
Generic Estimation Proceduresfor Orientation withMinimum and Redundant InformationWolfgang F�orstnerInstitut f�ur PhotogrammetrieUniversit�at BonnNu�allee 15, D-53115 Bonn 1e-mail: wf@ipb.uni-bonn.de1 MotivationOrientation of cameras with minimum and redundant information is the �rststep in 3D-scene analysis. Compared to image interpretation it looks simple, itseems to be solved in photogrammetry and is expected to be implemented withina few weeks. All experience shows that camera calibration and orientation needsmuch e�ort and the solutions provided in photogrammetric textbooks cannot bedirectly transferred to automatic systems for scene analysis.The reasons for this situation lie in the hidden complexity of the calibrationand orientation tasks.{ Camera modelling requires a thorough understanding of the physics of theimage formation process and of the statistical tools for developing and re-�ning mathematical models used in image analysis. High precision camerasused in aerial photogrammetry have put the burden of obtaining high pre-cision on the manufacturer, leading to the - only partly correct - impressionthat calibration can be standardized, and thus is simple. The long scienti�cstruggle photogrammetry went through in the 70's, which is not mentionedin today's publications, must now be repeated under much more di�cultboundary conditions: non-standardized video cameras, non-standardized ap-plications, the requirement for full automation, therefore the integration oferror-prone matching procedures, etc..{ The 3D-geometry of orientation reveals high algebraic complexity. This isoverseen when assuming the calibration and orientation to be known or atleast approximately known, as the iterative techniques used in photogramme-try and the spatial intersection (triangulation) - in general - lead to satisfyingresults. Again, the e�orts of photogrammetric research in the 70's and early80's for generating guidelines for a good design of so-called "photogrammet-ric blocks", where hundreds and thousands of images are analysed simulta-neously for object reconstruction, speci�cally mapping, has to be investedfor the di�erent tasks of 3D-scene reconstruction in computer vision, espe-cially in the area of structure from motion. It is interesting and no accident



2 Wolfgang F�orstnerthat such guidelines are only available for aerial photogrammetric blocks,not for close range applications. The complexity of the 3D-geometry of ori-entation motivated the numerous publications in the computer vision areaon the availability, uniqueness and stability of orientation and reconstructionprocedures under various, partly very speci�c, boundary conditions.{ Error handling is a central issue in calibration and orientation of camerasfor several reasons.� The correspondence problem is far from being solved for general cases.Existing solutions have to deal with large percentages of matching er-rors. This prevents the direct use of classical estimation procedures andmakes it necessary to look for robust procedures which, however, makea thorough analysis of the quality of the �nal result at least di�cult, asthe underlying theories (!) often only give asymptotic theorems.� In case approximate values for calibration and orientation are not avail-able or only of poor quality their determination appears to be a far morechallenging problem than the re�nement via a least squares estimation.The direct solutions, either with minimumor redundant information playa central role, especially in the presence of outliers.� Self-Calibration is often required where calibration, orientation and gen-erally also scene reconstruction is performed simultaneously, as cameracalibration in a laboratory often is not feasible or insu�cient. It in-creases the di�culty of error analysis by at least one order of magnitudeas de�ciencies in design, modelling and mensuration have to be handledsimultaneously and, therefore, generally prevent an algebraic analysis ofthe system. The di�culty of integrating all types of observational valueslies in the necessity to formalize the evaluation process in order to ade-quately handle the di�erent dimensions (pixels, meter, radiants, etc.) ofthe observations and their in
uence on the �nal result.Experiences in photogrammetric research give many hints on how to solve theproblem of error handling, especially with respect to the quality evaluationbased on various statistical tools. Nonetheless, the boundary conditions metin computer vision applications require a new setup of the concepts.{ The �nal goal of image analysis is full automation of all procedures. Ascalibration and orientation of cameras, due to its well-de�ned goal, reallyis much more simple than image interpretation, it seems to be feasible toachieve generic procedures for automatically solving this �rst step in theanalysis chain. Textbooks on photogrammetry, statistical analysis or otherrelated topics, however, often only present tools not strategies for solving theproblem of parameter estimation, calibration and orientation like many othersub-tasks in image analysis. This is due to the speci�c engineering expertisewhich is required to �nd the appropriate tool combination. This expertise isusually not documented in textbooks, but in internal reports of institutionsfor training purposes, e. g. for handling complex software packages. Some-times this knowledge is already formalized in terms of a sequence of rules tobe applied.



Generic Estimation Procedures 3Formalization, being a prerequisite for developing generic procedures, is dif-�cult in our context as the various types of errors (cf. subsection 2.2 on errorhandling) interfere in a nonpredictable manner and no coherent theory isavailable to justify speci�c strategies.This paper is motivated by this de�cit in generic and robust procedures forgeometric reasoning, calibration and especially orientation. Its aim is to collectthe available tools from statistics, speci�cally for the diagnosis of data and designand for coping with outliers using robust estimation techniques, and to presenta generic strategy for data analysis in the context of orientation procedures.The techniques allow an extension towards self-calibration which, however, hasto be worked out. The much more di�cult problem of designing, i. e. planningmensuration procedure of high robustness, still waits for a solution.2 Problem StatementLet us assume the model to explicitely describe the observation processE(l) = g(�) (1)where the expectation of the n observations l = flig via g in general nonlinearilydepends on the u unknown parameters � = f�jg. The stochastical properties ofthe observations are captured by the covariance matrixD(l) = �ll : (2)Should this be the only information available the principle of maximum entropyresults in the following full modell � N (g(�);�ll) (3)hypothesizing l to be normally distributed. The redundancy of the system isr = n� u : (4)The task is to derive estimates b� from given observational values l.In our context the observations usually are the coordinates of points or theparameters of lines detected and located in the image by an automatic procedure.The relation between corresponding points and/or lines in several images or inobject space, also performed automatically, guarantees redundancy in the totalprocess, as several image features generally determine one corresponding objectfeature.In case the redundancy equals 0 or in the unlikely case of the observationsbeing consistent, the assumed stochastical properties have no in
uence on theestimate. The only task then is to invert (1) to obtain b� = g�1(ls), where ls isa subset of l of size u.



