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Abstract. We investigate maximum likelihood parameter learning in
Conditional Random Fields (CRF) and present an empirical study of
pseudo-likelihood (PL) based approximations of the parameter likelihood
gradient. We show, as opposed to [1][2], that these parameter learning
methods can be improved and evaluate the resulting performance em-
ploying different inference techniques. We show that the approximation
based on penalized pseudo-likelihood (PPL) in combination with the
Maximum A Posteriori (MAP) inference yields results comparable to
other state of the art approaches, while providing low complexity and
advantages to formulating parameter learning as a convex optimization
problem. Eventually, we demonstrate applicability on the task of detect-
ing man-made structures in natural images.
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1 Introduction

Classification of image components in meaningful categories is a challenging
task due to the ambiguities inherent into visual data. On the other hand, image
data exhibit strong contextual dependencies in the form of spatial interactions
among components. It has been shown that modeling these interactions is crucial
to achieve good classification accuracy.

Conditional random field (CRF) provides a principled approach for com-
bining local classifiers that allow the use of arbitrary overlapping features, with
adaptive data-dependent label interaction. This formulation provides several ad-
vantages compared to the traditional Markov Random Field (MRF) model. Fur-
ther, the restrictive assumption of conditional independence of data, made in
the traditional MRFs, is relaxed in the CRF model.

CRFs [3] have been proposed in the context of segmentation and labeling of
1D text sequences. In [1], the concept of CRFs has been extended to graphs with
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loops and made thus well applicable to problems in computer vision. The CRF
that uses arbitrary discriminative classifiers to design the model potentials has
been called the Discriminative Random Field (DRF).

In our previous work [4], we discussed the differences between a traditional
MRF formulation and the DRF model, compared the performance of the two
models and an independent sitewise classifier and demonstrated the application
feasibility for the task of interpreting terrestrial images of urban scenes. Fur-
ther, we presented preliminary results suggesting the potential for performance
improvement.

Exact computation of the likelihood of CRF model parameters is in general
infeasible for graphs with grid or irregular topology. For this reason, developing
effective parameter learning methods is the crucial part in applying CRFs in
computer vision. In [5], a model modification is described resulting in param-
eter learning formulated as a convex optimization problem. Learning/inference
coupling is studied in [2]. Learning in CRFs can be accelerated using Stochastic
Gradient Methods [6] and Piecewise Pseudo-likelihood [7]. A semi-supervised
learning approach to learning in CRF can be found in [8]. In this work, we em-
pirically investigate approximate parameter learning methods based on pseudo-
likelihood (PL). We show that these methods yield results comparable to other
state of the art approaches to parameter learning in CRFs, while providing de-
sirable convergence behavior independent of the initialization

2 Conditional Random Field

CRFs are used in a discriminative framework to model the posterior over the
labels given the data. In other words, let y denote the observed data from an
input image, where y = {yi}i∈S , yi is the data from the ith site, and S is the
set of sites. Let the corresponding labels at the image sites be given by x =
{xi}i∈S . We review the CRF formulation in the context of binary classification
on 2D image lattices. A general formulation on arbitrary graphs with multiple
class labels is described in [9]. Thus, we now have xi ∈ {−1, 1} for a binary
classification problem. In the considered CRF framework, the posterior over the
labels given the data is expressed as,

P (x|y) =
1
Z

exp

∑
i∈S

Ai(xi,y) +
∑
i∈S

∑
j∈Ni

Iij(xi, xj ,y)

 (1)

The CRF model in Eq. (1) captures the class association Ai at individual sites
i with the interactions Iij in the neighboring sites ij. The parameter dependent
term Z(θ) is the normalization constant (or partition function) and is in general
intractable to compute. Ni is the set of neighbors of the image site i.

Both, the unary association potential Ai and the pairwise interaction poten-
tial Iij can be modeled as arbitrary unary and pairwise classifiers [5]. In this
paper, as in [5][2] and our previous work [4], we use a logistic function σ(t) =
1/(1 + e−t) to specify the local class posterior, i.e., Ai(xi,y) = log P ′(xi|y) =
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log σ(xiwT hi(y)) where the parameters w specify the classifier for individual
sites. Here, hi(y) is a sitewise feature vector, which has to be chosen such
that a high positive weighted sum wT hi(y) supports class xi = 1. Similarly,
to model Iij we use a pairwise classifier of the following form: Iij(xi, xj ,y) =
xixjvT µij(y). Here, the parameters v specify the classifier for site neighbor-
hoods. µij(y) is a feature vector similarly being able to support or suppress
the identity xixj = 1 of neighboring class labels. We denote the unknown CRF
model parameters by θ = {w,v}. In the following we assume the random field
in Eq. (1) to be homogeneous and isotropic. Hence we drop the subscripts and
use the notation A and I.

