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ABSTRACT

This paper describes a method for blind estimation of sharpness and resolving power from a single image. These measures
can be used to characterize images in the context of the performance of image analysis procedures. The method assumes
the point spread function (PSF) can be approximated by an anisotropic Gaussian. The width � of the PSF is determined
by the ratio ����������� of the standard deviations of the intensity and of its derivative at edges. The contrast sensitivity
function (CSF) is based on an optimal model for detecting straight edges between homogeneous regions in noisy images.
It depends on the signal to noise ratio and is linear in the frequency. The method is applied to artificial and real images
proving that it gives valuable results.

1 INTRODUCTION

The usability of images for interpretation, orientation or
object reconstruction purposes highly depends on the im-
age quality. In principle it makes no difference whether
image analysis is performed manually by a human opera-
tor or whether digital images are analyzed automatically:
The reliability, accuracy and precision of results of image
analysis procedures directly is influenced by the quality of
the underlying image data.

Image quality can be characterized by a large number of
measures, e. g. contrast, brightness, noise variance, sharp-
ness, radiometric resolution, granularity, point spread func-
tion (PSF), modulation and contrast transfer function (MTF,
CTF), resolving power, etc. (cf. (Lei and Tiziani, 1989),
(Zieman, 1997)), all referring to the radiometry of the im-
ages.

As aerial cameras and films are designed to obtain high-
est image quality, the user, based on his/her experience
normally just decides on whether the images can be used
or not, e. g. due to motion blur. In the following pro-
cess, image quality is not referred to using classical qual-
ity measures. With digital or digitized images the situation
changes, especially because automatic image analysis pro-
cedures can be applied and their performance can be much
better described as a function of image quality.

In (Förstner, 1996) it is shown that the performance char-
acteristics of vision algorithms can be used to select the set	�
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of algorithms



with tuning parameters
�

applied to
image data � leading to a quality � 	���� � ��

����� of the result

�
from
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Thus the probability

 
of obtaining a quality � being better

than a pre-specified minimum quality �+% should be larger
than a pre-specified minimum probability

 % . The most
difficult part in evaluating this equation is the characteriza-
tion of the domain , of all the images � which one expects.
Therefore one needs to be able to characterize images to

that extent which is relevant for the task of performance
characterization or more specifically for the selection of
appropriate algorithms



and tuning parameters

�
. As an

example, fig. 1 shows the effect of two different edge de-
tectors on two aerial images of different sharpness. The
final goal would be to predict the quality of the result of
these edge detectors as a function of the image sharpness
as one of the decisive parameters.

left: original, right : smoothed with -/. , � �10

Edges from FEX (cf. (Fuchs, 1998))

Edges from SUSAN (cf. (Smith and Brady, 1997))

Figure 1: Effect of two different edge detectors on aerial
images of different sharpness. The same parameters were
taken for both images, no attempt was made to obtain the
best results in all four cases.

Among other measures, such as power spectrum or edge
density, image sharpness is important for characterizing
images. Image blur, which limits the visibility of details,
can be objectively measured by the point spread function



(PSF) or its amplitude spectrum, the modulation transfer
function (MTF). Together with the contrast sensitivity func-
tion (CSF), giving the least detectable contrast at an edge
as a function of the spatial frequency of intensity changes,
one can derive the resolving power. It is the maximum fre-
quency of a periodic signal which can be detected with a
given certainty.

Now, the precise determination of the PSF is quite involv-
ing, and usually derived from the intensity transition at
edges, yielding the cumulative distribution of the PSF, in-
terpreted as probability density function. Moreover, the
classical CSF refers to a human observer.

This paper assumes the PSF to be a Gaussian function.
We will introduce a simple procedure for measuring the
main characteristics of the PSF, namely its width. We give
a definition for the CSF based on an ideal edge detector
for straight edges between noisy homogeneous regions. It
therefore allows to fully automatically determine the re-
solving power of such an ideal edge detector. Experiments
with synthetic and real data demonstrate the usefulness of
the proposed approach.

2 THEORETICAL BASIS

As we are interested in simplifying the characteristic mea-
sures of image quality we summarize the basic relations.

2.1 Point and edge spread function

The quality of an imaging system may be evaluated using
the un-sharpness or blur at edges. The edge spread func-
tion of a 1-dimensional signal is the response �� 	��
� of the
system to an ideal edge � 	�� � of height 1 (cf. the first row
in fig. 2).

The quality of an imaging system usually is described by
the point spread function (cf. the second row of fig. 2),
being the response

� 	�� �
of the system to a delta func-

tion � 	�� � . As the imaging system is assumed to be linear
and the ideal edge � 	��
� is the integral of the � -function,
the point spread function is the first derivative of the edge
spread function: �� 	�� �'� ��� 	��
�

. Observe, we may in-
terprete the point spread function as a probability density
function and the corresponding edge response function as
its cumulative distribution function resp. distribution func-
tion.

