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1 Motivation

Orientation of cameras with minimum and redundant information is the first
step in 3D-scene analysis. Compared to image interpretation it looks simple, 1t
seems to be solved in photogrammetry and is expected to be implemented within
a few weeks. All experience shows that camera calibration and orientation needs
much effort and the solutions provided in photogrammetric textbooks cannot be
directly transferred to automatic systems for scene analysis.

The reasons for this situation lie in the hidden complexity of the calibration
and orientation tasks.

— Camera modelling requires a thorough understanding of the physics of the
image formation process and of the statistical tools for developing and re-
fining mathematical models used in image analysis. High precision cameras
used in aerial photogrammetry have put the burden of obtaining high pre-
cision on the manufacturer, leading to the - only partly correct - impression
that calibration can be standardized, and thus is simple. The long scientific
struggle photogrammetry went through in the 70’s, which is not mentioned
in today’s publications, must now be repeated under much more difficult
boundary conditions: non-standardized video cameras, non-standardized ap-
plications, the requirement for full automation, therefore the integration of
error-prone matching procedures, etc..

— The 3D-geometry of orientation reveals high algebraic complexity. This is
overseen when assuming the calibration and orientation to be known or at
least approximately known, as the iterative techniques used in photogramme-
try and the spatial intersection (triangulation) - in general - lead to satisfying
results. Again, the efforts of photogrammetric research in the 70’s and early
80’s for generating guidelines for a good design of so-called ” photogrammet-
ric blocks”, where hundreds and thousands of images are analysed simulta-
neously for object reconstruction, specifically mapping, has to be invested
for the different tasks of 3D-scene reconstruction in computer vision, espe-
cially in the area of structure from motion. It is interesting and no accident
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that such guidelines are only available for aerial photogrammetric blocks,
not for close range applications. The complexity of the 3D-geometry of ori-
entation motivated the numerous publications in the computer vision area
on the availability, uniqueness and stability of orientation and reconstruction
procedures under various, partly very specific, boundary conditions.

— FError handling is a central issue in calibration and orientation of cameras
for several reasons.

e The correspondence problem is far from being solved for general cases.
Existing solutions have to deal with large percentages of matching er-
rors. This prevents the direct use of classical estimation procedures and
makes it necessary to look for robust procedures which, however, make
a thorough analysis of the quality of the final result at least difficult, as
the underlying theories (1) often only give asymptotic theorems.

e In case approximate values for calibration and orientation are not avail-
able or only of poor quality their determination appears to be a far more
challenging problem than the refinement via a least squares estimation.
The direct solutions, either with minimum or redundant information play
a central role, especially in the presence of outliers.

e Self-Calibration is often required where calibration, orientation and gen-
erally also scene reconstruction is performed simultaneously, as camera
calibration in a laboratory often is not feasible or insufficient. It in-
creases the difficulty of error analysis by at least one order of magnitude
as deficiencies in design, modelling and mensuration have to be handled
simultaneously and, therefore, generally prevent an algebraic analysis of
the system. The difficulty of integrating all types of observational values
lies in the necessity to formalize the evaluation process in order to ade-
quately handle the different dimensions (pixels, meter, radiants, etc.) of
the observations and their influence on the final result.

Experiences in photogrammetric research give many hints on how to solve the
problem of error handling, especially with respect to the quality evaluation
based on various statistical tools. Nonetheless, the boundary conditions met
in computer vision applications require a new setup of the concepts.

— The final goal of image analysis is full automation of all procedures. As
calibration and orientation of cameras, due to its well-defined goal, really
is much more simple than image interpretation, it seems to be feasible to
achieve generic procedures for automatically solving this first step in the
analysis chain. Textbooks on photogrammetry, statistical analysis or other
related topics, however, often only present tools not strategies for solving the
problem of parameter estimation, calibration and orientation like many other
sub-tasks in image analysis. This 1s due to the specific engineering expertise
which is required to find the appropriate tool combination. This expertise is
usually not documented in textbooks, but in internal reports of institutions
for training purposes, e. g. for handling complex software packages. Some-
times this knowledge is already formalized in terms of a sequence of rules to
be applied.
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Formalization, being a prerequisite for developing generic procedures, is dif-
ficult in our context as the various types of errors (cf. subsection 2.2 on error
handling) interfere in a nonpredictable manner and no coherent theory is
available to justify specific strategies.

This paper 1s motivated by this deficit in generic and robust procedures for
geometric reasoning, calibration and especially orientation. Its aim is to collect
the available tools from statistics, specifically for the diagnosis of data and design
and for coping with outliers using robust estimation techniques, and to present
a generic strategy for data analysis in the context of orientation procedures.
The techniques allow an extension towards self-calibration which, however, has
to be worked out. The much more difficult problem of designing, 1. e. planning
mensuration procedure of high robustness, still waits for a solution.

2 Problem Statement

Let us assume the model to explicitely describe the observation process
E(l) = g(8) (1)

where the expectation of the n observations I = {/;} via g in general nonlinearily
depends on the u unknown parameters 8 = {; }. The stochastical properties of
the observations are captured by the covariance matrix

D(l) = %y (2)

Should this be the only information available the principle of maximum entropy
results in the following full model

I~ N(g(B), Zu) (3)

hypothesizing I to be normally distributed. The redundancy of the system is
r=n-—u. (4)

The task is to derive estimates 3 from given observational values I.

In our context the observations usually are the coordinates of points or the
parameters of lines detected and located in the image by an automatic procedure.
The relation between corresponding points and/or lines in several images or in
object space, also performed automatically, guarantees redundancy in the total
process, as several image features generally determine one corresponding object
feature.

In case the redundancy equals 0 or in the unlikely case of the observations
being consistent, the assumed stochastical properties have no influence on the
estimate. The only task then is to invert (1) to obtain 8 = g=1(I;), where I, is
a subset of I of size u.
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2.1 Error Types

In general, all components of the model will have an influence on the result. The
key question is how an automatic system handles errors in these assumptions.
One may distinguish three types of errors:

1. Data errors, which are errors in the values of I, grossly violate assumption
(3). They relate to points, lines or other features in the image or in object
space where measurements are taken. They may really be mensuration errors,
e. g. caused by failures in the detection algorithm or matching errors leading
to wrong relations between image and object features. Depending on the
complexity of the scene and the quality of the used algorithms the percentage
of errors may range between a few and over 80 % of the observed values.

2. Model errors refer to all three parts of the model: the functional relationship
g(8), the covariance matrix ¥y and the type of the distribution, here the
normal distribution N (-, -). Examples for this type of error are manifold:

— too few, too many or the wrong set of parameters 3, e. g. when using
shallow perspective, projectivity or parallel projection;

— wrong weighting, e. g. when assuming the same accuracy for all detected
points;

— neglected correlations, e. g. in Kalman-filtering; or,

— wrong assumptions about the distribution, e. g. when handling one-sided
eITors.

