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Summary Testing and estimation using homogeneous coordinates and matrices has
to cope with obstacles such as singularities of covariance matrices and redundant
parametrizations. The paper proposes a representation of the uncertainty of all types
of geometric entities which (1) only requires the minimum number of parameters, (2)
is free of singularities, (3) enables to exploit the simplicity of homogeneous coordi-
nates to represent geometric constraints and (4) allows to handle geometric entities
which are at infinity or at least very far away. We develop the concept, discuss its
usefulness for bundle adjustment and demonstrate its applicability for determining
3D lines from observed image line segments in a multi view setup.

Zusammenfassung Beim Testen und Schätzen mit homogenen Koordinaten und Ma-
trizen treten wegen der Redundanz der Repräsentationen und der daraus folgenden
Singularität der Kovarianzmatrizen Schwierigkeiten auf. Der Beitrag schlägt eine
Repräsentation für die Unsicherheit geometrischer Elemente vor, die (1) eine mini-
male Zahl von Parametern benötigt, (2) frei von Singularitäten ist, (3) die Einfach-
heit homogenener Koordinaten bei der Formulierung geometrischer Bedingungen
belässt und (4) uneigentliche Elemente, d. h. Elemente im Unendlichen bzw. sehr
weit entfernte Elemente behandeln kann. Wir stellen das Konzept vor, diskutieren
seine Nützlichkeit bei der Bündelausgleichung und zeigen ihre Anwendbarkeit für
die Schätzung von 3D Geraden aus mehreren Bildern.



1 Introduction

Estimation of entities in projective spaces, such as points or transformations, has
to cope with the scale ambiguity of the redundant representations of these entities,
and, as a consequence, with the definition of proper metrics which results from the
singularity of the covariance matrices. As an unwanted side effect the number of
parameters heavily increases in large estimation problems. The paper shows how
to consistently perform statistical testing and maximum likelihood (ML)estimation
for geometric entities and transformations in projective spaces including elements at
infinity while only handling the minimum of required parameters.
The scale ambiguity of homogeneous entities results from the redundant represen-
tation, where two elements, say 2D points, x and y or two rotations R and R ′ are
identical, in case their representations with homogeneous coordinates, here with x
and y or with quaternions, here q and q′, are proportional. This ambiguity regularly
is avoided by proper normalization of the homogeneous entities. Mostly one applies
either Euclidean normalization of homogeneous coordinates, say xe = x/x3, see
KANATANI (1996), then accepting that no elements at infinity can be represented,
or spherical normalization, say xs = x/|x| or qs = q/|q|, then accepting that the
parameters to be estimated sit on a non-linear manifold, here the unit spheres S2 or
S3, see COLLINS (1993), HEUEL (2004). The sign ambiguity usually does not cause
difficulties, as the homogeneous constraints used for reasoning are independent on
the chosen sign.
The uncertainty of an observed geometric entity in many practical cases, can be rep-
resented sufficiently well by a Gaussian distribution N (µx,Σxx). The distribution
of derived entities, y = f(x), resulting from a non-linear transformation can also
be approximated by a Gaussian distribution, using Taylor expansion at the mean µx
and omitting higher order terms, possibly requiring truncation of the given distribu-
tion, see HARTLEY & ZISSERMAN (2000, App. 3). The degree of approximation
depends on the relative accuracy and has been shown to be negligible in many cases,
see CRIMINISI (2001, p. 55).
The invariance of estimates w. r. t. the choice of the normalization of the estimated
entities usually is achieved by minimizing a function in the Euclidean space of obser-
vations, in the context of bundle adjustment being the reprojection error, leading to
the objective function Ω =

∑
i(xi− x̂i)TΣ−1xixi(xi− x̂i). This at the same time is the

Mahalanobis distance between the observed and estimated entities and can be used to
evaluate whether the model fits the data. A similar reasoning is used when estimat-
ing transformations, such as rotations based on quaternions q = (q, q) or projective
transformations, e. g. 2D homographies H, where one of the redundant elements, say
the scalar part q or the last element H33, is Euclideanly normalized to one in order to
arrive at a minimal representation.
This situation becomes difficult, in case one wants to handle elements at infinity, thus
homogeneous coordinate 3-vectors with x3 = 0, rotations with q ≈ 0, thus around



180◦, or homographies with H33 ≈ 0, and therefore one wants to use spherically
normalized homogeneous vectors or matrices, or at least normalized direction vec-
tors when using omnidirectional cameras, as their covariance matrices are or become
close to singular.
Therefore, in case we want to use these normalized vectors or matrices as observed
quantities, already the formulation of the objective function based on homogeneous
entities is not possible and requires a careful discussion about estimable quantities,
see (MEIDOW et al., 2009). Also the redundant representation requires additional
constraints, which lead to Lagrangian parameters in the estimation process. As an
example, one would need four parameters to estimate a 2D point, three for the ho-
mogeneous coordinates and one Lagrangian for the constraint, two parameters more
than the degrees of freedom of a 2D point.