3 Parameter Learning

We learn the parameters θ of the CRF model in a supervised manner. Hence,
we use training images and the corresponding ground-truth labeling. We use
standard maximum likelihood approach and, in principle, maximize the condi-
tional likelihood P (x|y,θ) of the CRF model parameters. However, this would
involve the evaluation of the partition function Z which is in general NP-hard. To
overcome the problem, we may either use sampling techniques or approximate
the partition function. As in [5], we use the pseudo-likelihood (PL) approxi-
mation P (x|y,θ) ≈

∏
i∈S P (xi|xNi

,y,θ) [10],[11], which is characterized by its
relatively low computational complexity.

It has been observed [5] that this approximation tends to overestimate the
interaction parameters, causing the MAP estimate of the field to be a poor solu-
tion. To overcome the difficulty, they propose to adopt the Bayesian viewpoint
and find the maximum a posteriori estimate of the parameters by assuming a
Gaussian prior over the parameters such that P (θ|τ) = N (θ|0, τ2I) where I is
the identity matrix. Thus, given M independent training images, we determine
θ from

θ̂
ML

≈ argmax
θ

M∏
m=1

∏
i∈S

P (xm
i |xm

Ni
,ym,θ)P (θ|τ)

or equivalently from the log likelihood

θ̂
ML

≈ argmax
θ

M∑
m=1

∑
i∈S

A(xi,y,w) +
∑
j∈Ni

I(xi, xj ,y,v)− log zi

− 1
2τ2

vT v

(2)
where

zi =
∑

xi∈{−1,1}

exp{A(xi,y,w) +
∑
j∈Ni

I(xi, xj ,y,v)}

As stated in [5], if τ is given, the problem in Eq. (2) is convex with respect
to the model parameters and can be maximized using gradient ascent. We note
that it is an approximation of the true likelihood gradient that is now being
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computed. We implement a gradient ascent method variation with exact line
search and maximize for different values of τ .

In our experiments, we adopt two methods of parameter learning. In the first
set of experiments, we learn the parameters of the CRF using a uniform prior
over the parameters in Eq. (2), i.e., τ = ∞. This approach is referred to as the
pseudo-likelihood (PL) learning method. Learning technique in the second set of
experiments, where Gaussian prior over the CRF model parameters is used, is
denoted as the penalized pseudo-likelihood (PPL) learning method. We specify
further details of the PPL learning together with the experiments.

Discrete approximations of the partition function based on the Saddle Point
Approximation (SPA) [12], Pseudo-Marginal Approximation (PMA) [13] and
the Maximum Marginal Approximation (MMA) are described in [2]. A Markov
Chain Monte Carlo (MCMC) sampling inspired method proposed in [14] and
called the Contrastive Divergence (CD), is another way to deal with the com-
binatorial size of the label space. In our experiments we compare the PL based
methods with these approaches to parameter learning.

4 Experiments

To analyze the learning and inference techniques described in the previous sec-
tion, we applied the CRF model to a binary image restoration task. The aim
of these experiments is to recover correct labeling from corrupted binary im-
ages. We use the data that has been used in learning and inference experiments
in [5],[2]and compare our results with those published in the above mentioned
works.

Four base images, see the bottom row in Fig. 1, 64× 64 pixels each are used
in the experiments. Two different noise models are employed: Gaussian noise
and class dependent bimodal (two mixtures of two Gaussians) noise. Details of
the noise model parameters are given in [5]. For each noise model, 10 out of 50
noisy images from the left most base image in Fig. 1 are used as the training set
for parameter learning. The rest 190 noisy images are used for testing.

The unary and pairwise features are defined as: hi(y) = [1, Ii]T and µij(y) =
[1, |Ii − Ij |]T respectively, where Ii and Ij are the pixel intensities at the site i
and the site j. Hence, the parameter w and v are both two-element vectors, i.e.,
w = [w0, w1]T , and v = [v0, v1]T .

4.1 Optimization

Finding optimal parameters of the CRF model means solving convex optimiza-
tion problem in Eq. (2). For this purpose, we implement a variation of the
gradient ascent algorithm with exact line search. For the computation of the
numerical gradient we use the spacing 0.001 between points in each direction.