Observe that data errors and model errors cannot formally be distinguished,;

as a refinement of the model may always specify the type of error in the

observations.

3. Design or configuration errors relate to the complete set of functions g =
{g:}. Such errors cause the estimate 3 to be nonunique in some way. Mul-
tiplicity of solutions is the best case of nonuniqueness. Depending on the
degree of redundancy we may distinguish at least three cases (cf. the formal-
ization in section 3.2):

(a) nondeterminable parameters. Critical surfaces of the configuration be-
long to this class. An example would be a spatial resection with three
points and the projection centre sitting on the critical cylinder.

(b) noncheckable observations or parameters. Here the determination of the
parameters may be possible, but errors in the estimated parameters in-
troduced in a Bayesian manner, are not detectable due to a too low
redundancy. An example would be a spatial resection with three points
in general position.

(c) nonlocatable errors. Here a test may be able to show discrepancies be-
tween the data and the model, but no identification of the error source
is possible. An example would be a spatial resection with four points in
general position.

We will treat all types of errors in the following; however, concentrate on
means for automatically reacting on indications of such errors.
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2.2 Issues in Error Handling

There are at least three basic questions that automatic procedures need to be
able to answer:

1. How sensitive are the results?
The results may be uncertain due to the large number of errors mentioned
above. Evaluating real cases has to cope with the problem that several such
errors occur simultaneously. Instabilities due to low local redundancy may
be hidden within a system of high total redundancy. Then we may discuss
— determinability of parameters
— controllability of errors and the effect of nondetectable errors
— separability of error sources.
We will formalize this classification in more detail and discuss the first two
items explicitely.
2. How small is too small?
Most algorithms are controlled by thresholds or tolerances to be specified by
the developer or the user.
When referring to observations or parameters, thresholding may be inter-
preted as hypothesis testing, which allows to derive the thresholds by spec-
ifying a significance level and using error propagation. We will not pursue
this topic.
When evaluating, the design of the formalization becomes less obvious, e. g.
when having a small basis in relative orientation (2D — 2D), small angles in
spatial resection (3D — 2D) or small distances between all points in absolute
orientation (3D — 3D). In all cases the configuration is close to critical. But
then the question arises: how to evaluate small deviations from a critical
configuration or surface? We will show that a generic and formal answer to
this question can be given which 1s based on the local geometry of the design.
3. How to react on deficiencies in the data?
Regarding the many different models used for calibration and orientation a
generic strategy should be available.
Deficiencies in design have to be prevented by proper planning of the men-
suration setup influencing the number and position of cameras, the number
and the distribution of given control points, the introduction of spatial con-
straints, etc. Automized techniques for such planning are not far advanced
and still require interactive intervention.
The reaction on deficiencies in the observations or the model may rely on
the techniques from robust estimation and much more from formalizable
experience.
They depend on various properties of the data and the model:
— the availability of approximate values 3% for the unknown parameters
3.
— the availability of a direct solution 8 = g=!(l,) for an u-sized subset of
the observations.
— the number and the size of the expected errors.
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— the number of the observations and parameters
— the desired efficiency in terms of computing time
— etc.

The next section will collect the necessary tools needed for setting up generic
procedures for robust estimation applicable to camera orientation.

3 Tools

3.1 Quality Insurance

Treating calibration and orientation as an estimation problem allows us to fully
exploit the rich arsenal of tools from estimation theory. Regarding the specific
problem of data and model errors we specifically need to use the techniques
available from robust statistics and regression diagnostics following two different
aims (HUBER 1991):

— The purpose of robustness is to have safeguards against deviations from the
assumptions.

— The purpose of diagnostics is to find and identify deviations from the as-
sumptions.

Robustness There are two levels of robustness, depending on whether the size
of errors is small or large. Data or model deviations are small in the case of suffi-
cient linear approximations. This leads to a rule of thumb that small deviations
of the approximate values from the true values are deviations less than about 30
% of the values, including all functions of the observations. E. g., it corresponds
to the requirement that angular errors to be less than approx. 20°.

1. Robustness with respect to small deviations.
The socalled influence curve (HAMPEL et al. 1986), which measures the effect
of errors onto the result, may be used to measure the quality of robust
procedures in this case. Maximum-likelihood (ML) type, or M-estimators
are the tools to deal with small deviations.

2. Robustness with respect to large deviations.
The break down point (ROUSSEEUW /LEROY 1987) measuring the maximum
allowable percentage in the number of errors while still guaranteeing the
estimator to yield results with limited bias, may be used to evaluate the
quality of procedures in this case. Estimates with a high break down point,
up to 50 %, such as least median squares, are the corresponding tool to
handle a large percentage of errors.

Observe, that the effect of random errors on the result is not covered by
the term robustness. These effects usually are measured by the precision of the
estimates. The reason for this distinction i1s that random errors are part of the
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original model, thus do not represent deviations from the model, and are taken
into account by all basic estimators such as least squares or ML-estimators.

We will discuss the use of different robust estimators in section 3.4 and 4,
where we especially compare and use their characteristics for achieving a generic
strategy.

Diagnostics As already indicated above, there are three levels of diagnostics
which all refer to small model errors:

1. Determinability of parameters or singularities in the estimation process mea-
sure the instability of the design with respect to random perturbations.
Standard deviations or in general covariance matrices are the diagnostic
tool to detect such a situation. Due to the small size of the random errors,
a linear substitute model derived by linearization, may be used to evaluate
such instabilities.

We will discuss this in detail in section 3.2.

2. Controllability of observations and detectability of model errors specify the
applicability of hypothesis tests.

The diagnostic tools are minimum bounds of the size of observational or
model errors which can be detected by a test with a certain given probability.
The sensitivity of the result is measured by the effect of nondetectable errors
on the result.

Both tools may be used for planning as they do not depend on the actual
measurements.

The actual influence of the observations of model parameters measured in a
leave-one-out fashion may be decisive for the acceptance of an estimate.
We will discuss these tools in detail in section 3.3.

3. The locatability of observational errors or the separability of model errors
specify the ability to correctly classify or identify the error causes.

This can be described in terms of a confusion matrix, like in statistical pat-
tern recognition, the difference being that here the entries of the confusion
matrix depend on the expected size of the errors and on the design or con-
figuration.

The diagnostic tools therefore are lower bounds for observational errors or
model errors which are identifiable or separable with a certain probability.
In section 3.3 we will formally relate separability to controllability especially
with respect to sets of observational model errors, but will not discuss the
notion in detail.

3.2 Instabilities of Estimates or "How Small is too Small?”

Instabilities of parameters occur in case the configuration produces some critical
manifold (surface) to which the solution belongs. One usually distinguishes (cf.

WROBEL 1995):



8 Wolfgang Forstner

1. Singularities or critical surfaces of the first kind. Here a complete manifold
of the parameters is consistent with the observations.

2. Singularities or critical surfaces of the second kind. Here small deviations in
the observations result in large deviations in the parameters.