Related work. This problem of representing uncertain transformations has been
addressed successfully for geometric transformations. Common to these approaches
is to represent the uncertain transformations, say a rotation R as multiplicative de-
viations R(r) from the mean transformation E(R) and to represent the small de-
viations as the exponential of a matrix, say exp(S(r)), which allows simple es-
timation and rigorous update, a property resulting from the group properties of
these transformations. Based on the work of BREGLER & MALIK (1998), ROSEN-
HAHN et al. (2002) used the exponential map for modelling spatial Euclidean mo-
tions, composed of rotations and translations in IR3. BARTOLI & STURM (2004)
used the idea to estimate the fundamental matrix with a minimal representation
F = R1 Diag(exp(λ), exp(−λ), 0) RT

2 , twice using the rotation group and once
the multiplication group IR+. BEGELFOR & WERMAN (2005) showed how to esti-
mate a general 2D homography with a minimal representation statistically rigorously,
namely using the special linear group of 3 × 3-matrices with determinant one, rep-
resented as H = exp(K ) with matrices K having trace zero, correctly reflecting the
number of degrees of freedom, see the application in MEIDOW (2011).
To our knowledge the only attempts to use minimal representations for geometric
entities other than transformations have been given by STURM & GARGALLO (2007)
and ÅSTROM (1998), however, both are not able to represent elements at infinity,
namely conics and points at infinity respectively.
This paper presents a concept for statistical testing and estimation with all types of
geometric entities in projective spaces using minimal representations which are free
of singularities and allow to handle entities at infinity, see (FÖRSTNER, 2010a,b).

Notation. We name objects with calligraphic letters, say a point x , We denote Eu-
clidean coordinates with a slanted letter x, homogeneous coordinates with an upright
letter x. Matrices are denoted with sans serif capital letters, say R, or upright in
case of homogeneous matrices, e.g. H. The operator N(.) normalizes a vector to unit



length. We adopt the Matlab syntax to denote the stack of two vectors or matrices,
e.g. z = [x;y] = [xT,yT]T. The vec-operator stacks the columns of a matrix to ob-
tain a vector: vec(A) = vec([a1, . . . ,an]) = [a1; . . . ;an]. Stochastic variables are
underscored, e.g. x. We use the skew symmetric matrix S(a) of a 3-vector, inducing
the cross product a × b = S(a)b. As an exception, we denote three-dimensional
rotation vectors - the product of the rotation angle with the normalized rotation axis -
with r and four dimensional quaternion vectors with q, instead with capital letters.

2 Minimal Representation of Uncertainty

The natural spaces of homogeneous entities are the unit spheres Sn, possibly con-
strained to a subspace. Spherically normalized homogeneous coordinates of 2D
points (xs) and lines (ls) live on the sphere S2 in IR3 , those of 3D points (Xs) and
planes (As) on the 3-sphere S3 in IR4 respectively. Also unit quaternions, allowing
to represent all rotations R without singularities, live on the unit sphere S3. Lines in
3D, represented by Plücker coordinates (Ls), live on the so-called Klein quadric Q
which is the subspace of the unit sphere S5 in IR6 restricted by the Plücker constraint.
Planar homographies, represented by 3 × 3-matrices may be normalized either en-
forcing their Frobenius norm ||H||2 =

∑
ij H

2
ij or their determinant |H| to be 1, then

their vector h = vec(H) also live on a unit sphere, namely S8 or in another non-linear
space respectively. Other transformations, such as the singular correlation matrix E
of the relative orientation, called essential matrix, can be represented by products of
basic transformations, e. g. E = S(b) RT, as a function of a homogeneous 3-vector,
the base direction b, and the rotation R.
How to represent uncertain elements on these curved manifolds is the topic of the
next section.

