coordinate

vector augmented by a fixed 1. Requiring the mean vector to be normalized to 1 yields

severe inconsistencies (cf. text).
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Fig. 8. Estimation with spherical constraint. The gray areas indicate the uncertainty of the

observed points xi. In the first iteration these regions are replaced by the two cylindrical

regions indicated with the bold dashed lines, being parallel to the homogeneous vectors xi

or xsi . In the following iterations, the two cylindrical regions will be oriented parallel to the

estimated mean x̂s, being identical to the fitted observations x̂s = x̂si , i = 1, 2.

If the null space of the covariance matrix reflects the constraints on the observations

the result with the pseudo inverse is the same as when minimizing the correspond-

ing Euclidean version: If the rank of the covariance matrix of the n observations

is r, one can always rotate the coordinate system of the n = r + d observations,

such that the r first observations have a full rank covariance matrix, and the other

d have a zero-covariance matrix. Then the pseudo inverse just is the inverse of the

first r × r-block completed by zeros, indicating the last d observations have no in-

fluence on the result. In order to obtain defined values for the last d parameters one

needs to include d constraints, which are a basis for the null-space of the covariance

matrix.
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As an example for Euclidean normalized points x = [x, y, 1]T the null space of the

covariance matrix is [0, 0, 1]T and thus the pseudo inverse, the weight matrix, does

not weight the third component.

7.1.2 Estimation

Finding optimal estimates p̂ and l̂ for p and l respectively can be done by minimiz-

ing the Lagrangian

L(v̂, p̂,λ,µ,ν) =
1

2
v̂TΣ+

ll v̂ + λTg(l + v̂, p̂)

+µTh(p̂) + νTk(l + v̂) (24)

with the Lagrangian vectors λ, µ, and ν (Least-Squares-Adjustment).

For solving this non-linear problem in an iterative manner we need approximate

values p̂(0) and l̂
(0)

for the unknown parameters p̂ = p̂(0) + ∆̂p and l̂ = l̂
(0)

+ ∆̂l.

The corrections for the unknowns and the observations are obtained iteratively.

With the Jacobians

A=
∂g(l,p)

∂p

∣∣∣∣∣
p̂(0), l̂(0)

KT =
∂k(l)

∂l

∣∣∣∣∣̂
l(0)

BT =
∂g(l,p)

∂l

∣∣∣∣∣
p̂(0), l̂(0)

HT =
∂h(p)

∂p

∣∣∣∣∣
p̂(0)

and the relation l̂ = l̂
(0)

+ ∆̂l = l + v̂ we obtain the linear constraints by Taylor

series expansion

g(l̂, p̂) = g0 +A∆̂p+BTv̂ +BT(l− l0) = 0

h(p̂) =h0 +HT∆̂p = 0

k(l̂) =k0 +KTv̂ +KT(l− l0) = 0

with g0 = g(l̂
(0)
, p̂(0)), h0 = h(p̂(0)), and k0 = k(l̂

(0)
).
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Setting the partial derivatives (Eq. 24) zero yields the necessary conditions for a

minimum

∂L

∂v̂T = Σ+
ll v̂ +Bλ+Kν = 0 (25)

∂L

∂νT
=KTv̂ +KT(l− l0) + k0 = 0 (26)

∂L

∂λT =A∆̂p+BTv̂ +BT(l− l0) + g0 = 0 (27)

∂L

∂∆̂p
T =ATλ+H µ = 0 (28)

∂L

∂µT
=HT∆̂p+ h0 = 0. (29)

These can be collected in the linear equation system



Σ+
ll K B O O

KT O O O O

BT OT O A O

OT OT AT O H

OT OT OT HT O





v̂

ν

λ

∆̂p

µ



=



0

−k

−g

0

−h0



.

with k = KT(l− l0) + k0 and g = BT(l− l0) + g0. The equation system can be

reduced by applying


Σ+
ll K

KT O



−1

=


Σll K(KTK)−1

(KTK)−1KT O

 (30)

to Eqn. 25 and 26 which yields the estimated corrections
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v̂=−ΣllBλ

−K(KTK)−1
(
KT(l− l0) + k0

)
(31)

and the Lagrangian ν = −(KTK)−1KTBλ. Eliminating v̂ in Eq. 25 yields the

Lagrangian

λ = Σ−1
gg (A∆̂p− a) (32)

with the auxiliary variable

a=BTK(KTK)−1(KT(l− l0) + k0)

−BT(l− l0)− g0

and the covariance matrix Σgg = BTΣllB of the contradictions.