An example for a singularity of the second kind 1s the critical cylinder in spatial
resection. It may be formulated as a rule: IF the projection center O €
cylinder(P, Py, P3) THEN O is not determinable. Here cylinder (P, P,
Ps) indicates the cylinder through the points with axis perpendicular to the
plane through the points.

This rule is the result of an analysis using algebraic geometry which, in its
generality, is valid in the context of spatial resection and 1is crisp.

Such algebraic results, however, have some disadvanteges:

— The statements do not contain any information on how to evaluate deviations
from the critical configuration.

— The statements do not give any hint to generalize to other situations. Other
problems, e. g. relative orientation, require a separate analysis.

— The statements do not give any means to evaluate the orientation even of
one 1mage within a set of several images to be oriented simultaneously. It
may very well be, that in a multi-image setup with a large redundancy the
orientation of one of the images cannot be determined due to the presence
of the above situation.

Such hidden instabilities reveal the limitation of purely algebraic approaches
which can only be applied to very restricted situations and cannot be generalized.

Thus techniques based on algebraic geometry cannot be easily transferred
into automatic procedures evaluating the stability of an estimate. The solution
to this dilemma is based on the observation, that the instabilities are local prop-
erties in parameter space and can be fully analysed using the covariance matrix
of the parameters. This leads to a shift of the problem. Instead of a determin-
istic analysis we now are confronted with the problem of evaluating the quality
of a covariance matrix. The shift of the problem and its solution goes back to
BaArDA 1973.

The evaluation method consists of two steps:

1. Specification
Specifying the user requirements in terms of a socalled criterion matriz, say
H | which gives an upper bound on the desired covariance matrix, corre-
sponding to the desired lowest precision.

2. Comparison
Checking whether the achieved covariance matrix, say G = (XT ¥y X)"tis
better than H .

We will discuss this comparison first.
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Comparing Covariance Matrices The comparison of covariance matrices is
interpreted as the requirement the standard deviation of an arbitrary function
f to be better when calculated with covariance matrix G than with H

G<H = O'fG < O'}LI, with f = eTE, for all e (5)

Using error propagation, e. g. O'fG = VeT Ge this leads to (cf. Fig. 1)

Fig.1. shows the relation ¢ < H between two 2 X 2 covariance matrices G and H,
represented by isolines of constant probability density of the corresponding normal
distribution.

H
e’'Ge < e'He, for alle (6)
or .
e’ Ge
A= <1
eTHe — Q)

which requires the determination of the maximum eigenvalue of
Ge = \He. (8)

The square root v/ Apae indicates the maximum ratio of the actual and the
required standard deviation.
This evaluation may be simplified using

K =HY*GH™'/* (9)
e’Ke
A= <1 10
eTe — (10)
which is equivalent to
Amax (K) < 1. (11)

Equation (10) is favorable in case H easily can be diagonalized (cf. the example
below).

In order to avoid the rigorous determination of the maximum eigenvalue of
K, (10) may be replaced by a less tight norm, e. g. by the trace:

Ana () < trK < 1. (12)
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Specification of a Criterion Matrix The specification of a criterion matrix
can be based on the covariance matrix X ~- derived from an ideal configuration.

BB
This has the advantage that the user can easily interprete the result. In case
an ideal configuration cannot be given the criterion matrix H = SRS may

be set up by specifying the standard deviations oy, collected in a matrix § =
Diag(o;) and correlations p;;, collected in a matrix R = p;;, derived from some
theoretical considerations, e. g. interpreting the sequence of projection centres
in a navigation problem as stochastic process, where the correlations p;; depend
only on the time or space difference between points F; and F;.

Fig. 2. shows two sets of image points used for image orientation by spatial resection.
Sets of three points may lead to results of different stability as shown in table 1 for
three sets of the left configuration (a) (from SCHICKLER [1992]).

el
*? o o1l o2
*5
o7 o4 o8
e 10

*3 ®5 *3 ]

°
9

Example Five image points situated as in Fig. 2 are to be used to estimate the
6 orientation parameters of the image based on given 3D-coordinates with spatial
resection (2D — 3D). Due to gross errors in the data, a RANSAC procedure (cf.
BoLLES/FIscHLER 1981) is applied randomly selecting 3 points and directly
solving for the orientation parameters. The quality of this selection has to be
evaluated automatically in order to immediately exclude unstable configurations.
The above mentioned technique for evaluating the stability of a configuration is
applied.

The criterion matrix is derived from a very stable least squares fit with 4
points symmetrically sitting in the four corners of the image (cf. Appendix).

The covariance matrix X = 253 of this configuration, the criterion matrix, is

chosen to be

H=16-% (13)
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thus requiring the standard deviations of the orientation parameters within the
RANSAC-procedure to be better than 4 times the standard deviation of the
ideal configuration. X is sparse allowing easily, 1. e. algebraically, to determine
the matrix H™ 7 in (10) (cf. Appendix).

For several triplets of points the ratio v/ Apqr 18 given.

|c0nﬁgurati0n| VAmaz

1 1/2/3 0.8
2| 2/3/4 88.0
3| 1/3/4 13.2

Table 1. shows the stability with sets of three points used of spatial resection (cf. Fig.
2a).

The good triangle (1,2,3) obviously leads to sufficiently precise orientation
parameters. The second triplet (2,3,4) consists of three nearly collinear points,
which obviously is an undesirable configuration. The third triplet (1,3,4) and
the projection centre are lying approrimately on a critical cylinder causing the
diagnostic value \/ A4, to be significantly larger than 1., expressing the fact that
some function of the orientation parameters in that configuration has a standard
deviation being appr. 13 times larger than required. The small triplet (2,5,11)
in Fig. 2b also leads to a weak determination of the orientation parameters with

a value VA a0 =~ 4.

The method obviously is able to capture various deficiencies in the design
of the configuration of an orientation procedure without having to discrimi-
nate between different types of instabilities. Such situations also may arise in
more complex problems where an algebraic analysis is not possible whereas this
method is able to find the instabilities.

When using this method for designing a configuration the eigenvector be-
longing to the largest eigenvalue gives insight into the most imprecise function
of the parameters, which may be used to look for specific stabilization means.

3.3 Model Errors or How Sensitive is the Result?”

The stability of an estimation, specifically an orientation, evaluated by the co-
variance matrix only takes random perturbations into account. The result, how-
ever, may be wrong due to gross errors, e. g. caused by the matching procedure.
As well, an oversimplified model may lead to precise but incorrect results. Both
error sources, blunders and systematic errors, can only be detected in the case
of redundant observations. This is a necessary but - as we will see - not a suf-
ficient condition. Redundancy allows us to perform tests on the validity of the
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assumed model without reference to additional data used during the estimation.
Such tests may lead to the detection or even identification of the error source. Of
course, the outcome of these tests may be false. Redundancy, however, increases
the stability of the solution and the correctness of the outcome of statistical
tests. The theory for performing such a test is described in the literature (cf.
BaarDA 1967/1968, FORSTNER 1987). The structure of that theory, its use in
estimation problems and examples from orientation procedures will be given.