2.1 Representation of Uncertainty in non-linear subspaces

The principle of testing and estimation of entities can be easily visualized, if they
live on a one-dimensional manifold in 2D, see Fig. 1. In both cases we assume the
uncertainty of the entities is small enough compared to the curvature of the manifold
to (1) represent it as a covariance matrix in the tangent space and (2) the approximate
value may deviate from the mean value. In order to realize this procedure we need
to (1) define the tangent space, which is used for representing the uncertainty and
performing the testing and the estimation, and (2) the forward and (3) the backward
projection taking the uncertainty of the entities into account. The definition of the
tangent space in all cases is realized by linearisation, while the forward and backward
projections differ for transformations and geometric entities: While the manifolds of
transformations are represented explicitly, the manifolds for geometric entities are
represented implicitly, requiring special care.
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Figure 1: Above: Testing the identity of two points x1 and x2: the points are first
projected into the tangent space T (M ,xa) of the manifold M at some approximate
value xa, leading to a substitute test of xr1 and xr2. Below: Estimating the mean of
three observations li, i = 1, 2, 3 is performed in the tangent space T (M ,xa) at the
approximate value xa after projecting them to lri leading to an updated estimate x̂r,
and, after back projecting to the manifold, to the estimate x̂.

2.2 Minimal Representation for Uncertain Transformations

We explain the principle of representing uncertain transformations using rotations in
3D.

Uncertain rotations. Take the space S3 of rotations, represented by rotation ma-
trices R ∈ IR3×3. Starting from the mean rotation E(R) a neighbouring uncertain
rotation R can be represented by

R = R(r) E(R) , (1)

where R(r) represents a small rotation, close to the unit matrix depending on the
stochastic 3-vector r. Its 3 × 3-covariance matrix Σrr minimally and uniquely rep-
resents the uncertainty of the rotation matrix R. Obviously, the vector r lies in the
three-dimensional tangent space IR3 of the rotations, evaluated at the zero-rotation
R (0), represented by the unit matrix I3. The function

R(r) = exp (S(r)) (2)

= I3 + S(r) +
1

2!
S2(r) + . . .

= I3 +
sin(|r|)
|r|

S(r) +
1− cos(|r|)
|r|2

S2(r)

maps the three-dimensional linear tangent space IR3 to the spherical space S3 of
rotations. The transition from the second to the third line of (2), uses the easy to



be proved fact: S3(r) = −|r|2S(r) for collecting higher order terms of S(r), see
(HARTLEY & ZISSERMAN, 2000, (A4.9)). This function is called the exponential
map. In general, the exponential of a skew symmetric matrix is a rotation matrix.
The exponential map can only represent rotations with angles 6= ±180◦, which is no
restriction in our context.
The mapping from a rotation R to the tangent space at an approximate rotation can
easily be achieved from the linearised version of (1) using some approximate rotation
Ra being some estimate for the mean rotation, thus

R ≈ (I3 + S(r)) Ra or S(r) ≈ RRaT − I3 (3)

yielding r = [S23;S31;S12] . As the elements of r occur linearly in (3), left, it also
is used for linearisation within an estimation procedure.
The non-linear manifold, here of rotations, obviously can be explicitly represented,
here by using the exponential map (2), which in the context of estimation using the
Gauß-Markov model, is just a special case of a non-linear function of the unknown
parameters.

Uncertain homographies. This principle of representing an uncertain transfoma-
tion can be generalized to uncertain 2D or 3D homographies and their specialisations,
namely 2D and 3D motions and similarities. An uncertain 2D homography, for ex-
ample, can be represented as a left-product of the mean homography E(H) and a
small homography H(k)

H = H(k) E(H) , (4)

where the small homography, close to the unity, as can be seen, when analysing the
linearisation of the transformation of the Cartesian coordinates. The small homog-
raphy H(k) depends on a stochastic 8-vector k. We assume the matrices to have
determinant one, thus being spectrally normalized |H| =

∏
i λi = 1, using the eigen-

values λi of H. Homographies close to the unit matrix having determinant one can
again be represented by the exponential map

H(k) = exp (K (k)) = I3 + K (k) +
1

2!
K 2(k) + . . . (5)

with the zero-trace matrix

K (k) =

 k1 k4 k7
k2 k5 k8
k3 k6 −k1 − k5

 . (6)

Again the 8 × 8-covariance matrix Σkk minimally and uniquely, up to the conven-
tion of the trace-less matrix K (see BEGELFOR & WERMAN (2005)), represents the



uncertain spectrally normalized homography H. Linearisation of (4) at a given ap-
proximate homography Ha therefore leads to

H ≈ (I3 + K (k)) Ha , (7)

which can be used within an iterative estimation procedure and allows to determine
k for a homography H close to an approximate one Ha, taking the first eight values
of vec(H(Ha)−1 − I3).
Finally, it might be useful for some applications to represent both, the homography
and its inverse, linearly in 8 parameters, which can easily be achieved using H−1 =

E(H)−1H(−k)) ≈ H̃
−1

(I3 − K (k)) together with (4).