By substituting λ in Eq. 28 we finally obtain the reduced normal equation system


ATΣ−1

ggA H

HT O




∆̂p

µ

 =


ATΣ−1

gg a

−h0

 . (33)

The estimates in the i-th iteration finally are p̂(i) = p(i−1) + ∆̂p.

7.1.3 Precision of the estimation

With estimated corrections v̂ from Eq. 31 we obtain the fitted observations l̂ =

l + v̂. The estimate for the variance factor σ2
0 is given by the maximum likelihood

estimate (Koch, 1999)

σ̂2
0 =

v̂TΣ+
ll v̂

G+H − U
(34)
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with the number of constraints G, the number of restrictions H , and the number

of parameters U . The pseudo inverse in Eq. 34 can eventually efficiently computed

by exploiting the block diagonal matrix structure and the relation KTK = I , i.e.

Σ+
ll = (Σll +KKT)−1 −KKT.

We finally obtain the estimated covariance matrix Σ̂p̂p̂ = σ̂2
0Σp̂p̂ of the estimated

parameters, where Σp̂p̂ results from the inverted reduced normal equation matrix


Σp̂p̂ ·

· ·

 =


ATΣ−1

ggA H

HT O



−1

.

7.1.4 Iterative improvement

For non-linear problems the approximate values have to be iteratively improved.

For this the covariance matrix Σll of the observations has to be adjusted for each

iteration step by enforcing the constraints k(l) = 0 following Eq. 23 by spherical

normalization.

A useful stopping criterion is that the maximal change of all ∆̂pj
(i)

in the i-th

iteration should be less than a certain percentage, e.g. 1%, of the corresponding

standard deviation, i.e., maxj

(∣∣∣∣∆̂p(i)

j

∣∣∣∣/σ̂(i)

p̂j

)
< 0.01.

7.2 Relations to the Minimization of Algebraic Distances

The estimation technique discussed above requires approximate values for the un-

known parameters. Obtaining approximate values can be hard, especially if the

functional relationships are non-linear. In case only one geometric entity is to be

estimated, minimizing the algebraic distance can be a solution.
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For the 2D geometrical entities discussed in this paper all constraints between the

observations and the unknown parameters are linear in the parameters and homo-

geneous. Thus, we have the algebraic distances

A(l) · p = BT(p) · l = wg
!

= 0 (35)

where the Jacobians depend only on the measurements or the parameters. Further-

more the restriction |p̂| = 1, i.e., (p̂Tp̂−1)/2 = 0, is imposed on the homogeneous

parameter vector which leads toHT = p̂.

However, considering the contradictions to be real i.i.d. observations we set Σgg =

I and thus the corresponding eigenvalue problem becomes µp̂ = ATA · p̂. This

solution minimizes the sum of the squared algebraic distances.

7.3 Optimal Estimation – An Example

After testing hypothesized mutual relations the grouping of points and straight lines

is often the next step. This asks for an optimal joint estimation taking the uncertain-

ties of the observations into account. Fig. 9 shows an example: The straight line l

and the point x , incident to l are to be estimated. The point is generated by inter-

secting straight lines mi. The fitted straight line l results from observed incident

points yj , collinear straight lines nk, orthogonal straight lines ol, and parallel lines

pm.

7.3.1 Constraints and approximate values

We have the following constraints for the point

xTmi = mT
i x = 0 ∀ i
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x

l

yj

mi

nk

ol

pm

Fig. 9. Joint estimation of the point x and the straight line l , being incident. The estimated

entities are shown in bold. The point x is determined by the intersecting straight lines mi.

The straight line l results from the observed incident points yj , collinear straight lines nk,

orthogonal lines ol, and parallel lines pm.

and for the line

lTyi = yT
i l = 0 ∀ j

ST
l nk = S(nk)l = 0 ∀ k

lTC∗∞R⊥ · ol = oT
l R

T
⊥C

∗
∞ · l = 0 ∀ l

lTC∗∞ · pm = pT
mC

∗
∞ · l = 0 ∀ m.

The Jacobians with respect to the intersection point x and the straight line l are

AT
1 =


. . . ,mi, . . .

 and AT
2 = [. . . ,ST

nj
. . . ,C∗∞R⊥ok . . . ,C∗∞pl . . . , ym, . . .],

thus A1l = 0 and A2x = 0, and the singular value decompositions (SVD) of A1

andA2 yield the approximate values.