Detectability and Separability of Errors We first want to discuss the type
of evaluation which can be performed depending on the redundancy r of a sys-
tem.

1. =0 In the case of no redundancy, one can only evaluate the sensitivity
of the result with respect to random errors as shown in the last section. No
check of the observations is possible whatsoever. They may remain incorrect
without any indication.

2.r=1 In the case of redundancy r» = 1, a check on the validity of the
model is possible. The existence of blunders may be indicated. However, they
are not locatable, as a ”leave-one-out test” always leads to a valid solution.

3. =2 A redundancy of r = 2 is necessary in order to be able to locate a
single blunder. A leave-one-out test generally will be able to find the unique
consistent set of observations. Double errors are not locatable, however their
existence is usually indicated.

4. r > 2  For a larger redundancy, »r — 1 < n/2, errors are locatable, whereas
r errors are only detectable.

The maximum number of detectable errors is n/2, i.e. 50 % of the data,
as more than n/2 observations may mimic a good result. Thus, 50 % is the
upper limit for the so-called breakdown point of an estimator. The breakdown
point of an estimator is the minimum percentage of errors which may cause
the estimator to give wrong results, 1. e. may lead to a bias of any size. The
normal mean has the breakdown point 0, the median 50 %, an indication of it’s
higher robustness. Practical procedures may be better as they may use specific
knowledge about the structure of the problem (cf. the straight line detection
procedure by RoTH/LEVINE 1990).

In case of a small percentage (< 1%) of not too large (<30%) gross errors,
the detection and location may be based on the residuals

o~

v=g(B) -1 D(y)=0iQ =0iP™'. (14)
Using the maximum likelihood estimate
B=p"+X"PX)' X P(y—g(8") (15)

we can express changes Aw of the residuals in terms of changes, thus errors Ay
of the observations
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Av = —RAy (16)
with the projection matrix
R=I-U (17)
with the socalled hat-matrix (cf. HUBER 1981)
U=xX"Px)'X"P. (18)

(17) is graphically shown in Fig. 3.

Fig. 3. shows the four cases for analysing the projection matrix R with respect to
sensitivity (diagonal matrices) and separability (off-diagonal matrices) for single or
groups of observations.

N
o]

i

This matrix may be used to analyse the ability of the estimation system to
apply selfdiagnosis with respect to errors in the observations, as only effects that
can be seen in the residuals are detectable.

We distinguish two levels of evaluation

1. detectability or checkability; and,
2. separability or locatability.

Both evaluation measures may refer to single or groups of observations. Thus
we have 4 cases.

1. Detectability or checkability rely on the diagonal elements or diagonal sub-
matrices of R.

a) Single observational errors can only be detected if the redundancy num-
bers

r = (R)” > 0. (19)
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The diagonal elements r; sum up to the total redundancy r,i.e. > r; = r.
This indicates how the redundancy is distributed over the observations.
The corresponding test statistics for detecting single errors for given oy
and uncorrelated observations is
—Vi [Di
zi = ——4]/—~N(0,1 20
= BN (20)
Groups of n; observation can only be detected if the corresponding n; x n;
submatrix

[| Rii [|> 0 (21)

of R is nonsingular. Otherwise a special combination of observational
errors may have no influence on the residuals. The corresponding test
statistic is

T = 1 Jo] Ri;Q;v;

~
ao g

V0o (22)

which reduces to (20). The observations may be correlated within the
group, but must be uncorrelated to the others. |/F,, , denotes the dis-
tribution of the square root of a random variable being F,,, ,,-distributed.

2. Separability or locatability in addition to the diagonal elements of R rely on
the off diagonals.

a)

The separability of two single gross errors evaluates the likelihood to cor-
rectly locate an error, 1. e. to make a correct decision when testing both.
The decisive measure is the correlation coefficient of the test statistics

(20) which is

_ T

Pij m (23)
Tables for erroneous decisions when locating errors are given by FORSTNER
1983.
Correlation coefficients below 0.9 can be accepted since the probability
of making a false decision even for small errors remains below 15 % *.
The separability of two groups of observations l; and I; depends on the
maximum value

pi; = Amas M (24)

of the n; X n; matrix

! Precisely stated: If the larger of the two test statistics |z;| and |z;] in (20) is chosen
to indicate the erroneous observation with its critical value 3.29, corresponding to
a significance level of 99.9 %, and a single error can be detected with a probability
higher than 80 %, then the probability of making a wrong decision between I; and
l; is approximately 13 %.
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M;; = Rinj_lejiRi_il (25)

which for single observations reduces to (23).
No statistical interpretation is available due to the complexity of the
corresponding distribution.

Example: Detectability of Errors

Relative orientation with 6 corresponding points yields a redundancy of r =
6 — b = 1. If the images are parallel to the basis and the points are situated
symmetrically as shown in Fig. 4 then the diagonal elements r; are 1/12 for
points ¢ = 1, 2, 5 and 6 and 1/3 for points 3 and 4.

17 27 177 277
37 47 377 477
57 67 577 677

Fig.4. Numbering of 6 points in a stereo pair.

Obviously errors are hardly detectable if they occur in point pairs 1, 2, 5 or
6. In all cases no location of the false matches is possible as r = 1. O

Example: Separability of Errors

Spatial resection with 4 points symmetrically to the principle point is known
to yield highly correlated orientation parameters. Depending on the viewing
angle a, the correlation between the rotation w (#-axis) and the coordinate yqo
of the projection centre, and between the rotation ¢ (y-axis) and the coordinate
zq is (cf. Appendix)

lpl= (26)

)

1+ sin? %

For a CCD-camera with a focal length of f = 50 mm and sensor size of
5 x bmm? | o/2 = 1/20 thus | p |= 0.999997. For an aerial camera RMK 15/23
with a focal length of 15 cm and image size of 23 cm, /2 = 2/3, thus | p |= 0.914.

Thus testing the orientation parameters w, ¢, g and yy may easily lead
to incorrect decisions for CCD-cameras when testing their significance, whereas
errors in these parameters are detectable. O
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Sensitivity of the Estimates In spite of testing for blunders, errors may re-
main undetected and influence the resulting estimate. The sensitivity of the result
is often the only information one needs for evaluation. One may determine an
upper limit for the influence of a group of observations onto the result.

The influence A; f(3) on a function f(3) of the unknown parameters caused
by leaving out a group y; of observation is limited:

Aif(B) < Aifmas (B) (27)
with (cf. FORSTNER 1992)

Azfmax(ﬁ) = E M Op(B) VT (28)
where n; is the size of the group, o) the standard deviation of the function
f(5) is derivable by error propagation measuring the precision of the result, 7;
of the test statistics (22), measuring the quality of the observation group and
the geometry factor

Hi = /\max{(z(xix) - Exx)z_l (29)

rx

evaluating the mensuration design. The value p; explicitely measures the loss in
precision, i. e. the normalized increase 2(223 — X5 of variance of the result when
leaving out the :—th group I; of observations.