2.3 Minimal Representation for Uncertain Points in 2D and 3D

We will now transfer the concept to uncertain unit vectors on the unit sphere S2,
representing 2D points and lines, and generalize it to other geometric entities.
Let an uncertain 2D point x be represented with its mean, the 2-vector µx and
its 2 × 2-covariance matrix Σxx. It can be visualized by the standard ellipse
(x − µx)TΣ−1xx (x − µx) = 1. Spherically normalizing the homogeneous vector
x = [x; 1] = [u, v, w]T yields

xs =
x

|x|
, Σxsxs = JΣxxJT (8)

with the 3× 3-matrix

Σxx =

[
Σxx 0
0T 0

]
(9)

using the Jacobian

J =
∂xs

∂x
=

1

|x|
(I3 − xsxsT) (10)

with rank (Σxx) = 2 and null(Σxx) = µsx. As the smallest eigenvalue is zero, the
standard ellipsoid is flat and lies in the tangent space of x at S2.
In the following we assume all point vectors x to be spherically normalized and omit
the superscript s for simplicity of notation.
We now want to choose a coordinate system [s, t] in the tangent space ⊥ µx, and
represent the uncertainty by a 2× 2-matrix in that coordinate system, see Fig. 2.
This is easily achieved by using the orthonormal matrix collecting the two base vec-
tors s and t

Jr(µx) = null(µT
x ) = [s, t] , [µT

xs,µ
T
x t] = 0T , (11)

fullfilling JT
r (µx) Jr(µx) = I2. The subscript r in Jr stands for the reduced (tangent)

space.
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Figure 2: Minimal representation for an uncertain point x (x) on the unit sphere S2

representing the projective plane IP2 by a flat ellipsoid in the tangent plane at the
mean µx. The uncertainty has only two degrees of freedom in the tangent space
spanned by two basis vectors s and t of the tangent space, being the null space of µT

x .
The uncertainty should not be too large, such that the deviation of the distribution on
the sphere and on the tangent plane do not differ too much, as at point y .

The normal of the tangent space is µx. This results from linearising the constraint
h = xTx − 1 = 0 w. r. t. x leading to the linear constraint µT

x∆x = 0, expressing
the fact, that any deviation of a vector from the mean µx is perpendicular to µx.
We now represent the stochastic 2-vector xr with mean µxr = 0 and covariance
Σxrxr in the tangent space at µx. In order to arrive at a spherically normalized random
vector x with mean µx we need to spherically normalize the vector xτ = µx +
Jr(µx)xr = µx + xr,1s+ xr,2t in the tangent space and obtain

x(µx,xr) = N (µx + Jr(µx)xr ) (12)

Jr(µx) =
∂x

∂xr

∣∣∣∣
x=µx

. (13)

We thus can identify Jr(µx) with the Jacobian of this transformation evaluated at
x = µx. The inverse transformation is the reduction of the homogeneous vector to
its reduced counterpart

xτr = JT
r (µx)x . (14)

omitting the superscript τ in case no confusion is to be expected. Since JT
r (µx)µx =

0 the mean of xr is the zero vector, µxr = 0, as specified.
This allows to establish the one-to-one correspondence between the reduced covari-
ance matrix Σxrxr of the reduced coordinates xr and the covariance matrix Σxx of
x:

Σxx = Jr(µx) Σxrxr JT
r (µx) (15)

Σxrxr = JT
r (µx) Σxx Jr(µx) . (16)



We use (14) to derive reduced observations and parameters and after estimating cor-
rections ∆̂xr then apply (12) to find corrected estimates x̂ = x̂(xa, ∆̂xr).
The non-linear manifold, here of the 3-vectors of homogeneous coordinates, is im-
plicitly represented, here by the unit norm constraint, just as in estimation models
using constraints onto the observations or the unknown parameters.
A similar reasoning leads to the representation of 3D points. Again, the Jacobian
Jr(µX), overloading the function Jr(.), is the null space of XT and spans the three-
dimensional tangent space of S3 at µX . The relations between the singular 4 × 4-
covariance matrix of the spherically normalized vector X and the reduced 3 × 3-
covariance matrix ΣXrXr are equivalent to (15) and (16).
Homogeneous 3-vectors l representing 2D lines and homogeneous 4-vectors A rep-
resenting planes can be handled in the same way.