Plots in Fig. 2ac show negative logarithm of the objective function of the
optimization problem in Eq. (2). Results in Fig. 2ab correspond to the objective
function, where no prior over the parameters is used, i.e., to the PL learning
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Fig. 1. Image restoration results for synthetic images corrupted with bimodal noise.
Results for different combinations of parameter learning (PL: Pseudo-likelihood, PPL:
Penalized Pseudo-likelihood) and inference methods (MIN-CUT: min-cut/max-flow al-
gorithm, ICM: Iterated Conditional Modes, LOGISTIC: logistic classifier) are shown.
Training and test data courtesy Sanjiv Kumar (4 image columns on the left).
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(a) (b) (c) (d)

Fig. 2. Parameter learning using gradient ascent with exact line search. Plots of the
negative logarithm of the approximated likelihood of the model parameters (a,c) and
plots of the model parameter updates (b,d) for the PL parameter learning (a,b) and
the PPL parameter learning (c,d).

method. Results in Fig. 2cd show learning where parameters are penalized by
imposing a Gaussian prior. This corresponds to the PPL learning method.

Fig. 2bd shows minimizing sequences for the model parameter w1. On this ex-
ample, we illustrate that the model parameters change their values significantly
although the criterion value does not decrease much compared to the initial it-
erations. This observation motivates the employment of exact optimization. An
inexact approach, commonly used in practice, where the step length is chosen to
approximately minimize the criterion along the chosen ray direction, stops the
computation far from optimum in this case.

4.2 PL and PPL Parameter Learning

In the following, we first adopt the PPL learning approach and investigate dif-
ferent combinations of model parameter priors and values of the parameter τ .
Gaussian priors over the following four combinations of parameters: {w}, {v},
{v1 w1}, {θ} are used in our experiments, where in each case uniform prior is
used for the rest of the parameters. Further, we run the PPL parameter learning
for the following values of the prior parameter τ = {1, 0.1, 0.01, 0.001, 0.0001}.

We used 10 training images corrupted with both the Gaussian and the bi-
modal noise to learn the model parameters and, in this case, evaluated the
method on all 200 images. Tab. 1 summarizes the experiment for the bimodal
noise model by showing the resulting pixelwise classification errors obtained by
the min-cut/max-flow algorithm (MIN-CUT) [15][16].

In accordance with [5], PPL learning with prior over the interaction param-
eters v together with the MIN-CUT inference yields the lowest classification
error for both noise models. In addition to this, for the Gaussian noise model we
find that also learning with prior over all the parameters θ yields comparable
classification error. As opposed to [5], τ = 0.1 yields the lowest classification
errors in case of the bimodal noise. Further, as opposed to [5], we find that prior
parameter value τ = 1 with the Gaussian noise model yields the best results.

We now employ the parameter prior and the value of τ identified in the pre-
vious experiment and validate our results by learning on 10 images randomly
selected from the training set and subsequently testing on 190 images from the
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Table 1. Pixelwise classification errors (%) on 200 images. Columns show combinations
of model parameter priors and rows values of the prior parameter τ . See text for more.

Parameter Parameter Prior
τ {w} {v} {v1 w1} {θ}
1 11.27 11.03 11.25 11.20

0.1 21.96 7.42 21.60 19.65
0.01 26.09 6.25 22.15 22.15
0.001 23.04 16.55 22.15 22.15

Table 2. Pixelwise classification errors (%) on 190 test images. Columns show pa-
rameter learning methods used with two noise models. KH’06 stands for the results
published in [5]. Mean ± standard deviation over 10 experiments is given for our results.

Learning Method
Gaussian Noise Bimodal Noise

PL PPL PL PPL

KH’06 3.82 2.30 17.69 6.21
ours 2.55± 0.02 2.54± 0.02 5.68± 0.05 5.64± 0.04

test set. For every scenario we run the experiment 10 times and eventually give
the mean together with the standard deviation. Tab. 2 summarizes the experi-
ment and illustrates that our PPL learning improves results reported in [5].

We now adopt the PL parameter learning method and evaluate the approach
in combination with the MIN-CUT inference. As illustrated in Tab. 2, we improve
the performance of PL learning for both the Gaussian and the bimodal noise
model. We attribute this improvement to the employment of exact approach to
the optimization.

In our experiments, we compute a numerical gradient of the approximated
likelihood. The time needed for learning could be decreased by computing exact
gradient of the approximated likelihood. Employing an inexact line search would
accelerate learning at the cost of approximate solution. We maintain that the
learning time is in this case to a great extent initialization dependent.