For a single observation it reduces to

1—7“2'

o= (30)

with the diagonal elements r;; of R (cf. (17)).

The value A; foaz(3) (28) measures the empirical sensitivity of the estimate
with respect to blunders e. g. matching errors in groups I;; empirical, as it de-
pends on the actual observations via T;.

If T; is replaced by a constant dy, indicating the minimum detectable (nor-
malized) error, we obtain the theoretical sensitivity

AOzf(B)SAozfmax(ﬁ) (31)
with
Ao fmaz (B) = 60 - pi - 055y - /N - (32)

It may be used for planning purposes since it does not depend on actual
observations and can therefore be determined in advance. dg is usually chosen
to be larger than the critical value k for 75, e.g. §p = 1.5k or dg = 2k and can
be linked to the required power of the test (cf. BAARDA 1967/1968, FORSTNER
1987).

Observe that both sensitivity values contain the product of terms represent-
ing different causes. This e. g. allows to sacrifice precision, thus increasing stan-
dard deviation ¢y by paying more for leaving a larger redundancy and lowering
the geometric factor p; for all observations or vice versa.
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Example: Sensitivity Analysis

This example shows the power of this type of sensitivity analysis for evaluat-
ing the success of an automatic procedure for determining the exterior orienta-
tion of an image, i. e. the extrinsic parameters of the camera (SCHICKLER 1992,
cf. SESTER/FORSTNER 1989). It is based on matching 2D-line segments in the
image with 3D-line segments of a set of known objects, mainly being buildings
represented by a set of line segments. The aerial images used here usually contain
5-10 such objects which are more or less well-distributed over the field of view.

The sensitivity analysis may be used to evaluate the quality of the orientation
with respect to

a) matching errors of individual line segments; and,
b) matching errors of complete sets of line segments, representing one object.

The reason for this distinction is that both errors may occur; the first one
being very common, the second one (whole sets of line segments) within the
clustering procedure performed for each object individually.

a) Matching of individual 2D image line segments to 3D object line segments.
We have to deal with groups of 4 observations, namely the 4 coordinates
representing the start and end point of the line segments. The 4 x 4 covari-
ance matrix X, of this group also contains the correlations between the
coordinates, which may be derived during the edge extraction process. We
use a similar approach as DERICHE/FAUGERAS 1990 and FORSTNER 1992
for representing the uncertainty of the line segments.

A typical result, as given in the following table, can be summarized in two
statements:

1. Empirical sensitivity: The maximum occurs at edge #10. The result may
change up to 0.82 it’s standard deviation if line segment #10 would be
left out, which is fully acceptable.

2. Theoretical sensitivity: The maximum occurs at edge #21. The result
may change up to 4.42 times its standard deviation if a matching error
remains undetected, which is at the limit of being acceptable.

Thus, the result appears to be acceptable with respect to the redundancy in
the estimations.

b) Match of a set of 2D image line segments to 3D object line segments.
Let us assume the m sets of segments to be matched, have k;,;2 =1,---,m
line segments each, and we have to fear a matching error for a complete set.
Then the sensitivity analysis has to be based on sets of 4 x m; coordinates
for the m; line segments.
Figures ba and 5b show the position of the sets within two aerial images
(¢ = 15 cm) to be oriented.
In Fig. ba, one of the five sets, namely #3 was not matchable, leaving the
spatial resection with 4 objects in the 3 other corners and in the middle of
the image. The circles around these ”four points” have a radius proportional
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Table 2. shows the empirical and the theoretical sensitivity of the result of an orien-
tation with straight edge segments.

Empirical| Theoretical
Edge #| Aif/oy | Aoif/oy
4 0.07 2.62
5 0.65 1.51
8 0.50 3.44
9 0.80 3.13
10 0.82 2.81
21 0.68 4.42

Fig. 5. shows two sets of image points used for image orientation by spatial resection.
The radii of the circles indicate the theoretical sensitivity, i. e. the amount the result
might change if the point (set of straight line segments) would be wrong without notice.
In Fig. a (left) the point #3 has been detected to be wrong, thus only 4 points are left
for spatial resection, in Fig. b (right) point # 5 has been detected to be wrong.

®
02,

03'?

- 4

to d0i = Aoifmar/0 and indicate how sensitive the orientation is with re-
spect to nondetectable errors within the clustering procedure. Because the
geometry factor p (29) is dominant, the circles indicate how the precision
deteriorates if one of the 4 sets is left out:

without set 4: the three others 1, 2 and 5 form a well-shaped triangle, and
thus guarantee good precision.

without set 2: the three others 1, 4 and 5 nearly sit on a straight line
leading to a highly unstable solution (near to singularity of first type).

without set 1: the three others, 2, 4 and 5, form a well-shaped triangle.
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However, because the plane going through the sets is nearly parallel to
the image plane, the projection centre closely has near to the critical
cylinder.

leaving out set 5: also leads to a nearly singular situation.

The situation with 8 sets in Fig. bb shows a more irregular distribution.
Since set b was not matched, set 1 is most influential in the orientation, but
less than sets 1, 2 and 5 in the case of Fig. 5a.

O

Observe that this analysis is based on values which have a very precise geo-
metric meaning. This allows for an easy definition of thresholds, even if one is
not aquainted with the underlying theory. As well, a clear comparison between
different configurations is possible even for different types of tasks. Because the
evaluation refers to the final parameters, 1t also may be used when fusing differ-
ent type of observations. As model knowledge may be formalized in a Bayesian
manner, the effect of prior information onto the result of an orientation may also
be analysed.

Summarizing the evaluation of the design using the comparison of the covariance
matrix of the parameters with a criterion matrix and using the different measures
for the sensitivity has several distinct properties:

— 1t 1s a general concept

— 1t works for all types of critical surfaces and solves the problem of critical
areas, thus also in case the configuration of observations is far or close to a
critical surface

— 1t works with all problems of estimation

— it may detect hidden singularities

— it also works in the complex situation where observations of different types
are mixed (points, lines, circles, ...) or in the context of sensor fusion where
also physical measurements (force, acceleration, ...) are involved

— it 1s related to a task, thus explicitely depends on user requirements. This
enables to argue backwards and optimize the design.

— it provides measures which are easily interpretable.

3.4 Robust Estimation or "How to React on Blunders”

The last section clearly demonstrated that enough tools are available to evaluate
the result of estimation procedures with respect to a variety of deficiencies. These
tools are sufficient for proving a result to be acceptable. They, however, give no
hint as to how to reach an acceptable result with respect to errors in the data
and weaknesses in the design.