2.4 Minimal Representation for Straight 3D lines

We now generalize the concept for 3D lines. Lines L in 3D are represented by their
normalized Plücker coordinates L = [Lh;L0] = N([Y −X,X × Y ]) in case they
are derived by joining two points X (X) and Y (Y ). Line vectors need to fulfil the
quadratic Plücker constraint LT

hL0 = 0 and span the Klein quadric Q consisting of
all homogeneous 6-vectors fulfilling the Plücker constraint. The dual line L(L) has
Plücker coordinates L = [L0;Lh], exchanging its first and second 3-vector. As in
addition a 6-vector needs to fulfil the Plücker constraint in order to represent a 3D
line, the space of 3D lines is four-dimensional.
The transfer of the minimal representation of points to 3D lines requires some care.
The four-dimensional tangent space is perpendicular to L, as LTL−1 = 0 holds and
perpendicular to L, as LT

L = 0 holds. Therefore, the tangent space is given by the
four columns of the 6× 4 matrix

Jr(L) = null
([

L ,L
]T) (17)

again assuming this matrix to be orthonormal. Therefore for random perturbations
Lr we have the general 6-vector

Lτ (µL,Lr) = µL + Jr(µL)Lr (18)

in the tangent space. In order to arrive at a random 6-vector, which is both spheri-
cally normalized and fullfills the Plücker constraint also for finite random perturba-
tions we need to normalize Lτ = [Lτh;Lτ0 ] accordingly. The two 3-vectors Lτh and
Lτ0 in general are not orthogonal. Following the idea of BARTOLI & STURM (2005)
we therefore rotate these vectors in their common plane such that they become or-
thogonal. We use a simplified modification, as the normalization within an iteration
sequence will have decreasing effect. We use linear interpolation of the directions
Dτ
h = N(Lτh) andDτ

0 = N(Lτ0), see Fig. 3.
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Figure 3: Enforcing the Plücker constraint onto a 6-vector Lτ = [Lτh;Lτ0 ]. Start-
ing from vectors Dτ

h = N(Lτh) and Dτ
0 = N(Lτ0), which in general are not

perpendicular, we easily can enforce the perpendicularity by symmetric linear in-
terpolation, leading to Dh and D0, which are perpendicular. The vector M =
N([|Lh|Dh; |L0|D0]) yields a valid Plücker vector close to Lτ .
With the distance d = |Dτ

h −Dτ
0 | and the shortest distance r =

√
1− d2/4 of the

origin to the line joiningDτ
h andDτ

0 we have

Dh,0 = (1/2± r/d)Dτ
h + (1/2∓ r/d)Dτ

0 . (19)

The 6-vector M = [|Lh|Dh; |L0|D0] now fulfils the Plücker constraint and pre-
serves the length ratio of its two parts, as the vectors Dh and D0 have the same
length by construction. The vector M finally needs to be spherically normalized.
This leads to the normalized stochastic 3D line coordinates

L = N(Lτ (µL,Lr))
.
= M / |M| (20)

which guarantees L to sit on the Klein quadric, thus to fullfill the Plücker constraint.
The inverse relation to (20) is

L=
r JT

r (µL) L (21)

as Jr(µL) is an orthonormal matrix. The relations between the covariances of L and
Lr therefore are

ΣLL = Jr(µL) ΣLrLr JT
r (µL) (22)

ΣLrLr = JT
r (µL) ΣLL Jr(µL) . (23)

3 Estimation and testing with minimal representations

3.1 Estimation

Using the minimal representations introduced in the last section, we are able to per-
form ML estimation for all entities. We restrict the following discussion to the model
containing constraints between observed and unknown entities only, known as Gauß-
Helmert model. Generalizations to include constraints between the parameters only
are possible. We start the derivation with the model where the observations have reg-
ular covariance matrices and then reduce the model, such that also observations with
singular covariance matrices can be handled.



The optimization problem. We want to solve the following optimization problem

minimize Ω(ṽ) = ṽTΣ−1ll ṽ (24)

subject to g(l+ ṽ, x̃) = 0 (25)

where the N observations l, their N ×N covariance matrix Σll and the G constraint
functions g are given, and the N true corrections ṽ to the observations and the U
true parameters x̃ are unknown. The number G of constraints needs to be larger than
the number of parameters U . Also it is assumed that the constraints are functionally
independent. The solution yields the ML estimates, namely the fitted observations
l̂ = l + v̂ via v̂ and parameters x̂, under the assumption that the observations are
normally distributed with covariance matrix Σll = D(l) = D(v), and the true obser-
vations l̃ fulfil the constraints given the true parameters x̃.
Example: Bundle adjustment. Bundle adjustment is based on the projection rela-
tionE

(
x′ij

)
= λijPjXi between the scene points Xi, the projection matrices Pj and

the image points xij of point Xi observed in camera j. The classical approach elim-
inates the individual scale factors λij by using Euclidean coordinates for the image
points. Also the scene points are represented by Euclidean coordinates. This does
not allow for scene or image points at infinity. This may occur when using omnidi-
rectional cameras, where a representation of the image points in a projection plane is
not possible for all points or in case scene points are very far away compared to the
length of the motion path of a camera, e.g. at the horizon. There are two ways to
eliminate the scale factor while being able to handle points at infinity.