4 Wolfgang F�orstner2.1 Error TypesIn general, all components of the model will have an in
uence on the result. Thekey question is how an automatic system handles errors in these assumptions.One may distinguish three types of errors:1. Data errors, which are errors in the values of l, grossly violate assumption(3). They relate to points, lines or other features in the image or in objectspace where measurements are taken. They may really be mensuration errors,e. g. caused by failures in the detection algorithm or matching errors leadingto wrong relations between image and object features. Depending on thecomplexity of the scene and the quality of the used algorithms the percentageof errors may range between a few and over 80 % of the observed values.2. Model errors refer to all three parts of the model: the functional relationshipg(�), the covariance matrix �ll and the type of the distribution, here thenormal distribution N (� ; �). Examples for this type of error are manifold:{ too few, too many or the wrong set of parameters �, e. g. when usingshallow perspective, projectivity or parallel projection;{ wrong weighting, e. g. when assuming the same accuracy for all detectedpoints;{ neglected correlations, e. g. in Kalman-�ltering; or,{ wrong assumptions about the distribution, e. g. when handling one-sidederrors.Observe that data errors and model errors cannot formally be distinguished;as a re�nement of the model may always specify the type of error in theobservations.3. Design or con�guration errors relate to the complete set of functions g =fgig. Such errors cause the estimate b� to be nonunique in some way. Mul-tiplicity of solutions is the best case of nonuniqueness. Depending on thedegree of redundancy we may distinguish at least three cases (cf. the formal-ization in section 3.2):(a) nondeterminable parameters. Critical surfaces of the con�guration be-long to this class. An example would be a spatial resection with threepoints and the projection centre sitting on the critical cylinder.(b) noncheckable observations or parameters. Here the determination of theparameters may be possible, but errors in the estimated parameters in-troduced in a Bayesian manner, are not detectable due to a too lowredundancy. An example would be a spatial resection with three pointsin general position.(c) nonlocatable errors. Here a test may be able to show discrepancies be-tween the data and the model, but no identi�cation of the error sourceis possible. An example would be a spatial resection with four points ingeneral position.We will treat all types of errors in the following; however, concentrate onmeans for automatically reacting on indications of such errors.



Generic Estimation Procedures 52.2 Issues in Error HandlingThere are at least three basic questions that automatic procedures need to beable to answer:1. How sensitive are the results?The results may be uncertain due to the large number of errors mentionedabove. Evaluating real cases has to cope with the problem that several sucherrors occur simultaneously. Instabilities due to low local redundancy maybe hidden within a system of high total redundancy. Then we may discuss{ determinability of parameters{ controllability of errors and the e�ect of nondetectable errors{ separability of error sources.We will formalize this classi�cation in more detail and discuss the �rst twoitems explicitely.2. How small is too small?Most algorithms are controlled by thresholds or tolerances to be speci�ed bythe developer or the user.When referring to observations or parameters, thresholding may be inter-preted as hypothesis testing, which allows to derive the thresholds by spec-ifying a signi�cance level and using error propagation. We will not pursuethis topic.When evaluating, the design of the formalization becomes less obvious, e. g.when having a small basis in relative orientation (2D { 2D), small angles inspatial resection (3D { 2D) or small distances between all points in absoluteorientation (3D { 3D). In all cases the con�guration is close to critical. Butthen the question arises: how to evaluate small deviations from a criticalcon�guration or surface? We will show that a generic and formal answer tothis question can be given which is based on the local geometry of the design.3. How to react on de�ciencies in the data?Regarding the many di�erent models used for calibration and orientation ageneric strategy should be available.De�ciencies in design have to be prevented by proper planning of the men-suration setup in
uencing the number and position of cameras, the numberand the distribution of given control points, the introduction of spatial con-straints, etc. Automized techniques for such planning are not far advancedand still require interactive intervention.The reaction on de�ciencies in the observations or the model may rely onthe techniques from robust estimation and much more from formalizableexperience.They depend on various properties of the data and the model:{ the availability of approximate values �0 for the unknown parameters�.{ the availability of a direct solution � = g�1(ls) for an u-sized subset ofthe observations.{ the number and the size of the expected errors.



6 Wolfgang F�orstner{ the number of the observations and parameters{ the desired e�ciency in terms of computing time{ etc.The next section will collect the necessary tools needed for setting up genericprocedures for robust estimation applicable to camera orientation.3 Tools3.1 Quality InsuranceTreating calibration and orientation as an estimation problem allows us to fullyexploit the rich arsenal of tools from estimation theory. Regarding the speci�cproblem of data and model errors we speci�cally need to use the techniquesavailable from robust statistics and regression diagnostics following two di�erentaims (Huber 1991):{ The purpose of robustness is to have safeguards against deviations from theassumptions.{ The purpose of diagnostics is to �nd and identify deviations from the as-sumptions.Robustness There are two levels of robustness, depending on whether the sizeof errors is small or large. Data or model deviations are small in the case of su�-cient linear approximations. This leads to a rule of thumb that small deviationsof the approximate values from the true values are deviations less than about 30% of the values, including all functions of the observations. E. g., it correspondsto the requirement that angular errors to be less than approx. 20o.1. Robustness with respect to small deviations.The socalled in
uence curve (Hampel et al. 1986), which measures the e�ectof errors onto the result, may be used to measure the quality of robustprocedures in this case. Maximum-likelihood (ML) type, or M-estimatorsare the tools to deal with small deviations.2. Robustness with respect to large deviations.The break down point (Rousseeuw/Leroy 1987) measuring the maximumallowable percentage in the number of errors while still guaranteeing theestimator to yield results with limited bias, may be used to evaluate thequality of procedures in this case. Estimates with a high break down point,up to 50 %, such as least median squares, are the corresponding tool tohandle a large percentage of errors.Observe, that the e�ect of random errors on the result is not covered bythe term robustness. These e�ects usually are measured by the precision of theestimates. The reason for this distinction is that random errors are part of the



Generic Estimation Procedures 7original model, thus do not represent deviations from the model, and are takeninto account by all basic estimators such as least squares or ML-estimators.We will discuss the use of di�erent robust estimators in section 3.4 and 4,where we especially compare and use their characteristics for achieving a genericstrategy.Diagnostics As already indicated above, there are three levels of diagnosticswhich all refer to small model errors:1. Determinability of parameters or singularities in the estimation process mea-sure the instability of the design with respect to random perturbations.Standard deviations or in general covariance matrices are the diagnostictool to detect such a situation. Due to the small size of the random errors,a linear substitute model derived by linearization, may be used to evaluatesuch instabilities.We will discuss this in detail in section 3.2.2. Controllability of observations and detectability of model errors specify theapplicability of hypothesis tests.The diagnostic tools are minimum bounds of the size of observational ormodel errors which can be detected by a test with a certain given probability.The sensitivity of the result is measured by the e�ect of nondetectable errorson the result.Both tools may be used for planning as they do not depend on the actualmeasurements.The actual in
uence of the observations of model parameters measured in aleave-one-out fashion may be decisive for the acceptance of an estimate.We will discuss these tools in detail in section 3.3.3. The locatability of observational errors or the separability of model errorsspecify the ability to correctly classify or identify the error causes.This can be described in terms of a confusion matrix, like in statistical pat-tern recognition, the di�erence being that here the entries of the confusionmatrix depend on the expected size of the errors and on the design or con-�guration.The diagnostic tools therefore are lower bounds for observational errors ormodel errors which are identi�able or separable with a certain probability.In section 3.3 we will formally relate separability to controllability especiallywith respect to sets of observational model errors, but will not discuss thenotion in detail.3.2 Instabilities of Estimates or "How Small is too Small?"Instabilities of parameters occur in case the con�guration produces some criticalmanifold (surface) to which the solution belongs. One usually distinguishes (cf.Wrobel 1995):