In two dimensions the situation is a bit more involving.
If we differentiate the 1-dimensional cross section of the
response �� 	�	 � to an ideal two dimensional edge � 	�	 � we
obtain a bell shaped function. It is the marginal distribu-
tion of the point spread function along the edge direction.
Fusing a large number of such marginal distributions of
the PSF can only be done in the Fourier domain using to-
mographic reconstruction techniques (cf. (Rosenfeld and
Kak, 1982)).

The situation becomes much easier in case we can approx-
imate the 2-dimensional PSF by a Gaussian. Then the edge
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Figure 2: Edge spread function, point spread function and
modulation transfer function.

spread function, i. e. the response to an arbitrary edge is
an integrated Gaussian function.

In detail we assume
���
���� ������ ���������� 
 � �"! � 

where the matrix

�
can be written as� �$#&%('*)+ ,, ' ).- #"/�0

Here the two parameters ' + and ' ) represent the width of
the PSF in two orthogonal directions and

#
is the corre-

sponding rotation matrix. In case we have two edges on
the principle directions 1 and 2 of the PSF we obtain the
two edge response functions34 + 1 ��� �' + erf

% 1' + - 34 ) � 2 ��� �' ) erf
% 2' ) -

with the error function erf
��5����76 8�:9<; + ��=>�@?A= .

We refer to the individual values ' as local scale as it cor-
responds to the notion of scale in a multi-scale analysis of
an image. The matrix

�
is called scale matrix.

2.2 Modulation Transfer Function (MTF)

It is convenient to describe the characteristics of the imag-
ing system by its response to periodic patterns, leading to
the modulation transfer function B ��CED>FG� . It is the ampli-
tude spectrum of the point spread function,
H��5HDJIG��KML�N B ��CED>FG�OD



explicitely
� 	�� ����� ������� 	�	 ��� ���
	��
������������� � 	 � � or� 	�� � ����� 	��$� � 	��
� �"!
� � �

using the definition of the Fourier transform of (Castleman,
1979) .

In case we have a sinus-type pattern � 	�� ��� 
"#%$'& 	 0)(*	��
� �
"#�$�& 	 0)( �* �
the response of the system is a sine-wave with

contrast �
 �+� 	�	 ��

. As the MTF usually falls off for large

frequencies, contrast of tiny details is diminished heavily.

In our special context we obtain the MTF for the Gaussian
shaped PSF

--, 	�� �/.10�23�54 ���76 �3!98:�
which again is a Gaussian, however, with the matrix ; �8 4�< ��= ( �

as parameter. Observe that we have; ��>@? <A � 6 . 6B CC <A � 6 . 66ED >GF )
2.3 Contrast Sensitivity Function

In order to evaluate the usefulness of the imaging system
with a certain PSF or MTF the so called contrast sensitiv-
ity function (CSF) is used. The contrast sensitivity func-
tion gives the minimum contrast at a periodic edge pattern
which can be perceived by a human. In our case we want
to apply this notion to edge detectors.

Assume we have a periodic pattern of edges characterized
by the wavelength H and the contrast I . Further assume the
image to be sampled with a pixel size of J � and the noise
has standard deviation �LK . An ideal edge detector would
adapt to the wavelength of the pattern and perform an op-
timal test whether an edge exists or not. For simplicity we
assume that the pattern is parallel to one of the two coordi-
nate systems and that the edge detector uses the maximum
possible square of size HNMOH . The difference J:P between
the means Q < and Q � of the two neighboured areas can be
determined from the R � 0 � 	 H � J �
�%� � 0 pixels in the two
areas. It has standard deviation

�TS � �VU � �W BYX � �W 6 ��Z 0 � W �[Z 0]\_^ 0R � K � 0 J �H � K )
Thus in case we perform the test with a significance num-
ber ` and require a minimum probability a % for detecting
the edge we can detect edges with a minimum heightJ %�P � �&% 	 ` � a�% � �TS � � �&% 	 ` � a�% � 0 J �H � K )
The factor � % 	 ` � a % � depends on the significance level of
the test and the required probability of detecting an edge.
It is reasonable to fix it; in case we choose a small sig-
nificance number ` � C ) C7Ccb and a minimum detectabilitya�% � C ) d we have ��% � = ) b�egf = . The minimum de-
tectable contrast in a reasonable manner depends on the
size of the window and the noise level: The larger the

noise standard deviation and the smaller the window the
larger the contrast of the edge needs to be in order to be
detectable.