1. The easiest way is to rewrite the model using spherical normalisation:
E
(
x′sij

)
= N(PjXi) and then multiplying each equation with Jx(x′aTij ) lead-

ing to x′r,ij = Jx(x′aTij )N(PjXi). The reduced coordinates x′r,ij of the camera
rays x′sij have a regular covariance matrix, allowing to use the classical Gauß-
Markov model for estimation.

2. The scale factor also can be eliminated by expressing the collinearity as
E
(
x′ij

)
× PjXi = 0, thus requiring the two homogeneous coordinate vec-

tors x′ij and PjXi to be parallel. These constraints between observations
and unknown parameters thus require to use the Gauß-Helmert model from
(24), see SCHNEIDER et al. (2011). However, we also can handle con-
straints of image lines l ′ij passing though the projected point PjXi, reading

as E
(
l
′T
ij

)
PjXi = 0. Thus both types of constraints can be represented using

(25).

The singularity of the covariance matrix of the spherically normalized image points
and the necessity to represent the scene points also with spherically normalized ho-
mogeneous vectors, requires to use the corresponding reduced coordinates.



For solving the generally non-linear problem, we assume approximate values x̂a and
l̂
a

for the fitted parameters and observations to be available. We thus search for
corrections ∆̂l and ∆̂x for the fitted observations and parameters using l̂ = l +
v̂ = l̂

a
+ ∆̂l and x̂ = x̂a + ∆̂x. With these assumptions we can rephrase the

optimization problem: minimize Ω(∆̂l) = (̂l
a
− l+ ∆̂l)TΣ−1ll (̂l

a
− l+ ∆̂l) subject

to g(̂l
a

+ ∆̂l, x̂a + ∆̂x) = 0 The approximate values are iteratively improved by
finding best estimates for ∆̂l and ∆̂x using the linearized constraints

g(̂l
a
, x̂a) + A∆̂x+ BT∆̂l = 0 (26)

with the corresponding Jacobians A and B of g to be evaluated at the approximate
values.

Reducing the model. We now want to transform the model in order to allow for
observations with singular covariances. For simplicity we assume the vectors l and x
of all observations and unknown parameters can be partitioned into I and J individual
and mutually uncorrelated observational vectors li, i = 1, ..., I and parameter vectors
xj , j = 1, ..., J , referring to points, lines, planes, or transformations.
We first introduce the reduced observations lri, the reduced corrections of the obser-
vations ∆̂lri, and the reduced corrections ∆̂xrj :

lri = JT
r (̂l

a

i )li , (27)

∆̂lri = JT
r (̂l

a

i )∆̂li , (28)

∆̂xrj = JT
r (x̂aj )∆̂xj , (29)

where each Jacobian refers to the type of the entity it is applied to. The reduced
approximate values are zero, as they are used to define the reduction, e.g. from (14)
we conclude x̂ar = JT

r (x̂a)x̂a = 0. We collect the Jacobians in two block diagonal
matrices JT

l = {JT
r (̂l

a

i )} and JT
x = {JT

r (x̂aj )} in order to arrive at the reduced
observations lr = JT

l l, the corrections for the reduced observations ∆̂lr = JT
r ∆̂l

and parameters ∆̂xr = JT
r ∆̂x.

Second we need to reduce the covariance matrices Σlili . This requires some care: As
a covariance matrix is the mean squared deviation from the mean, we need to refer
to the best estimate of the mean when using it. In our context the best estimate for
the mean at the current iteration is the approximate value l̂

a

i . Therefore we need to
apply two steps: (1) transfer the given covariance matrix, referring to li, such that
it refers to l̂

a

i and (2) reduce the covariance matrix to the minimal representation
l̂ri. As an example, let the observations be 2D lines with spherically normalized
homogeneous vectors li. Then the reduction is achieved by: Σa

lrilli
= Jai ΣliliJ

aT
i

with Jai = JT
r (lai ) R(li, l̂

a
i ), namely by first applying a minimal rotation from li to

l̂ai (see (MCGLONE et al., 2004, eq. (2.183)), second reducing the covariance matrix



following (15). The superscript a in Σa
lrilli

indicates the covariance to depend on the
approximate values.
The reduced constraints now read as

g(̂l
a
, x̂a) + Ar∆̂xr + BT

r ∆̂lr = 0 (30)

with

Ar = AJT
x BT

r = BTJT
l . (31)

Now we need to minimize the weighted sum of the squared reduced corrections
v̂r = l̂

a

r − lr + ∆̂lr = −lr + ∆̂lr. Thus we need to minimize Ω(∆̂lr) =

(−lr + ∆̂lr)
T
(
Σa
lrlr

)−1
(−lr + ∆̂lr) subject to the reduced constraints in (30).