This section wants to collect the techniques from robust statistics useful for
the efficient elimination or compensation of outliers in the data with the aim
of adapting the data to the presumed model. The planning of the mensuration
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design is much more difficult and lacks enough theoretical basis and is therefore
not discussed here.
Eliminating blunders is a difficult problem:

— It 18 NP-complete: given n observations there are up to 2" hypotheses for
sets of good and bad values (the power set of n observations), making an
exhaustive search for the optimized solution obsolete except for problems
with few observations.

— The non-linearity of most estimation problems, particularly orientation prob-
lems, prevents generic simplification for obtaining suboptimal solutions.

— All variations of ”Murphy’s Law” occur:

e outliers cluster and support each other,

e outliers mimic good results,

e outliers hide behind configuration defects,

e outliers do not show their causes, making proper modelling difficult or
impossible,

e outliers make themselves indistinguishable from other deficiencies in the
model, like systematic errors.

Thus many methods for robust estimation have been developed. Most of
them assume the model of a mixed distribution of the residuals v; (f denoting
a density function here):

fvifoi) = (1 =e)d(vi/oi) + eh(vi/0:) (33)
with 100e% outliers having broad distribution A(5) and 100(1 —&)% good obser-

vations following a well-behaved distribution ¢, usually a Gaussian. Maximizing
F(B 1) or minimizing — log f(8 | 1) for the given data I, possibly including prior
knowledge of the unknowns 3, explicitely or implicitely is used as optimization
criterion.

Fig. 6. shows the distribution of the errors being a mixture between good and bad
ones.

f(x) = (1- €) p(x)+€h(x)
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The procedures, however, significantly differ in strategy for finding the opti-

mum or a suboptimum. We selected four procedures which seem to be represen-
tative in order to come to an evaluation which will be the basis for the generic
strategy discussed in section 4. These techniques for robust estimation are

= QO N =

complete search,

Random Sample Consensus (RANSAC cf. BoLLEs/FISCHLER 1981),
clustering, and

ML-type-estimation (HUBER 1981, HAMPEL/ET AL. 1986).

Their feasibility and efficiency heavily depend on a number of characteristic
features of the estimation problem to be solved.

a)

Invertibility of the Functional Model

We basically used a set I of at least u observation to uniquely specify the
unknown parameters 3. The direct determination of B8 from a subset I;
requires g to be invertible: B(l5) = g=!(I;) thus g~! has to be representable
algebraically.

Existence and Quality of Approzimate Values

In case g(!) is not invertible, we need approximate values for 3 in order to
solve 3 = g=1(I) by some iterative scheme. The quality of the approximate
values directly influences the number of iterations. The knowledge of good
approximate values in all cases may drastically reduce the complexity of the
procedures.

Percentage of Gross Errors

The percentage of gross errors may range from < 1%, specifically in large
data sets derived automatically, up to more than 75%, e. g. in matching
problems. Not all procedures can cope with any percentage of errors, some
are especially suited for problems with high outlier percentages. ML-type-
estimation procedures can handle data with a moderate number of errors,
up to 10 — 20% say.

Size of Gross Errors

Only few procedures can work for any size of gross errors. Large gross errors
may lead to leverage points, 1. e. to locally weak geometry, and such errors
may not be detectable at all. If one relates the size of the errors to the size
of the observed value, then errors less than one unit usually are detectable
by all procedures.

Relative Redundancy

The relative redundancy measured by the redundancy numbers r; (cf. eq.
(19)) influences the detectability of errors. The theoretical results from ro-
bust statistics, especially with reference to ML-type-estimation, are only
valid for relative redundancies above 0.8, i. e. when the number of observa-
tions is larger than 5 times the number of unknown parameters.

Number of Unknowns

The number of unknowns directly influences the algorithmic complexity.

The four procedures can now easily be characterized.
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Complete Search

Complete search checks all, 1. e. up to 27, possible configurations of good and
bad observations to find the optimum solution. The optimization function
obviously should contain a cost-term for bad observations in order not to
select a minimum of p observations yielding residuals e; = 0, or the best
set of y + 1 observations allowing to estimate 7 with only one redundant
observation. Such a penalty may be derived using the principle of minimum
description length, thus relying on the negative logarithm mixed distribution
(cf. Fig. 6).

Obviously complete search is only feasible for a small number n of observa-
tions, a small redundancy r or in case the maximum number /55 of expected
errors 1s small, as the number of possibilities is

min(r—1,Imax)
n
> (k) <2 (34)
k=0

Implementation requires either approximate values or the invertibility of the
model using an iterative or a direct solution technique.

. Random Sample Consensus (RANSAC)

Random Sample Consensus relies on the fact that the likelihood of hitting
a good configuration by randomly choosing a set of observations is large.
This probability of finding at least one good set of observations in ¢ trials is
1 —(1—(1—-¢)*)" where u is the number of trials and ¢ the percentage of
errors. B. g. for u = 3, (spatial resection, fitting circle in the plane) and an
outlier rate of 50 % at least ¢ = 23 trials are necessary, if this probability
should be larger than 95 %.

Again, the technique requires approximate values or the invertibility of the
model and is only suited for small w.

. Clustering

Clustering consists of determining the probability density function fz(y) un-
der the assumption that the data represent the complete sample. The mode,
i. e. the maximum, of f3(83 | I) is used as an estimate. This is approximated
by fs(B 1) ~ >, fs(B | lgi)) where the sum is taken over all or at least a
large enough set of subsets I, of u observations, implicitely assuming these
subsets to be independent.

The Hough-Transformation is a classical example of this technique. STOCK-
MAN 1987 discusses the technique in the context of pose determination, thus
for determining the mutual orientation between an image and a model.
Clustering is recommendable for problems with few unknowns, high percent-
age of gross errors and in cases in which enough data can be expected to
support the solution (high relative redundancy).

. Mazimum-likelithood-type Estimation

Maximum-likelihood-type estimation is based on an iterative scheme. Usu-
ally the method of modified weights is used showing the close relation to the
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classical ML-estimation, where the observations are assumed to be Gaus-
sian distributed. Instead of minimizing > (e;/0;)?, the sum of a less in-
creasing function p(e;/o;) is minimized. This can be shown to be equivalent
to iteratively weighting down the observations using the weight function
w(B) = p'(3)/8. For convex and symmetric p, bounded and monotone de-
creasing w(F) (4 > 0) and a linear model uniqueness of the solution is guaran-
teed (HUBER 1991). Since the influence function p’(3) (HAMPEL/et al. 1986)
stays strictly positive in this case, indicating large errors still influencing the
result, non-convex functions p are used.

Most orientation problems are nonlinear and the influence of large errors
should be eliminated, thus approximate values are required when using this
ML-type estimation. Further requirements are: moderate sized errors, small
percentage of errors and homogeneous design, 1. e. large enough local redun-
dancy (no leverage points). The advantage of this technique is its favorable
computational complexity being O(u® + nu?) in the worst case allowing to
be used also for large u where sparse techniques may be applied to further
reduce complexity.