As we finally want to relate the contrast sensitivity to the
frequency

	 � b � H and obtain the contrast sensitivity func-
tion

CSF
	�	 � )� J % P 	�	 � � 0 � % J � 	 �TK

It goes linear with the frequency, indicating higher fre-
quency edge patterns require higher contrast.

2.4 Resolving power

The resolving power h  usually is defined as that fre-
quency

	
where the contrast is too small due to the prop-

erties of the imaging system to be detectable. As periodic
patterns with small wave length will loose contrast heavily
they may not be perceivable any more.

The MTF has maximum value 1 and measures the ratio
in contrast MTF

	�	 � � �
 	�	 � � 
 	�	 � , whereas the CSF mea-
sures the minimum contrast being detectable. In order to
be able to compare the MTF with the CSF we need to nor-
malize the CSF. This easily can be done in case we intro-
duce the signal to noise ratio

SNR
�ji� K �

with i being the contrast. Then the relative contrast sensi-
tivity function reads as

rCSF
	�	 � )� CSF

	�	 �i � 0 ��%3J � 	 � Ki � 0 �&%�J � 	
SNR

which immediately can be compared with the MTF.

One usually argues, that the resolving power is the fre-
quency where the relative contrast, measured by the MTF,
is identical to the minimum relative contrast being detecta-
ble (cf. fig. 3). Thus the resolving power RP=

	 % is implic-
itly given by

MTF
	�	 % � � rCSF

	�	 % � )

u 0

c usable image contrast

MTF

resolving power

u

CSF

Figure 3: Relations between the modulation transfer func-
tion (MTF), the contrast sensitivity function (CSF) and the
resolving power (RP).

In the 1-dimensional case we can explicitely give
	 %	 % � b0)( �-k LambertW l ( �� �% � �J � � SNR

�nm )



The LambertW-function is defined implicitly by (c.f. (Cor-
less et al., 1996))

LambertW
	�� �Y\

exp
	
LambertW

	�� �����$� )
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Figure 4: Resolving power in lines/mm for aerial images
with a pixel size of 15 Q m as a function of SNR (left, � �b ) and of the width � of the PSF (right, SNR=10)

Figure 4 shows the resolving power of our ideal edge de-
tector in lines/mm for aerial images as a function of the
signal to noise ratio and of the width � of the point spread
function. The resolving power increases with increasing
SNR and reaching 25-30 lines/mm for good SNRs. It de-
creases with increasing blur, falling below 10 lines/mm for� # =�� Q�� . These results are reasonable, as they are con-
firmed by practical experiences with digital aerial images
(c.f. (Albertz, 1991)).

2.5 Contrast, Gradient and Local Scale

We now derive a simple relation between the contrast, the
gradient and the local scale, which we will use to determine
the local scale at an edge. We assume an edge in an image
to be a blurred version of an ideal edge. In case the PSF is
a Gaussian -/. 	�� � the edge follows� 	��
� � erf � 	��
��� i b� erf

� �
��� X �

where � is the mean intensity and i is the contrast. Fol-
lowing (Fuchs, 1998) the contrast can be determined from
the standard deviation ��� of the signal around the edge,i � 0 ��� . The gradient magnitude of the edge is given by
the first derivative of the edge function, which in our case
is i - . 	 C � � i � 	 Z 0)( � � . Thus we have the relation

� � P ��� iZ 0)( �
From this and i � 0 ��� we can easily derive

� � ^ 0( � �� � P �
The practical procedure determines the variance of the sig-
nal from

� �� �	� 	 P � � 0'	
� 	 P ��� � � P ��� - .�
 0 	 P � - .�
 � �

where the kernel width � is chosen to be large enough to
grasp the neighbouring regions. We use a kernel size of � �0 C . The gradient magnitude should be estimated robustly
from a small neighborhood. We use a Gaussian kernel with� � b for estimating the gradient magnitude.

2.6 Blind estimating the PSF from a single image

We are now prepared to develop a procedure for blindly
estimating the PSF from a single image. Blind estimation
means, we do not assume any test pattern to be available.

As the PSF is derived via the sharpness of the edges, and
the PSF is the image of an ideal point, a � -function, we
need to assume that the image contains edges which in the
original are very sharp, thus close to ideal step-edges. This
can e. g. be assumed for images of buildings or other man-
made objects, as the sharpness of the edges in object space
is much higher than the resolution of the imaging system
can handle. Formally, if the image scale is b���� , the width��� of the image of the sharp edge would be ��� � ��� � � and
we assume that this value is far beyond what the optics or
the sensor can handle.