The estimated corrections ∆̂xr and ∆̂lr to the reduced parameters and observations
of the reduced linearised model are obtained from MCGLONE et al. (2004, Tab. 2.3).
They are used to update the approximate values for the parameters and the fitted ob-
servations using the corresponding non-linear transformations, e.g. for an observed
2D point one uses (12), for an unknown 3D line (20). Using (15) and (22), for ex-
ample, one can determine the covariance matrices of the non-reduced homogeneous
coordinate vectors.

3.2 Testing the Identity of Two Entities

Testing geometric relations using homogeneous coordinates in most cases leads to
constraints which are linear in the coordinates of each geometric entity. Examples
are the incidence of a 2D point x and a 2D line l , namely the constraint xTl = 0,
of a 3D line L and a plane A, namely the constraint I (L)A = 0 with the Plücker
matrix I (L) = XYT−YXT for a line L through the points X and Y , or the identity
of two points x and y , namely the constraint S(x)y = 0. Among all these tests, the
tests on the identity of two homogeneous entities can be simplified using reduced
coordinates.
Let the two entities be two lines Li(Li,ΣLiLi), i = 1, 2, specified by their, not nec-
essarily normalized, Plücker coordinates and their covariance matrices. Testing their
identity would require to test µL1

= λµL2
for some unknown scale factor λ, which is

cumbersome, see (MCGLONE et al., 2004, sect. 2.3.5.3.5). But this can be realized
easily by testing the identity of their reduced coordinates as follows. (1) Spherically
normalize the lines Lsi = Li/|Li| and derive their 6× 6-covariance matrix ΣLs

i Ls
i

by
variance propagation similar to the normalization of 2D points in (8). The constraint
to be tested now reads simply asE(Ls2−Ls1) = 0. (2) Change to reduced coordinates,
as the covariance matrix of the difference is singular. This requires the choice of an
approximate 3D line La, close to the given ones, approximating the mean µL and



using Lri = JT
r (La) Li, see (21). We may choose one of both lines. The constraint

with reduced coordinates now reads as

E(Lr2 −Lr1) = 0 . (32)

In case the two lines are mutually statistically independent the optimal test statistic
now is

T = dT Σ−1dd d ∼ χ
2
4 , (33)

with the difference and its regular covariance matrix

d = Lr2 −Lr1 , (34)

Σdd = ΣLr1Lr1 + ΣLr2Lr2 . (35)

The test statistic T is χ2
4-distributed in case the null-hypothesis, namely the two lines

are identical, holds. It obviously is the Mahalanobis distance of the two reduced line
coordinates, thus can be used to measure the difference between two 3D lines.
The test on the identity of two entities using their minimal representation, thus their
reduced coordinates can be applied to all geometric entities and also to all homoge-
neous transformations.

4 Example: Estimating 3D Line from Image Line Segments

The following example demonstrates the practical use of the proposed method:
namely determining 3D lines from image line segments. Fig. 4 shows three images
taken with a CANON 450D. The focal length was determined using vanishing points,
the principal point was assumed to be the image centre, the images were not corrected
for lens distortion. The images then were mutually oriented using a bundle adjust-
ment program. Straight line segments were automatically detected and a small subset
of 12, visible in all three and pointing in the three principal directions were manually
brought into correspondence. From the straight lines lij(l′ij), i = 1, ..., 12; j = 1, 2, 3

and the projection matrices Pj we determined the projection planes Aij = PT
j l
′
ij

of the line segments. For determining the ML estimates of the 12 lines Li, each
from the three corresponding projection planes, we needed their covariance matrices.
They were determined by variance propagation based on the covariance matrices of
the image lines lij and the covariance matrices of the projection matrices.
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Table 1: Result of determining 12 lines from the images in Fig. 4. Left column:
minimal length l of the three line segments involved. Upper right triangle: angles
between the lines. Lower left triangle: values of the test statistic for the deviation
from 0◦ or 90◦.

lmin\# 1 2 3 4 5 6 7 8 9 10 11 12
173 pel − 2.6◦ 2.7◦ 3.0◦ 88.6◦ 89.0◦ 88.7◦ 76.5◦ 86.7◦ 87.0◦ 86.6◦ 85.2◦