8 Wolfgang F�orstner1. Singularities or critical surfaces of the �rst kind. Here a complete manifoldof the parameters is consistent with the observations.2. Singularities or critical surfaces of the second kind. Here small deviations inthe observations result in large deviations in the parameters.An example for a singularity of the second kind is the critical cylinder in spatialresection. It may be formulated as a rule: IF the projection center O 2cylinder(P1; P2; P3) THEN O is not determinable.Here cylinder (P1; P2;P3) indicates the cylinder through the points with axis perpendicular to theplane through the points.This rule is the result of an analysis using algebraic geometry which, in itsgenerality, is valid in the context of spatial resection and is crisp.Such algebraic results, however, have some disadvanteges:{ The statements do not contain any information on how to evaluate deviationsfrom the critical con�guration.{ The statements do not give any hint to generalize to other situations. Otherproblems, e. g. relative orientation, require a separate analysis.{ The statements do not give any means to evaluate the orientation even ofone image within a set of several images to be oriented simultaneously. Itmay very well be, that in a multi-image setup with a large redundancy theorientation of one of the images cannot be determined due to the presenceof the above situation.Such hidden instabilities reveal the limitation of purely algebraic approacheswhich can only be applied to very restricted situations and cannot be generalized.Thus techniques based on algebraic geometry cannot be easily transferredinto automatic procedures evaluating the stability of an estimate. The solutionto this dilemma is based on the observation, that the instabilities are local prop-erties in parameter space and can be fully analysed using the covariance matrixof the parameters. This leads to a shift of the problem. Instead of a determin-istic analysis we now are confronted with the problem of evaluating the qualityof a covariance matrix. The shift of the problem and its solution goes back toBaarda 1973.The evaluation method consists of two steps:1. Speci�cationSpecifying the user requirements in terms of a socalled criterion matrix, sayH, which gives an upper bound on the desired covariance matrix, corre-sponding to the desired lowest precision.2. ComparisonChecking whether the achieved covariance matrix, say G = (XT�llX)�1 isbetter than H .We will discuss this comparison �rst.



Generic Estimation Procedures 9Comparing Covariance Matrices The comparison of covariance matrices isinterpreted as the requirement the standard deviation of an arbitrary functionf to be better when calculated with covariance matrix G than with HG �H := �Gf � �Hf ; with f = eT b�; for all e (5)Using error propagation, e. g. �Gf = peTGe this leads to (cf. Fig. 1)Fig. 1. shows the relation G < H between two 2 � 2 covariance matrices G and H,represented by isolines of constant probability density of the corresponding normaldistribution.
eTGe � eTHe; for alle (6)or � = eTGeeTHe � 1 (7)which requires the determination of the maximum eigenvalue ofGe = �He: (8)The square root p�max indicates the maximum ratio of the actual and therequired standard deviation.This evaluation may be simpli�ed usingK =H�1=2GH�1=2 (9)� = eTKeeTe � 1 (10)which is equivalent to �max(K) � 1: (11)Equation (10) is favorable in case H easily can be diagonalized (cf. the examplebelow).In order to avoid the rigorous determination of the maximum eigenvalue ofK, (10) may be replaced by a less tight norm, e. g. by the trace:�max(K) � trK � 1: (12)



10 Wolfgang F�orstnerSpeci�cation of a Criterion Matrix The speci�cation of a criterion matrixcan be based on the covariance matrix�b�b� derived from an ideal con�guration.This has the advantage that the user can easily interprete the result. In casean ideal con�guration cannot be given the criterion matrix H = SRS maybe set up by specifying the standard deviations �i, collected in a matrix S =Diag(�i) and correlations �ij , collected in a matrix R = �ij , derived from sometheoretical considerations, e. g. interpreting the sequence of projection centresin a navigation problem as stochastic process, where the correlations �ij dependonly on the time or space di�erence between points Pi and Pj.Fig. 2. shows two sets of image points used for image orientation by spatial resection.Sets of three points may lead to results of di�erent stability as shown in table 1 forthree sets of the left con�guration (a) (from Schickler [1992]).
Example Five image points situated as in Fig. 2 are to be used to estimate the6 orientation parameters of the image based on given 3D-coordinates with spatialresection (2D { 3D). Due to gross errors in the data, a RANSAC procedure (cf.Bolles/Fischler 1981) is applied randomly selecting 3 points and directlysolving for the orientation parameters. The quality of this selection has to beevaluated automatically in order to immediately exclude unstable con�gurations.The above mentioned technique for evaluating the stability of a con�guration isapplied.The criterion matrix is derived from a very stable least squares �t with 4points symmetrically sitting in the four corners of the image (cf. Appendix).The covariance matrix � = �b�b� of this con�guration, the criterion matrix, ischosen to be H = 16�� (13)



Generic Estimation Procedures 11thus requiring the standard deviations of the orientation parameters within theRANSAC-procedure to be better than 4 times the standard deviation of theideal con�guration. � is sparse allowing easily, i. e. algebraically, to determinethe matrixH� 12 in (10) (cf. Appendix).For several triplets of points the ratio p�max is given.con�guration p�max1 1/2/3 0.82 2/3/4 88.03 1/3/4 13.2Table 1. shows the stability with sets of three points used of spatial resection (cf. Fig.2a).The good triangle (1,2,3) obviously leads to su�ciently precise orientationparameters. The second triplet (2,3,4) consists of three nearly collinear points,which obviously is an undesirable con�guration. The third triplet (1,3,4) andthe projection centre are lying approximately on a critical cylinder causing thediagnostic valuep�max to be signi�cantly larger than 1., expressing the fact thatsome function of the orientation parameters in that con�guration has a standarddeviation being appr. 13 times larger than required. The small triplet (2,5,11)in Fig. 2b also leads to a weak determination of the orientation parameters witha value p�max � 4.The method obviously is able to capture various de�ciencies in the designof the con�guration of an orientation procedure without having to discrimi-nate between di�erent types of instabilities. Such situations also may arise inmore complex problems where an algebraic analysis is not possible whereas thismethod is able to �nd the instabilities.When using this method for designing a con�guration the eigenvector be-longing to the largest eigenvalue gives insight into the most imprecise functionof the parameters, which may be used to look for speci�c stabilization means.3.3 Model Errors or "How Sensitive is the Result?"The stability of an estimation, speci�cally an orientation, evaluated by the co-variance matrix only takes random perturbations into account. The result, how-ever, may be wrong due to gross errors, e. g. caused by the matching procedure.As well, an oversimpli�ed model may lead to precise but incorrect results. Botherror sources, blunders and systematic errors, can only be detected in the caseof redundant observations. This is a necessary but - as we will see - not a suf-�cient condition. Redundancy allows us to perform tests on the validity of the