Without discussing the individual techniques for robust estimation in detail,
which would uncover a number of variations and modifications necessary for
implementation, the techniques obviously are only applicable under certain -
more or less precisely known - conditions. Moreover, specific properties both
of the techniques and of the problem to be solved suggest the development of
heuristic rules for the application of the various techniques leading to a generic
strategy for using robust techniques, which will be discussed in the final section.

4 Generic Estimation Procedures

Generic estimation procedures need to choose the technique optimal for the
problem concerned and be able to evaluate their performance as far as possible.
This section discusses a first step in formalizing strategic knowledge and the
mutual role of robust estimates and diagnostic tools.

4.1 Rules for Choosing Robust Estimation Techniques

The qualitative knowledge about the four robust estimation techniques discussed
in the previous section is collected in table 3. It shows the degree of recommen-
dation for each technique dependent on the 8 criteria. These criteria refer to:

— mnecessary prerequisite (approximate values, direct solution);

— likelihood of success (number of observation, reliability, size and percentage
of errors); and,

— computational complexity (number of parameters, speed requirements).

We distinguish 4 degrees of recommendation:
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Table 3. Shows the properties of four techniques for robust estimation

Complete RANSAC Clustering ML-type
Search Estimation

vg b i vg b i vg b i vg b i
approximate values - - + _ + _
direct solution - - + - - 4+ - _
many observations |— + + - +
few parameters + - + _ + _
high reliability + + -
large errors + + + _ +
high error rate + + - +
speed unimportant [+ - + - _

vg = very good (and)
b = bad (or)
i = impossible (and)
(possible = not(impossible))
+ = feature required
— = - feature required

— “very good”. In case all indicated criteria are fulfilled (“and”); the technique
can exploit its power and usually is best.

— “good”. In case none of the criteria for “bad” is fulfilled; the technique works
“not bad”.

— “bad”. In case one of the indicated criteria is fulfilled (“or”); the technique
shows unfavorable properties, so is unreliable or too costly.

— “impossible”. In case all indicated criteria are fulfilled (“and”); the technique
cannot be used.

This knowledge can easily be put into rules, e. g. using PROLOG, together with
a few additional rules for qualitative reasoning, e. g. very-recommendable (X):
- good(X), possible(X) or impossible(X): - not (impossible(X)). This
allows for the automatic selection of the robust estimation procedure which fits
best to the problem at hand.

Example The determination of the extrinsic parameter of a camera orienta-
tion using sets of straight line segments, already mentioned above (example on
sensitivity analysis), is performed in several steps.

Step 1: Estimation of the approximate position (2 parameters) of the pro-
jected model of each set in the image in order to obtain a prelimenary set of
candidate matches between image and model segments. A sample dialog is given
below:
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Please characterize your problem:
Answer with y=yes, n=no, —=do not know, 7?=help

Does a direct solution exist (Default=n)
Are approximate values available (Default=n)
Do you have many observations (Default=n)

Are there many unknown parameters (Default=n)
Is the percentage of errors large (Default=y)
Do you expect large blunders (Default=y)
Is computational speed essential (Default=y)

R RSV IRELS BEEEN BN BN
BN < B <Y<

Strongly recommended:
clustering
ransac

Not recommended:
ml type estimation
complete search

Clustering and RANSAC are strongly recommended. ML-type estimation is not
recommended as large errors are to be expected. Complete search is not recom-
mended as the number of observations is large.

Step 2 Estimation of good approximate values for the 6 orientation parame-
ters based on the reference points for each object. Thus only few (point) obser-
vations are available. The decision is shown in table 4. As computational speed
is made essential in this step and the percentage of errors is large (e. g. 3 out of
8 points) only RANSAC is recommendable.

Step 3 The final cleaning of the observations again refers to the line seg-
ments. The system does not have access to a direct solution (e. g. by HORAUD
et al. 1989) and is required to be fast. Therefore ML-type estimation is highly
recommendable.

Obviously the qualitative reasoning may be made more precise:

— The number of observations (few, many) is actually known in a special situ-
ation. It influences the density of the cells in clustering, the relative redun-
dancy specifically the homogeneity of the design and the likelihood of finding
a good set in RANSAC.

— The number of unknowns (few, many) also is known in a specific situation
and can be used to predict the computational effort quite precisely.

— The homogeneity of the design usually can be approximated in case the
number of observations is much higher than the number of the unknowns,
which actually was implemented as a rule in the above mentioned PROLOG
program.

— The size and the percentage of the errors to be expected can be predicted
from previous data sets and information which vision algorithms should re-
port for learning their performance.
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Table 4. Shows the decision of a PROLOG program for the selection of the appropriate
robust estimation technique.

Step 1Y Step 2 Step 3
direct solution yes yes no
approximate values yes yes yes
many observations yes no yes
many unknowns no no no
many errors yes yes no
large errors yes no no
speed essential no yes yes
very recommendable clustering - ML-type

RANSAC
recommendable clustering RANSAC ML-type
RANSAC RANSAC
not recommendable ML-type all except clustering
complete search| RANSAC|complete search

U ¢f. sample dialog

— The required speed usually can be derived from the specification of the appli-
cation and be quite rigorously related to the available resources. An example
for such a performance prediction in the context of recognition tasks is given
by CHEN/MULGAONKAR 1990.

The final goal of a formalization of tool selection would be to leave the choice
of the appropriate estimation procedure to the program, which of course requires
the standardization of the input/output relation for the procedures.

4.2 Integrating Robust Estimation and Diagnosis

For achieving results which are robust with respect to model errors an integra-
tion is necessary which exploits the diagnostic tools and the robust procedures.
Diagnostic tools do not influence the estimates and robust estimates only work
if the design is homogeneous, requiring a rigorous diagnosis.

Therefore, three steps are necessary:

1. The mensuration design has to be planned in order to guarantee that model
errors are detectable and undetectable model errors have only acceptable
influence on the result. Diagnostic tools are available for all type of model
errors; gross errors, systematic errors or errors in distribution. Strategies for
planning, however, are poorly formalized and up to now require at least some
interactive effort.

2. Robust estimation techniques may then be used to find an optimal or at least
a good estimate for the unknown parameters. This actually can be viewed as
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an hypothesis generation about the quality (good, bad) of the observations,
which is obvious in matching problems which use robust techniques. Any
technique may be used which leads to good hypothesis.

3. In the final step the parameters are optimally estimated, e. g. using ML-
type estimation based on the decision made in the previous step. The result
can then be rigorously checked if it meets the requirements set up in the
planning phase. Thus here again the diagnostic tools are used. The result of
this analysis provides an objective self-diagnosis which may then be reported
to the system in which the estimation procedure 1s embedded.

The overall quality of the estimation procedure is its ability to correctly
predict its own performance, which of course can only be checked empirically
(SCHICKLER 1992).