Table 3. Pixelwise classification errors (%) on 190 test images. Rows show inference
techniques and columns show parameter learning methods used with two noise mod-
els. Mean ± standard deviation over 10 experiments is given. MIN-CUT inference is
implemented in C, the rest of the algorithms are implemented in Matlab.

Learning Method Inference
Inference Gaussian Noise Bimodal Noise Time
Method PL PPL PL PPL (sec)

LOGISTIC 15.30± 0.06 15.30± 0.06 30.52± 0.26 28.44± 0.01 0.002
ICM 4.33± 0.01 3.72± 0.01 22.52± 0.07 13.66± 0.15 0.100

MIN-CUT 2.55± 0.02 2.54± 0.02 5.68± 0.05 5.64± 0.04 0.018

Learning Time (sec) 42± 7 45± 8 25± 4 29± 4
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At last, we compare results of a logistic classifier (LOGISTIC), Iterated Con-
ditional Modes (ICM) [17] and the MIN-CUT inference for the case of parameters
learned through both the PL and the PPL method and for the both noise models.
In our experiments, MIN-CUT inference yields the lowest classification error for
both learning approaches. The experiment is summarized in Tab. 3 and typical
classification results are further illustrated in Fig. 1.

4.3 Comparison of Learning Methods

For the MAP MIN-CUT inference, we compare our parameter learning with
other state of the art learning methods proposed in [2] and mentioned in Sec. 3.
We summarize the comparison in Tab. 4.

Table 4. Pixelwise classification errors (%) on 190 test images. Rows show parameter
learning procedures and columns show two different noise models. KH’05 stands for
the results published in [2]. Mean ± standard deviation over 10 experiments is given
for our results.

Gaussian noise Bimodal noise Learning time
MIN-CUT MIN-CUT (Sec)

MMA, KH’05 34.34 26.53 636
PL, KH’05 3.82 17.69 300
CD, KH’05 3.78 8.88 207

PMA, KH’05 2.73 6.45 1183
SPA, KH’05 2.49 5.82 82

PL, ours 2.55 ± 0.02 5.68 ± 0.05 42± 7
PPL, ours 2.54 ± 0.02 5.64 ± 0.04 45± 8

It was found in [2] that for MAP inference SPA based learning is the most
accurate as well as time efficient. However, it was also showed that this approxi-
mation leads to a limit cycle convergence behavior dependent on the parameter
initialization. As the convergence is not guaranteed, a parameter selection heuris-
tics has to be chosen for the oscillatory case. This is the main drawback of the
approximation.

In Tab. 4, we show that MAP inference with PPL based learning yields
slightly better results compared to SPA learning while providing low complex-
ity and advantages to formulating parameter learning as a convex optimization
problem. In this case, the problem can be solved, very reliably and efficiently,
drawing upon the benefits of readily available methods for convex optimization.

4.4 Natural Images

We demonstrate applicability on the task of detection of man-made structures in
natural images and show preliminary results on real data. Our intention in this
experiment is to label each site of a test image as structured or non-structured.
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We divide our test images, each of size 3008× 2000 pixels, into non-overlapping
blocks, each of size 150 × 150 pixels, that we call image sites. For each image
site i, a 1-dimensional single-site feature is computed as a linear combination
of gradient magnitude and orientation based features. In the current setup, we
reduce the CRF parameter learning to the determination of the interaction pa-
rameter w0, where the rest of the parameters is fixed. We choose the values of
the parameters that by observation yield the best performance on a test set of
15 images. See Fig. 3 for illustration.

(a) Input Image (b) CRF

Fig. 3. (a) Input Image. (b) Man-made structure detection result using the CRF model.
Man-made structure is denoted by blue crosses superimposed on the original image.

5 Conclusion

We investigate maximum likelihood parameter learning in Conditional Random
Fields (CRF) and present an empirical study of pseudo-likelihood (PL) based
approximations of the parameter likelihood gradient. We show that the approx-
imation based on penalized pseudo-likelihood (PPL) in combination with the
Maximum A Posteriori (MAP) inference yields state of the art performance,
while providing low complexity and desirable, initialization independent conver-
gence. Eventually, we demonstrate the applicability of the method to the task
of detecting man-made structures in natural images.

We are currently exploring further ways of efficient parameter learning in the
CRFs on grid graphs and on graphs with general neighborhood system.
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