12 Wolfgang F�orstnerassumed model without reference to additional data used during the estimation.Such tests may lead to the detection or even identi�cation of the error source. Ofcourse, the outcome of these tests may be false. Redundancy, however, increasesthe stability of the solution and the correctness of the outcome of statisticaltests. The theory for performing such a test is described in the literature (cf.Baarda 1967/1968, F�orstner 1987). The structure of that theory, its use inestimation problems and examples from orientation procedures will be given.Detectability and Separability of Errors We �rst want to discuss the typeof evaluation which can be performed depending on the redundancy r of a sys-tem.1. r = 0 In the case of no redundancy, one can only evaluate the sensitivityof the result with respect to random errors as shown in the last section. Nocheck of the observations is possible whatsoever. They may remain incorrectwithout any indication.2. r = 1 In the case of redundancy r = 1, a check on the validity of themodel is possible. The existence of blunders may be indicated. However, theyare not locatable, as a "leave-one-out test" always leads to a valid solution.3. r = 2 A redundancy of r = 2 is necessary in order to be able to locate asingle blunder. A leave-one-out test generally will be able to �nd the uniqueconsistent set of observations. Double errors are not locatable, however theirexistence is usually indicated.4. r > 2 For a larger redundancy, r� 1 < n=2, errors are locatable, whereasr errors are only detectable.The maximum number of detectable errors is n=2, i. e. 50 % of the data,as more than n=2 observations may mimic a good result. Thus, 50 % is theupper limit for the so-called breakdown point of an estimator. The breakdownpoint of an estimator is the minimum percentage of errors which may causethe estimator to give wrong results, i. e. may lead to a bias of any size. Thenormal mean has the breakdown point 0, the median 50 %, an indication of it'shigher robustness. Practical procedures may be better as they may use speci�cknowledge about the structure of the problem (cf. the straight line detectionprocedure by Roth/Levine 1990).In case of a small percentage (< 1%) of not too large (<30%) gross errors,the detection and location may be based on the residualsv = g(b�)� l D(y) = �20Q = �20P�1 . (14)Using the maximum likelihood estimateb� = �(0) + (XTPX)�1XTP (y � g(�(0)) (15)we can express changes �v of the residuals in terms of changes, thus errors �yof the observations



Generic Estimation Procedures 13�v = �R�y (16)with the projection matrix R = I � U (17)with the socalled hat-matrix (cf. Huber 1981)U = X(XTPX)�1XTP : (18)(17) is graphically shown in Fig. 3.Fig. 3. shows the four cases for analysing the projection matrix R with respect tosensitivity (diagonal matrices) and separability (o�-diagonal matrices) for single orgroups of observations.
This matrix may be used to analyse the ability of the estimation system toapply selfdiagnosis with respect to errors in the observations, as only e�ects thatcan be seen in the residuals are detectable.We distinguish two levels of evaluation1. detectability or checkability; and,2. separability or locatability.Both evaluation measures may refer to single or groups of observations. Thuswe have 4 cases.1. Detectability or checkability rely on the diagonal elements or diagonal sub-matrices of R.a) Single observational errors can only be detected if the redundancy num-bers ri := (R)ii > 0 : (19)



14 Wolfgang F�orstnerThe diagonal elements ri sum up to the total redundancy r, i.e.P ri = r.This indicates how the redundancy is distributed over the observations.The corresponding test statistics for detecting single errors for given �0and uncorrelated observations iszi = �vi�0 rpiri � N (0 ; 1) (20)b) Groups of ni observation can only be detected if the corresponding ni�nisubmatrix k Rii k> 0 (21)of R is nonsingular. Otherwise a special combination of observationalerrors may have no in
uence on the residuals. The corresponding teststatistic is Ti = 1�0svTi RiiQiivini �pFni;1 (22)which reduces to (20). The observations may be correlated within thegroup, but must be uncorrelated to the others. pFni;m denotes the dis-tribution of the square root of a random variable being Fni;m-distributed.2. Separability or locatability in addition to the diagonal elements of R rely onthe o� diagonals.a) The separability of two single gross errors evaluates the likelihood to cor-rectly locate an error, i. e. to make a correct decision when testing both.The decisive measure is the correlation coe�cient of the test statistics(20) which is �ij = rijprii � rjj : (23)Tables for erroneous decisions when locating errors are given byF�orstner1983.Correlation coe�cients below 0.9 can be accepted since the probabilityof making a false decision even for small errors remains below 15 % 1.b) The separability of two groups of observations li and lj depends on themaximum value �2ij = �maxM ij (24)of the ni � nj matrix1 Precisely stated: If the larger of the two test statistics jzij and jzjj in (20) is chosento indicate the erroneous observation with its critical value 3.29, corresponding toa signi�cance level of 99.9 %, and a single error can be detected with a probabilityhigher than 80 %, then the probability of making a wrong decision between li andlj is approximately 13 %.



Generic Estimation Procedures 15M ij = RijR�1jj RjiR�1ii (25)which for single observations reduces to (23).No statistical interpretation is available due to the complexity of thecorresponding distribution.Example: Detectability of ErrorsRelative orientation with 6 corresponding points yields a redundancy of r =6 � 5 = 1. If the images are parallel to the basis and the points are situatedsymmetrically as shown in Fig. 4 then the diagonal elements ri are 1/12 forpoints i = 1, 2, 5 and 6 and 1/3 for points 3 and 4.1' 2'3' 4'5' 6' 1" 2"3" 4"5" 6"Fig. 4. Numbering of 6 points in a stereo pair.Obviously errors are hardly detectable if they occur in point pairs 1, 2, 5 or6. In all cases no location of the false matches is possible as r = 1. 2Example: Separability of ErrorsSpatial resection with 4 points symmetrically to the principle point is knownto yield highly correlated orientation parameters. Depending on the viewingangle �, the correlation between the rotation ! (x-axis) and the coordinate y0of the projection centre, and between the rotation ' (y-axis) and the coordinatex0 is (cf. Appendix) j � j= 1q1 + sin4 �2 (26)For a CCD-camera with a focal length of f = 50 mm and sensor size of5� 5mm2 , �=2 = 1=20 thus j � j= 0:999997. For an aerial camera RMK 15/23with a focal length of 15 cm and image size of 23 cm,�=2 = 2=3, thus j � j= 0:914.Thus testing the orientation parameters !, ', x0 and y0 may easily leadto incorrect decisions for CCD-cameras when testing their signi�cance, whereaserrors in these parameters are detectable. 2