Example Table 5 summarizes the result of 48 image orientations.

The total number of correct and false decisions of the selfdiagnosis is split into
the cases where the images contained 6 or more points, i. e. sets of straight line
segments, and cases with 5 or less points. An orientation was reported as correct
if the empirical and the theoretical sensitivity factors A;f/of and Ag; f/os (cf.
eq. (28) and (31)) and the standard deviations of the result were acceptable
(Amaz < 1 cf. eq. (12)).

Table 5. shows the result of an extensive test of orienting 48 aerial images, # of cases,
in brackets: for > 6 points/image and for < 5 points/image.

report of selfdiagnosis

correct wrong

46(39/7 0(0/0

correct ( d/ ) ol ( /)

reality (correct decision)| (false positives)

1(0/1 1(0/1

o | T 71

(false positives) |(correct decisions)|

46 out of 48 orientations were correct and this was reported by the self-
diagnosis. In one case the orientation was incorrect, which was detected by the
analysis. This appeared in an orientation with only 4 points, thus only one redun-
dant point. Therefore altogether in 47 out of 48, i. e. in 98 % of all orientations
the system made a correct decision. In about half of the cases (22 out of 46)
the RANSAC procedure was able to identify errors which occured during the
clustering and correct the result of the clustering, which was repeated with this
a priori knowledge.

One orientation failed without being noticed by the system, which corre-
sponds to 2 % false positives. This was an orientation with only 5 points.
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The orientation of the 48 images was based on 362 clusterings of model and
image line segments. 309, thus 85 %, were correct. As the errors in clustering are
either completely wrong and therefore eliminated from the further processing or
are wrong by a small amount, it 1s quite likely that 2 clusterings are incorrect by
only a small amount, which may not be detectable by the RANSAC or the robust
ML-type estimation, mimicing a good orientation. Therefore the existence of one
false positive is fully acceptable.

The result achieved in this test is a clear reason to require at least 6 points,
1. e. sets of straight edges, for a reliable orientation in this application. As can
be seen in the table, all 39 orientations not only could correctly be handled by
the automatic system, but actually lead to correct orientation parameters.

This example reveals the diagnostic tools to be extremely valuable for a final
evaluation of an automatic procedure containing robust estimation procedures
as parts.

5 Conclusions

The goal of this paper was to collect the tools from robust statistics and diagnos-
tics necessary for building fully automatic image analysis procedures, specifically
orientation procedures. The theory available seems to be sufficient for achieving
a high degree of selfdiagnosis and for implementing generic strategies based on
knowledge about the specific properties of the different estimation techniques.

In all cases the general strategy for achieving results of high quality consists
of four steps:

1. Planning the mensuration configuration using the diagnostic tools for preci-
sion and sensitivity garanteeing robust estimation techniques in step 3 to be
applicable and the result to be evaluated internally.

2. Mensuration according to the planned configuration which itself gives a clear
indication of its quality.

3. Robust estimation with any of the available techniques leading to a hypoth-
esis of a good result.

4. Final evaluation based on the result of an optimal estimation of the parame-
ters and check in how far the quality intended in the planning stage actually
is reached.

The examples give clear indication that these tools can be used to advantage
even in comparatively complex situations.
There are still some questions open:

— The analysis of the precision of the result is based on the comparison of the
actual with the required covariance matrix. Generating meaningful criterion
matrices requires proper modelling of the user needs making the specification
of the accuracy requirements a nontrivial problem.



Generic Estimation Procedures 29

— The effect of systematic errors (biases in the model) can be analysed with
the same techniques. However, the search space for identifying undetectable
systematic errors is large, due to the unknown interference between the dif-
ferent causes for such errors.

— The planning of experiments may be based on the techniques collected in this
paper. Automating the planning, as it may occur in active vision, however,
requires the development of strong strategies for finding optimal or at least
satisfying observation configurations.

— The selfdiagnosis, based on the precision and sensitivity analysis; does not
give indications on the probability of the result to be correct. This would
enable the calling routine to react in a more specific manner or to use this
probability for further inference.

It would, however, be of great value if all orientation procedures would offer
at least the available measures for making a proper selfdiagnosis in order to
objectify the quality of the very first steps within image analysis.

A Algebraic expression for the normal equations of spatial
resection with four parts in symmetric position.

Let points P; with coordinates (z;,¥;,2),¢ = 1,...,n in the camera system be
given and observed in the image. The linearized observation equations for the
image coordinates (z',y') depending on the 6 orientation parameters, namely
the rotation angles w, ¢, & and the position (zo, yo, 20) of the projection centre
can be expressed as

!/ 1o 12

da! = —%zodl‘o - %zodxo - xcy dw + (1 + i—;)d(b 1 yidk (35)
c vi vi iy
dyl = —Ezodyo - E»Zodyo —c(1+ C—z)dw + ngo — zidk (36)

valid for each image point P'(z},4}). ¢ is the camera constant.

In case n = 4 image points lie in symmetric position (+d, £d) in the image
(cf. Fig. 7) and the z-coordinates of the points P;(x;, s, 2;) in the coordinate
system of the camera are equal to H = z;, we can collect the coefficients of the
8 x 6 matrix X as in the table below.

The algebraic expression for the normal equation matrix N = XTPX as
suming weights 1 for the observations is given by

M
[N

A 00 0 —45. 0
0 44x 0 4% 0 0
d2
No| 00 b 0 0 0 (37)
0 42 0 42(1+%) 0 0
420 0 0 4501+%) 0
0 0 0 0 0 8
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Fig.7. shows the normalized situation for spatial resection used as a reference for

precision.
z
=Y x
oxK/2
(o]
e
. d Z d-»
Table 6.
7 dxo |dyo |dzo | dw | d |dk
o' = +d|-5| 0 [-L|-L] £ [44
2o’ = —dl-£| 0 |[+4[+L] £ [-d
3o’ = —d|-£| 0 |+4[-L] £ |-a
y'=—d| 0 |=flri|-<| T |+
c d a2] &2
v =—d o || 2] #lh
Discussion
1. The normal equation matrix is sparse. It collapses to two diagonal elements

and two 2 x 2 matrices. This allows algebraic inversion (which may be used
for a direct solution of the orientation in real time applications).

. The correlation between g and d¢ (y-rotation), yo and dw (z-rotation) is
given by
P
Nog i 1

Pyow = ~Pro¢ = = =
V/Nag - Ny ¢ et d* g
4ﬁ.4c_2(1+e_4) 1+ sin )

as dfe = sina/2 (cf. Fig. 7).

. Taking the square root N2 of N is trivial for the diagonal elements for dzg

and dr and requires to take the square root T'/? of two 2x 2 matrices T which
easily can be determined using the eigenvalue decomposition T = DADT
yielding

T" = DAY D" (39)
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for p = 1/2 or, as needed in (10) for p = —1/2 (D¥ = D™" and A =
Diag(/\l, Az))
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