155 pe] 0.7 − 0.7◦ 1.6◦ 89.9◦ 89.7◦ 87.3◦ 75.1◦ 89.0◦ 89.2◦ 88.9◦ 87.4◦

72 pel 0.7 0. − 0.9◦ 89.4◦ 89.8◦ 87.9◦ 75.6◦ 89.4◦ 89.6◦ 89.3◦ 87.8◦

62 pel 1.2 0.3 0.1 − 88.5◦ 88.9◦ 88.7◦ 76.4◦ 89.8◦ 90.0◦ 89.7◦ 88.2◦

232 pel 0.6 0.0 0.1 0.2 − 0.4◦ 2.8◦ 15.3◦ 89.6◦ 89.3◦ 89.7◦ 89.1◦

153 pel 0.3 0.1 0.0 0.1 0.1 − 2.4◦ 14.9◦ 89.5◦ 89.2◦ 89.6◦ 89.1◦

91 pel 0.5 0.8 0.4 0.2 0.8 0.6 − 12.5◦ 89.0◦ 88.7◦ 89.1◦ 88.6◦

113 pel 1.0 1.1 1.1 0.9 1.1 1.1 0.8 − 87.0◦ 86.7◦ 87.2◦ 87.0◦

190 pel 1.6 0.4 0.3 0.1 0.2 0.3 1.0 1.3 − 0.4◦ 0.2◦ 1.6◦

82 pel 1.4 0.3 0.2 0.0 0.4 0.4 1.2 1.4 0.5 − 0.5◦ 1.8◦

103 pel 1.6 0.5 0.4 0.2 0.2 0.2 0.9 1.2 0.3 0.6 − 1.6◦

225 pel 2.4 1.1 1.1 1.0 0.5 0.5 1.3 1.5 3.2 3.6 4.0 −

Figure 4: Three images with 12 corresponding straight line segments used for the
reconstruction of the 3D lines, forming three groups [1...4], [5...8], [9...12] for three
main directions.
As we did not have the cross-covariance matrices between any two of the projection
matrices, we only used the uncertainty ΣZjZj of the three projection centres Zj . The
covariance matrices of the straight line segments were derived from the uncertainty
given by the feature extraction. For this we fitted a straight line through the edge
pixels, which was assumed to be determinable with a standard deviation of σp = 0.3
pel]. The covariance matrix of the projection planes then is determined by variance
propagation of Aij = PT

j l
′
ij = (I4 ⊗ l′ij)vecPj from ΣAijAij = PT

i Σl′il′i
Pi + (I4 ⊗

l′ij)Σpipi(I4 ⊗ l′Tij ).
We achieved the following results. First, the square roots σ̂0 of the estimated variance
factors σ̂20 = Ω/(G−U) range between 0.03 and 3.2. As the degrees of freedom for
each 3D line estimation is G− U = 2I − 4 = 2 · 3− 4 = 2, thus in this case is very
low, such a spread is to be expected. The mean value for the 12 variance factors is
1.1, which confirms the model to fit to the data.
As a second result we analysed the angles between the directions of the 12 lines.
As they are clustered into three groups corresponding to the main directions of the
building, we should find values close to 0◦ within a group and values close to 90◦

between lines of different groups. The results are collected in Tab. 1.
The angles between lines in the same group scatter between 0◦ and 14.5◦, the angles
between lines of different orientation differ from 90◦ between 0◦ and 15◦. The stan-
dard deviations of the angles scatter between 0.4◦ and 8.3◦, this is why none of the
deviations from 0 or 90◦ are significant.
The statistical analysis obviously makes the visual impression objective.



Further examples on the rigour and superiority of representation within vanishing
point estimation and 3D line intersection are given in FÖRSTNER (2010a,b).

5 Conclusions and Outlook

The paper proposed a minimal representation of uncertain homogeneous entities,
vectors or matrices, useful for testing and estimation. It avoids the redundancy of
the homogeneous representations. Therefore no additional constraints are required
to enforce the normalization of the entities including the Plücker constraints for 3D
lines. In addition we not only obtain a minimal representation for the uncertainty of
the geometric elements, but also simple means to determine the Mahalanobis distance
between two elements, which may be used for testing or for grouping. The covari-
ance matrices of the minimal representation of observed entities are regular allowing
a transparent definition of a maximum likelihood estimation. We demonstrated the
rigour of the method with the estimation of 3D lines from projection planes in a
multi-view setup.
The convergence properties when using the proposed reduced representation does
not change as the solution steps are algebraically equivalent. The main advantage
of the proposed concept is the ability to handle elements at or close to infinity and
the full range of the transformations without loosing numerical stability and that the
representation is minimal, which allows to use the representation for large estimation
problems, such as the bundle adjustment. The concept can be extended to higher level
algebras, such as the geometric or the conformal algebra (see GEBKEN (2009)) where
the motivation to use minimal representations is even higher than in our context.
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