16 Wolfgang F�orstnerSensitivity of the Estimates In spite of testing for blunders, errors may re-main undetected and in
uence the resulting estimate. The sensitivity of the resultis often the only information one needs for evaluation. One may determine anupper limit for the in
uence of a group of observations onto the result.The in
uence �if(b�) on a function f(b�) of the unknown parameters causedby leaving out a group yi of observation is limited:�if(b�)<�ifmax(b�) (27)with (cf. F�orstner 1992)�ifmax(b�) = Ti � �i � �f(�) � pni (28)where ni is the size of the group, �f(�) the standard deviation of the functionf(�) is derivable by error propagation measuring the precision of the result, Tiof the test statistics (22), measuring the quality of the observation group andthe geometry factor �i = �maxf(�(i)xx ��xx)��1xxg (29)evaluating the mensuration design. The value �i explicitely measures the loss inprecision, i. e. the normalized increase �(i)������ of variance of the result whenleaving out the i�th group li of observations.For a single observation it reduces to�i = 1� riri (30)with the diagonal elements rii of R (cf. (17)).The value �ifmax(�) (28) measures the empirical sensitivity of the estimatewith respect to blunders e. g. matching errors in groups li; empirical, as it de-pends on the actual observations via Ti.If Ti is replaced by a constant �0, indicating the minimum detectable (nor-malized) error, we obtain the theoretical sensitivity�0if(b�)<�oifmax(b�) (31)with �0ifmax(b�) = �0 � �i � �f(�) � pni : (32)It may be used for planning purposes since it does not depend on actualobservations and can therefore be determined in advance. �0 is usually chosento be larger than the critical value k for Ti, e.g. �0 = 1:5k or �0 = 2k and canbe linked to the required power of the test (cf. Baarda 1967/1968, F�orstner1987).Observe that both sensitivity values contain the product of terms represent-ing di�erent causes. This e. g. allows to sacri�ce precision, thus increasing stan-dard deviation �f by paying more for leaving a larger redundancy and loweringthe geometric factor �i for all observations or vice versa.



Generic Estimation Procedures 17Example: Sensitivity AnalysisThis example shows the power of this type of sensitivity analysis for evaluat-ing the success of an automatic procedure for determining the exterior orienta-tion of an image, i. e. the extrinsic parameters of the camera (Schickler 1992,cf. Sester/F�orstner 1989). It is based on matching 2D-line segments in theimage with 3D-line segments of a set of known objects, mainly being buildingsrepresented by a set of line segments. The aerial images used here usually contain5-10 such objects which are more or less well-distributed over the �eld of view.The sensitivity analysis may be used to evaluate the quality of the orientationwith respect toa) matching errors of individual line segments; and,b) matching errors of complete sets of line segments, representing one object.The reason for this distinction is that both errors may occur; the �rst onebeing very common, the second one (whole sets of line segments) within theclustering procedure performed for each object individually.a) Matching of individual 2D image line segments to 3D object line segments.We have to deal with groups of 4 observations, namely the 4 coordinatesrepresenting the start and end point of the line segments. The 4� 4 covari-ance matrix �lili of this group also contains the correlations between thecoordinates, which may be derived during the edge extraction process. Weuse a similar approach as Deriche/Faugeras 1990 and F�orstner 1992for representing the uncertainty of the line segments.A typical result, as given in the following table, can be summarized in twostatements:1. Empirical sensitivity: The maximumoccurs at edge #10. The result maychange up to 0.82 it's standard deviation if line segment #10 would beleft out, which is fully acceptable.2. Theoretical sensitivity: The maximum occurs at edge #21. The resultmay change up to 4.42 times its standard deviation if a matching errorremains undetected, which is at the limit of being acceptable.Thus, the result appears to be acceptable with respect to the redundancy inthe estimations.b) Match of a set of 2D image line segments to 3D object line segments.Let us assume the m sets of segments to be matched, have ki; i = 1; � � � ;mline segments each, and we have to fear a matching error for a complete set.Then the sensitivity analysis has to be based on sets of 4 �mi coordinatesfor the mi line segments.Figures 5a and 5b show the position of the sets within two aerial images(c = 15 cm) to be oriented.In Fig. 5a, one of the �ve sets, namely #3 was not matchable, leaving thespatial resection with 4 objects in the 3 other corners and in the middle ofthe image. The circles around these "four points" have a radius proportional



18 Wolfgang F�orstnerTable 2. shows the empirical and the theoretical sensitivity of the result of an orien-tation with straight edge segments. Empirical TheoreticalEdge # �if=�f �0if=�f4 0.07 2.625 0.65 1.518 0.50 3.449 0.80 3.1310 0.82 2.81... ... ...21 0.68 4.42... ... ...Fig. 5. shows two sets of image points used for image orientation by spatial resection.The radii of the circles indicate the theoretical sensitivity, i. e. the amount the resultmight change if the point (set of straight line segments) would be wrong without notice.In Fig. a (left) the point #3 has been detected to be wrong, thus only 4 points are leftfor spatial resection, in Fig. b (right) point # 5 has been detected to be wrong.
to �0i = �0ifmax=�f and indicate how sensitive the orientation is with re-spect to nondetectable errors within the clustering procedure. Because thegeometry factor � (29) is dominant, the circles indicate how the precisiondeteriorates if one of the 4 sets is left out:without set 4: the three others 1, 2 and 5 form a well-shaped triangle, andthus guarantee good precision.without set 2: the three others 1, 4 and 5 nearly sit on a straight lineleading to a highly unstable solution (near to singularity of �rst type).without set 1: the three others, 2, 4 and 5, form a well-shaped triangle.



Generic Estimation Procedures 19However, because the plane going through the sets is nearly parallel tothe image plane, the projection centre closely has near to the criticalcylinder.leaving out set 5: also leads to a nearly singular situation.The situation with 8 sets in Fig. 5b shows a more irregular distribution.Since set 5 was not matched, set 1 is most in
uential in the orientation, butless than sets 1, 2 and 5 in the case of Fig. 5a.2Observe that this analysis is based on values which have a very precise geo-metric meaning. This allows for an easy de�nition of thresholds, even if one isnot aquainted with the underlying theory. As well, a clear comparison betweendi�erent con�gurations is possible even for di�erent types of tasks. Because theevaluation refers to the �nal parameters, it also may be used when fusing di�er-ent type of observations. As model knowledge may be formalized in a Bayesianmanner, the e�ect of prior information onto the result of an orientation may alsobe analysed.Summarizing the evaluation of the design using the comparison of the covariancematrix of the parameters with a criterion matrix and using the di�erent measuresfor the sensitivity has several distinct properties:{ it is a general concept{ it works for all types of critical surfaces and solves the problem of criticalareas, thus also in case the con�guration of observations is far or close to acritical surface{ it works with all problems of estimation{ it may detect hidden singularities{ it also works in the complex situation where observations of di�erent typesare mixed (points, lines, circles, ...) or in the context of sensor fusion wherealso physical measurements (force, acceleration, ...) are involved{ it is related to a task, thus explicitely depends on user requirements. Thisenables to argue backwards and optimize the design.{ it provides measures which are easily interpretable.3.4 Robust Estimation or "How to React on Blunders"The last section clearly demonstrated that enough tools are available to evaluatethe result of estimation procedures with respect to a variety of de�ciencies. Thesetools are su�cient for proving a result to be acceptable. They, however, give nohint as to how to reach an acceptable result with respect to errors in the dataand weaknesses in the design.This section wants to collect the techniques from robust statistics useful forthe e�cient elimination or compensation of outliers in the data with the aimof adapting the data to the presumed model. The planning of the mensuration