7.3.2 Optimal estimation

The SVD solution neither takes the restriction xTl = 0 between the parameter

vectors nor the uncertainties of the observations into account. The three restriction
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equations are lTx = 0, (xTx − 1)/2 = 0, and (lTl − 1)/2 = 0. And with the

parameter vector p = [xT, lT]T

HT =



lT xT

xT 0T

0T lT


, h0 =



xTl

(xTx− 1)/2

(lTl− 1)/2



holds for the general adjustment model. The Jacobian w.r.t. the observations

l = [. . . ,mT
i , . . . , y

T
j , . . . ,n

T
k , . . . , o

T
l , . . . ,p

T
m, . . .]

T

is the block-diagonal matrix

B= Diag
(
. . . , xT, . . . , lT, . . . ,ST

l , . . . ,

. . . , lTC∗∞R⊥, . . . , l
TC∗∞, . . .

)

and the Jacobian w.r.t. the parameters isA = Diag (A1,A2).

The fitted observations have to fulfill the condition |ê| = 1 for each observed ge-

ometric entity e(e) ∈ {mi, yj, ok, . . .}. Since in this example each observed entity

appears in one condition equation g(l,p) at a time, the coefficient matrix K has

block-diagonal shape, too. Therefore,K = Diag
(
eT
1 , eT

2 , eT
3 , . . .

)
and

wk =

eT
1 e1 − 1, eT

2 e2 − 1, eT
3 e3 − 1, . . .

T

.

Note, that for the conditions ST
l nk = 0 linearly independent equations have to be

selected each according to Eq. 22.
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With the assumption of uncorrelated observed entities, the covariance matrix Σll

is a block-diagonal matrix. Together with the block-diagonal matrices A, B, and

K the normal equation system 33 can be written as a sum of components which

greatly reduces the computational costs (Heuel, 2004).

8 Conclusions and Outlook

For successful and efficient spatial reasoning a rigorous and consistent treatment of

uncertainties is necessary because geometric entities derived from images are inher-

ently uncertain. Feature extraction methods deliver entities and their uncertainties

in various representations. Therefore, an overview of common representations for

uncertain geometric entities and corresponding conversions has been given. Since

uncertain straight line segments are a primary result of many feature extraction pro-

cedures, the set of point and straight line representations has been extended with

representations for straight line segments.

Within the powerful framework of algebraic projective geometry the advantages of

representing geometric entities with homogeneous coordinates together with their

covariance matrices have become evident. Although the redundancy of the homo-

geneous representation leads to singular distributions, the benefits are manifold and

remain valid also for uncertain entities:

• The homogeneous representation is generic and therefore yields a consistent set

of representations for all types of uncertain entities.

• Homogeneous representations are suitable for all steps of geometric reasoning

— no change of representation is necessary during image analysis. The other

representations and their mutual conversions are discussed in order to (1) be able

58



to transform in the projective framework for uncertain spatial reasoning and (2)

for exporting results together with their uncertainties.

• The resulting relations are simple and often bilinear in the observations and un-

known parameters. This eases uncertainty propagation.

For the straight line segments no compact homogeneous representation is known

to the authors. Yet, by representing them as aggregations of entities represented by

homogeneous vectors, it is possible to treat them in the same way.

Within the different steps of geometrical reasoning homogeneous representations

can be used efficiently:

• The construction of new entities from given ones is simple since the operations

are mutual duals.

• Taking into account uncertainty is essential for hypothesis generation and ver-

ification. Statistical testing eliminates non-interpretable thresholds. The corre-

sponding test statistics can easily be computed for homogeneous representations.

• For Maximum-Likelihood parameter estimation we provided a generic model

which takes the observations, their individual uncertainties, and their correlations

into account — this yields optimal results in the statistical sense. The adjustment

model allows the estimation of multiple geometric entities, which is more gen-

eral than the hitherto known procedures. It can incorporate hard constraints for

the fitted parameters as well as for the fitted observations. Homogeneous repre-

sentations for both, the parameters and the observations can be used with regular

or singular covariance matrices. Extending the estimation process to a Bayesian

one is straightforward.

The generalization of the representations and reasoning steps to 3D entities seems
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to be straightforward though involving, especially concerning straight 3D lines and

straight line segments.
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