Now, for each edge we obtain a single value ��� . In case
it would be the image of an ideal edge in object space it
can be interpreted as an edge with the expected mean fre-
quency b ��� � in the MTF in that direction. Thus we obtain
a histogram from all edges with� � � b� � l���� # �#�$�&!� m

and
� � � 0 b� � l���� # �#�$�&!� m

where the direction vector points across the edge. We use
two values, as we do not want to distinguish between edges
having different sign.

In case the edge is already fuzzy in object space, the es-
timated value � � of the edge will be larger, thus the b ��� �
will be smaller. Therefore we search for the ellipse which
contains all points

	 � and has smallest area. This ellipse is
an estimate for the shape of the ellipse

� F 8:� � b , thus
for

8
of the PSF.

3 EXPERIMENTAL RESULTS

The following examples want to show the usefulness of the
approach. In detail we do the following:

1. Using an ideal test image (Siemens star) with known
sharpness we compare our estimation with given gro-
und truth (cf. fig. 5).

2. Using the same test image but with noise we check
the sensitivity of the method is with respect to noise
(cf. fig. 6).

3. Using real images with known artificial blur we check
whether the method works in case the edge distribu-
tion is arbitrary (cf. fig 7).



4. Using scanned aerial imagery with different sharp-
ness, caused by the scanning procedure, we test whe-
ther the method also reacts to natural differences in
sharpness (cf. fig. 8).

In all cases the minimum resolving power of an ideal edge
detector is given. In the case of digital images we refer to
a pixel size of 15 Q m.

3.1 Demonstration on synthetic Data

Test on noiseless data. The following sequence of grad-
ually blurred images was used to test the proposed method
to determine the point spread function and the resolving
power with respect to correctness of the implemented al-
gorithm.
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Figure 5: Siemens - star at various steps of image sharp-
ness ( J � � b � Q m, �TK � b P � , SNR

� 0 � � ). left: test
image, right: histogram of edges, resolving power of opti-
mal edge detector.

The method gives reasonable results: For each test image,
the histogram of edges is a circle with the correct radiusb � � , being the reciprocal width � of the point spread func-
tion used to generate the image.

Test on noisy data. To test the sensitivity of the algo-
rithm with respect to image noise the Siemens star � �
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Figure 6: Siemens star with � �10 ) d pel at various steps of
image noise (SNR= b 0 d ��� = ����0 � b ��� d ).
0 ) d pel from fig. 5 was speckled with Gaussian noise, the
noise variance being � �K .

The results in fig. 6 show that the method is quite robust
with respect to image noise. Note that the slightly decreas-
ing resolving power of the ideal edge from the first to the
last row is caused by the increasing image noise.

3.2 Results on real data

Real data with artificial blur. The method was also tes-
ted on a real image of the MIT building which was grad-
ually blurred by convolution with Gaussian filters of in-
creasing filter width (cf. fig 7).

We see that the method seems to yield correct results. In
almost each histogram of edges the ellipse containing all
points is elongated, indicating anisotropy of the image sharp-
ness for the given image.

Aerial image with various sharpness. Finally, the me-
thod was applied to digitized versions of an aerial image
(cf. fig. 8, top row) scanned three times with a pixel
size of 7 Q m. Various image sharpness has been realized
physically by imposing layers of transparencies between
the original and the scanner platform, thus exploiting the
limited depth of view of the optical system of the scanner.
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Figure 7: MIT building at various steps of image sharpness
(SNR=20).

We see in fig. 8 that the method works quite well even
on real data. The different sharpness of the three versions
of the image sharpness is recognized. The good resolving
power obtained for the ideal edge detector is plausible, as
the scanned original was of excellent quality.

4 CONCLUSIONS AND OUTLOOK

We have developed a procedure for blindly estimating the
point spread function. We define a contrast sensitivity func-
tion. This allows us to derive the resolving power as a
function of the PSF, the pixel size and the signal to noise
ratio. The PSF is assumed to be an anisotropic Gaussian
function. We estimate the corresponding scale matrix �
from the local scale at automatically extracted edges. We
assume the image contains enough edges with different ori-
entations which result from very sharp edges in the scene.
The contrast sensitivity function which is based on an ideal
adaptive edge detection scheme for straight edges between
noisy homogeneous regions is derived. Experiments on
artificial and real data demonstrate the usefulness of the
approach.

The method is restricted to images with a sufficient number
of edges and to Gaussian shaped PSF. An extension to gen-
eral point spread functions is possible using tomographic
techniques, based on the Radon-transformation (cf. (Rosen-
feld and Kak, 1982)).
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Figure 8: Aerial images with various image sharpness.
Top: whole original image with image patch. Left: image
patch at various steps of sharpness. Right: edge histogram,
resolving power.
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