20 Wolfgang F�orstnerdesign is much more di�cult and lacks enough theoretical basis and is thereforenot discussed here.Eliminating blunders is a di�cult problem:{ It is NP-complete: given n observations there are up to 2n hypotheses forsets of good and bad values (the power set of n observations), making anexhaustive search for the optimized solution obsolete except for problemswith few observations.{ The non-linearity of most estimation problems, particularly orientation prob-lems, prevents generic simpli�cation for obtaining suboptimal solutions.{ All variations of "Murphy's Law" occur:� outliers cluster and support each other,� outliers mimic good results,� outliers hide behind con�guration defects,� outliers do not show their causes, making proper modelling di�cult orimpossible,� outliers make themselves indistinguishable from other de�ciencies in themodel, like systematic errors.Thus many methods for robust estimation have been developed. Most ofthem assume the model of a mixed distribution of the residuals vi (f denotinga density function here):f(vi=�i) = (1� ")�(vi=�i) + "h(vi=�i) (33)with 100"% outliers having broad distribution h(�) and 100(1�")% good obser-vations following a well-behaved distribution �, usually a Gaussian. Maximizingf(� j l) or minimizing� log f(� j l) for the given data l, possibly including priorknowledge of the unknowns �, explicitely or implicitely is used as optimizationcriterion.Fig. 6. shows the distribution of the errors being a mixture between good and badones.



Generic Estimation Procedures 21The procedures, however, signi�cantly di�er in strategy for �nding the opti-mum or a suboptimum. We selected four procedures which seem to be represen-tative in order to come to an evaluation which will be the basis for the genericstrategy discussed in section 4. These techniques for robust estimation are1. complete search,2. Random Sample Consensus (RANSAC cf. Bolles/Fischler 1981),3. clustering, and4. ML-type-estimation (Huber 1981, Hampel/et al. 1986).Their feasibility and e�ciency heavily depend on a number of characteristicfeatures of the estimation problem to be solved.a) Invertibility of the Functional ModelWe basically used a set ls of at least u observation to uniquely specify theunknown parameters �. The direct determination of � from a subset lsrequires g to be invertible: �(ls) = g�1(ls) thus g�1 has to be representablealgebraically.b) Existence and Quality of Approximate ValuesIn case g(l) is not invertible, we need approximate values for � in order tosolve � = g�1(l) by some iterative scheme. The quality of the approximatevalues directly in
uences the number of iterations. The knowledge of goodapproximate values in all cases may drastically reduce the complexity of theprocedures.c) Percentage of Gross ErrorsThe percentage of gross errors may range from < 1%, speci�cally in largedata sets derived automatically, up to more than 75%, e. g. in matchingproblems. Not all procedures can cope with any percentage of errors, someare especially suited for problems with high outlier percentages. ML-type-estimation procedures can handle data with a moderate number of errors,up to 10� 20% say.d) Size of Gross ErrorsOnly few procedures can work for any size of gross errors. Large gross errorsmay lead to leverage points, i. e. to locally weak geometry, and such errorsmay not be detectable at all. If one relates the size of the errors to the sizeof the observed value, then errors less than one unit usually are detectableby all procedures.e) Relative RedundancyThe relative redundancy measured by the redundancy numbers ri (cf. eq.(19)) in
uences the detectability of errors. The theoretical results from ro-bust statistics, especially with reference to ML-type-estimation, are onlyvalid for relative redundancies above 0:8, i. e. when the number of observa-tions is larger than 5 times the number of unknown parameters.f) Number of UnknownsThe number of unknowns directly in
uences the algorithmic complexity.The four procedures can now easily be characterized.



22 Wolfgang F�orstner1. Complete SearchComplete search checks all, i. e. up to 2n, possible con�gurations of good andbad observations to �nd the optimum solution. The optimization functionobviously should contain a cost-term for bad observations in order not toselect a minimum of � observations yielding residuals ei = 0, or the bestset of � + 1 observations allowing to estimate b�20 with only one redundantobservation. Such a penalty may be derived using the principle of minimumdescription length, thus relying on the negative logarithmmixed distribution(cf. Fig. 6).Obviously complete search is only feasible for a small number n of observa-tions, a small redundancy r or in case the maximumnumber lmax of expectederrors is small, as the number of possibilities ismin(r�1;lmax)Xk=0 �nk� < 2n : (34)Implementation requires either approximate values or the invertibility of themodel using an iterative or a direct solution technique.2. Random Sample Consensus (RANSAC)Random Sample Consensus relies on the fact that the likelihood of hittinga good con�guration by randomly choosing a set of observations is large.This probability of �nding at least one good set of observations in t trials is1 � (1 � (1 � ")u)t where u is the number of trials and " the percentage oferrors. E. g. for u = 3, (spatial resection, �tting circle in the plane) and anoutlier rate of 50 % at least t = 23 trials are necessary, if this probabilityshould be larger than 95 %.Again, the technique requires approximate values or the invertibility of themodel and is only suited for small u.3. ClusteringClustering consists of determining the probability density function f�(y) un-der the assumption that the data represent the complete sample. The mode,i. e. the maximum, of f�(� j l) is used as an estimate. This is approximatedby f�(� j l) � Pi f�(� j l(i)s ) where the sum is taken over all or at least alarge enough set of subsets ls of u observations, implicitely assuming thesesubsets to be independent.The Hough-Transformation is a classical example of this technique. Stock-man 1987 discusses the technique in the context of pose determination, thusfor determining the mutual orientation between an image and a model.Clustering is recommendable for problems with few unknowns, high percent-age of gross errors and in cases in which enough data can be expected tosupport the solution (high relative redundancy).4. Maximum-likelihood-type EstimationMaximum-likelihood-type estimation is based on an iterative scheme. Usu-ally the method of modi�ed weights is used showing the close relation to the



Generic Estimation Procedures 23classical ML-estimation, where the observations are assumed to be Gaus-sian distributed. Instead of minimizing P(ei=�i)2, the sum of a less in-creasing function �(ei=�i) is minimized. This can be shown to be equivalentto iteratively weighting down the observations using the weight functionw(�) = �0(�)=�. For convex and symmetric �, bounded and monotone de-creasing w(�)(� > 0) and a linear model uniqueness of the solution is guaran-teed (Huber 1991). Since the in
uence function �0(�) (Hampel/et al. 1986)stays strictly positive in this case, indicating large errors still in
uencing theresult, non-convex functions � are used.Most orientation problems are nonlinear and the in
uence of large errorsshould be eliminated, thus approximate values are required when using thisML-type estimation. Further requirements are: moderate sized errors, smallpercentage of errors and homogeneous design, i. e. large enough local redun-dancy (no leverage points). The advantage of this technique is its favorablecomputational complexity being O(u3 + nu2) in the worst case allowing tobe used also for large u where sparse techniques may be applied to furtherreduce complexity.Without discussing the individual techniques for robust estimation in detail,which would uncover a number of variations and modi�cations necessary forimplementation, the techniques obviously are only applicable under certain -more or less precisely known - conditions. Moreover, speci�c properties bothof the techniques and of the problem to be solved suggest the development ofheuristic rules for the application of the various techniques leading to a genericstrategy for using robust techniques, which will be discussed in the �nal section.4 Generic Estimation ProceduresGeneric estimation procedures need to choose the technique optimal for theproblem concerned and be able to evaluate their performance as far as possible.This section discusses a �rst step in formalizing strategic knowledge and themutual role of robust estimates and diagnostic tools.4.1 Rules for Choosing Robust Estimation TechniquesThe qualitative knowledge about the four robust estimation techniques discussedin the previous section is collected in table 3. It shows the degree of recommen-dation for each technique dependent on the 8 criteria. These criteria refer to:{ necessary prerequisite (approximate values, direct solution);{ likelihood of success (number of observation, reliability, size and percentageof errors); and,{ computational complexity (number of parameters, speed requirements).We distinguish 4 degrees of recommendation:



24 Wolfgang F�orstnerTable 3. Shows the properties of four techniques for robust estimationComplete RANSAC Clustering ML-typeSearch Estimationvg b i vg b i vg b i vg b iapproximate values { { + { + {direct solution { { + { { + { {many observations { + + + { +few parameters + { + { + {high reliability + + {large errors + + + { +high error rate + + { +speed unimportant + { + { {vg = very good (and)b = bad (or)i = impossible (and)(possible = not(impossible))+ = feature required{ = : feature required{ \very good". In case all indicated criteria are ful�lled (\and"); the techniquecan exploit its power and usually is best.{ \good". In case none of the criteria for \bad" is ful�lled; the technique works\not bad".{ \bad". In case one of the indicated criteria is ful�lled (\or"); the techniqueshows unfavorable properties, so is unreliable or too costly.{ \impossible". In case all indicated criteria are ful�lled (\and"); the techniquecannot be used.This knowledge can easily be put into rules, e. g. using PROLOG, together witha few additional rules for qualitative reasoning, e. g. very-recommendable(X):- good(X), possible(X) or impossible(X): - not (impossible(X)).Thisallows for the automatic selection of the robust estimation procedure which �tsbest to the problem at hand.Example The determination of the extrinsic parameter of a camera orienta-tion using sets of straight line segments, already mentioned above (example onsensitivity analysis), is performed in several steps.Step 1: Estimation of the approximate position (2 parameters) of the pro-jected model of each set in the image in order to obtain a prelimenary set ofcandidate matches between image and model segments. A sample dialog is givenbelow:



Generic Estimation Procedures 25Please characterize your problem:Answer with y=yes, n=no, -=do not know, ?=helpDoes a direct solution exist (Default=n) ? yAre approximate values available (Default=n) ? yDo you have many observations (Default=n) ? yAre there many unknown parameters (Default=n) ? nIs the percentage of errors large (Default=y) ? yDo you expect large blunders (Default=y) ? yIs computational speed essential (Default=y) ? nStrongly recommended:clusteringransacNot recommended:ml type estimationcomplete searchClustering and RANSAC are strongly recommended. ML-type estimation is notrecommended as large errors are to be expected. Complete search is not recom-mended as the number of observations is large.Step 2 Estimation of good approximate values for the 6 orientation parame-ters based on the reference points for each object. Thus only few (point) obser-vations are available. The decision is shown in table 4. As computational speedis made essential in this step and the percentage of errors is large (e. g. 3 out of8 points) only RANSAC is recommendable.Step 3 The �nal cleaning of the observations again refers to the line seg-ments. The system does not have access to a direct solution (e. g. by Horaudet al. 1989) and is required to be fast. Therefore ML-type estimation is highlyrecommendable.Obviously the qualitative reasoning may be made more precise:{ The number of observations (few, many) is actually known in a special situ-ation. It in
uences the density of the cells in clustering, the relative redun-dancy speci�cally the homogeneity of the design and the likelihood of �ndinga good set in RANSAC.{ The number of unknowns (few, many) also is known in a speci�c situationand can be used to predict the computational e�ort quite precisely.{ The homogeneity of the design usually can be approximated in case thenumber of observations is much higher than the number of the unknowns,which actually was implemented as a rule in the above mentioned PROLOGprogram.{ The size and the percentage of the errors to be expected can be predictedfrom previous data sets and information which vision algorithms should re-port for learning their performance.



26 Wolfgang F�orstnerTable 4. Shows the decision of a PROLOG program for the selection of the appropriaterobust estimation technique. Step 11) Step 2 Step 3direct solution yes yes noapproximate values yes yes yesmany observations yes no yesmany unknowns no no nomany errors yes yes nolarge errors yes no nospeed essential no yes yesvery recommendable clustering - ML-typeRANSACrecommendable clustering RANSAC ML-typeRANSAC RANSACnot recommendable ML-type all except clusteringcomplete search RANSAC complete search1) cf. sample dialog{ The required speed usually can be derived from the speci�cation of the appli-cation and be quite rigorously related to the available resources. An examplefor such a performance prediction in the context of recognition tasks is givenby Chen/Mulgaonkar 1990.The �nal goal of a formalization of tool selection would be to leave the choiceof the appropriate estimation procedure to the program, which of course requiresthe standardization of the input/output relation for the procedures.4.2 Integrating Robust Estimation and DiagnosisFor achieving results which are robust with respect to model errors an integra-tion is necessary which exploits the diagnostic tools and the robust procedures.Diagnostic tools do not in
uence the estimates and robust estimates only workif the design is homogeneous, requiring a rigorous diagnosis.Therefore, three steps are necessary:1. The mensuration design has to be planned in order to guarantee that modelerrors are detectable and undetectable model errors have only acceptablein
uence on the result. Diagnostic tools are available for all type of modelerrors; gross errors, systematic errors or errors in distribution. Strategies forplanning, however, are poorly formalized and up to now require at least someinteractive e�ort.2. Robust estimation techniques may then be used to �nd an optimal or at leasta good estimate for the unknown parameters. This actually can be viewed as



Generic Estimation Procedures 27an hypothesis generation about the quality (good, bad) of the observations,which is obvious in matching problems which use robust techniques. Anytechnique may be used which leads to good hypothesis.3. In the �nal step the parameters are optimally estimated, e. g. using ML-type estimation based on the decision made in the previous step. The resultcan then be rigorously checked if it meets the requirements set up in theplanning phase. Thus here again the diagnostic tools are used. The result ofthis analysis provides an objective self-diagnosis which may then be reportedto the system in which the estimation procedure is embedded.The overall quality of the estimation procedure is its ability to correctlypredict its own performance, which of course can only be checked empirically(Schickler 1992).Example Table 5 summarizes the result of 48 image orientations.The total number of correct and false decisions of the selfdiagnosis is split intothe cases where the images contained 6 or more points, i. e. sets of straight linesegments, and cases with 5 or less points. An orientation was reported as correctif the empirical and the theoretical sensitivity factors �if=�f and �0if=�f (cf.eq. (28) and (31)) and the standard deviations of the result were acceptable(�max < 1 cf. eq. (12)).Table 5. shows the result of an extensive test of orienting 48 aerial images, # of cases,in brackets: for � 6 points/image and for � 5 points/image.report of selfdiagnosiscorrect wrongcorrect 46(39/7) 0(0/0)reality (correct decision) (false positives)wrong 1(0/1) 1(0/1)(false positives) (correct decisions)46 out of 48 orientations were correct and this was reported by the self-diagnosis. In one case the orientation was incorrect, which was detected by theanalysis. This appeared in an orientation with only 4 points, thus only one redun-dant point. Therefore altogether in 47 out of 48, i. e. in 98 % of all orientationsthe system made a correct decision. In about half of the cases (22 out of 46)the RANSAC procedure was able to identify errors which occured during theclustering and correct the result of the clustering, which was repeated with thisa priori knowledge.One orientation failed without being noticed by the system, which corre-sponds to 2 % false positives. This was an orientation with only 5 points.



28 Wolfgang F�orstnerThe orientation of the 48 images was based on 362 clusterings of model andimage line segments. 309, thus 85 %, were correct. As the errors in clustering areeither completely wrong and therefore eliminated from the further processing orare wrong by a small amount, it is quite likely that 2 clusterings are incorrect byonly a small amount, which may not be detectable by the RANSAC or the robustML-type estimation, mimicing a good orientation. Therefore the existence of onefalse positive is fully acceptable.The result achieved in this test is a clear reason to require at least 6 points,i. e. sets of straight edges, for a reliable orientation in this application. As canbe seen in the table, all 39 orientations not only could correctly be handled bythe automatic system, but actually lead to correct orientation parameters.This example reveals the diagnostic tools to be extremely valuable for a �nalevaluation of an automatic procedure containing robust estimation proceduresas parts.5 ConclusionsThe goal of this paper was to collect the tools from robust statistics and diagnos-tics necessary for building fully automatic image analysis procedures, speci�callyorientation procedures. The theory available seems to be su�cient for achievinga high degree of selfdiagnosis and for implementing generic strategies based onknowledge about the speci�c properties of the di�erent estimation techniques.In all cases the general strategy for achieving results of high quality consistsof four steps:1. Planning the mensuration con�guration using the diagnostic tools for preci-sion and sensitivity garanteeing robust estimation techniques in step 3 to beapplicable and the result to be evaluated internally.2. Mensuration according to the planned con�guration which itself gives a clearindication of its quality.3. Robust estimation with any of the available techniques leading to a hypoth-esis of a good result.4. Final evaluation based on the result of an optimal estimation of the parame-ters and check in how far the quality intended in the planning stage actuallyis reached.The examples give clear indication that these tools can be used to advantageeven in comparatively complex situations.There are still some questions open:{ The analysis of the precision of the result is based on the comparison of theactual with the required covariance matrix. Generating meaningful criterionmatrices requires proper modelling of the user needs making the speci�cationof the accuracy requirements a nontrivial problem.



Generic Estimation Procedures 29{ The e�ect of systematic errors (biases in the model) can be analysed withthe same techniques. However, the search space for identifying undetectablesystematic errors is large, due to the unknown interference between the dif-ferent causes for such errors.{ The planning of experiments may be based on the techniques collected in thispaper. Automating the planning, as it may occur in active vision, however,requires the development of strong strategies for �nding optimal or at leastsatisfying observation con�gurations.{ The selfdiagnosis, based on the precision and sensitivity analysis, does notgive indications on the probability of the result to be correct. This wouldenable the calling routine to react in a more speci�c manner or to use thisprobability for further inference.It would, however, be of great value if all orientation procedures would o�erat least the available measures for making a proper selfdiagnosis in order toobjectify the quality of the very �rst steps within image analysis.A Algebraic expression for the normal equations of spatialresection with four parts in symmetric position.Let points Pi with coordinates (xi; yi; zi); i = 1; : : : ; n in the camera system begiven and observed in the image. The linearized observation equations for theimage coordinates (x0; y0) depending on the 6 orientation parameters, namelythe rotation angles !; '; � and the position (x0; y0; z0) of the projection centrecan be expressed asdx0i = � cH z0dx0 � x0iHz0dx0 � x0iy0ic d! + c(1 + x02ic2 )d�+ y0id� (35)dy0i = � cH z0dy0 � y0iHz0dy0 � c(1 + y02ic2 )d! + x0iy0ic d'� x0id� (36)valid for each image point P 0(x0i; y0i). c is the camera constant.In case n = 4 image points lie in symmetric position (�d;�d) in the image(cf. Fig. 7) and the z-coordinates of the points Pi(xi; yi; zi) in the coordinatesystem of the camera are equal to H = zi, we can collect the coe�cients of the8� 6 matrix X as in the table below.The algebraic expression for the normal equation matrix N = XTPX as-suming weights 1 for the observations is given byN = 0BBBBBBB@ 4 c2H2 0 0 0 �4 e2H 00 4 c2H2 0 4 e2H 0 00 0 6 d2H2 0 0 00 4 e2H 0 4 e4c2 (1 + d4e4 ) 0 0�4 e2H 0 0 0 4 e4c2 (1 + d4e4 ) 00 0 0 0 0 8d21CCCCCCCA (37)



30 Wolfgang F�orstnerFig. 7. shows the normalized situation for spatial resection used as a reference forprecision.
Table 6. i dx0 dy0 dz0 d! d� d�1 x0 = +d � cH 0 � dH � d2c e2c +dy0 = +d 0 � cH � dH � e2c d2c �d2 x0 = �d � cH 0 + dH + d2c e2c �dy0 = +d 0 � cH � dH � e2c d2c �d3 x0 = �d � cH 0 + dH � d2c e2c �dy0 = �d 0 � cH + dH � e2c d2c +d4 x0 = +d � cH 0 � dH + d2c e2c +dy0 = �d 0 � cH + dH � e2c � d2c +dDiscussion1. The normal equation matrix is sparse. It collapses to two diagonal elementsand two 2� 2 matrices. This allows algebraic inversion (which may be usedfor a direct solution of the orientation in real time applications).2. The correlation between x0 and d� (y-rotation), y0 and d! (x-rotation) isgiven by�y0! = ��x0� = N24pN22 �N44 = 4e2Hr4 c2H2 � 4e4c2 (1 + d4e4 ) = 1r1 + sin4 �2 (38)as d=e = sin�=2 (cf. Fig. 7).3. Taking the square root N1=2 ofN is trivial for the diagonal elements for dz0and d� and requires to take the square root T 1=2 of two 2�2 matrices T whicheasily can be determined using the eigenvalue decomposition T = D�DTyielding T p = D�pDT (39)
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