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Preface: Estimation theory was one of the first tools Bernhard Wrobel took into his hands when
switching from his research in physical geodesy to photogrammetry, documented in his report prepared for
the survey department at Bonn (WROBEL 1971). The classical Gaufi-Markov model was used to solve the
aerotriangulation with independent models. This setup conceptually is equivalent to the technically more
demanding but in this application more intuitive Gauf-Helmert model. The so called Anblock method
leads to nonlinear socalled pseudo observation equations which, however, are linear in the observations
and all unknown parameters and practically do not require approximate values.

The following paper picks up recent developments in estimation theory which lead to an eigenvalue type
solution which also practically requires no approximate values. However, it may be extended to problems
which are described by constraints which are just linear in the unknown parameters, not necessarily in
the observations. Using the classical reduction of the Gauf-Helmert model to the Gaufl-Markov model
using the pseudo observations yields a very concise estimation procedure.

The method is applied to the spatial forward intersection with points and lines using recent develop-
ments in projective geometry.

Abstract The paper presents tools for optimally estimating 3D points and lines from 2D points and
lines. It uses algebraic projective geometry for representing 2D and 3D geometric entities, perspective
projection and its inversion. The uncertainty of the entities can easily be integrated. The direct solutions
do not require approximate values.

1 Motivation

Estimating 3D points from image points is a classical task in Photogrammetry. Automatic image pro-
cessing allows to easily extract image line segments enabling to reconstruct 3D lines, besides points. In
case of polyhedra, which may be used for a large class of man made objects, image line segments may
also be used to determine 3D points and image points may be used to determine 3D lines.

Algebraic projective geometry allows to represent 2D points and lines, and 3D points, lines and planes
in a way which simplifies geometric reasoning. More specifically, all pairwise relations between geometric
entities yield bilinear expressions in their parameters. This allows simple error propagation.

Unfortunately the classical representations for 3D points and lines and their images lead to highly
nonlinear expressions in the observation or condition equations, which makes approximate values for
the initialization of the estimation procedure indispensible. Moreover, the relations are nonlinear in the
sense, that products of observed and unknown quantities occur, which requires the use of the Gauf}-
Helmert model, also called mixed model or standard problem IV in adjustment theory. This model has
the disadvantage, that the linearized constraints need to be linearily independent, which is difficult to
guarantee in practical cases.

In case the unkown parameters occur linearly in the condition equations minimizing the contradiction,
or the algebraic error allows a direct solution for the unknowns. It consists of determing the eigenvalue
of a symmetric matrix, depending on the observed values. The solution has the disadvantage of being
suboptimal in a statistical sense. Recently Leedan (LEEDAN 1997) has extended this method to yield
an ML-estimate (cf. (MATEI & MEER 1997)), moreover, also in the case of heteroscedastic observations,
i. e. observations with different precision and possibly with correlations, assuming that each observation
only takes part in one set of conditions and that correlations only occur between observation taking part
in one set of condition equations.
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This paper wants to show the advantage of linking algebraic projective geometry with estimating
parameters using the direct solutions based on an eigenvector determination, replacing the solution of a
linear equation system.

Estimating in the Gauf}-Helmert model has been discussed thoroughly by Bernhard Wrobel in the con-
text of the model block adjustment (WROBEL 1971). Especially the transformation of the Gaufl-Helmert
model into the Gaufl-Markov model, which yields pseudo observations with an adequated covariance
matrix will be essential in our development.

The paper derives an explicit estimation procedure and demonstrates the feasibility with an example
from object reconstruction.

Notation: We denote coordinate vectors of planar geometric objects with small bold face letters, e. g. x
in 3D space with capital bold face letters, e. g. X. Vectors and matrices are denoted with slanted letters,
thus  or R. Homogeneous vectors and matrices, which do represent the same object when multiplied
with a scalar A # 0, are denoted with upright letters, e. g. x, A oder TT. Proportionality is denoted with
= e. g. x = \x. We use the skew matrix

0 —XI3 I
S(x)=| =3 0 -n (1)
—I2 X1 0

of a 3-vector © = (1,2, 23)" in order to represent the cross product by:

axb=5(a)b=-bxa=-50ba (2)

2 REPRESENTATIONS

2.1 Relations and the Principle of Duality

We represent all geometric entities with homogeneous coordinates. They are elements of a projective
space, as they may also be elements at infinity, e. g. a point at infinity being the intersection of two lines
which are parallel.

We use two basic operations to derive one geometric entity - from two others a and f:

1. The join v = a A B of two entities yields the linear space containing both entities. E. g. a line in
2D or 3D can be interpreted as the join of two points.

2. The intersection § = aN B of two entities yields the common linear subspace of both entities. E. g.
a line in 3D can be seen as the intersection of two planes.

In projective space holds the principle of duality. Each geometric element has a dual element. In 2D
points and lines are dual, in 3D points and planes are dual. The dimension of dual elements adds to
n + 1, where n is the dimension of the space of the element. Therefore to each line in 3D space having
dimension 2 there exist a dual line. Moreover, join and intersection of two geomentric elements are dual
operations. The incidence relation is dual to itself. The principle of duality now states: if an expression
is true, its dual is also true. The dual expression is optained by exchanging all elements and relations
with their dual. E. g.: The statement "Two distinct 2D lines intersect in a unique point.’ is dual to the
statement "Two distinct 2D points are joined by a unique line.” We will observe, that this principle is
valid for all the following algebraic relations.

2.2 Points, Lines and Planes

Points p(x) and lines [(1) in the plane are represented with 3-vectors:

u a
X = v 1= b
w c

resp. which can be derived from the usual representation

cos ¢

x
x=w| y I1=vVa?2+b2| sing

1 —d
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where the factors can be chosen arbitrarily # 0.
Points P(X) and planes £(A) in 3D space are represented with

U A
14 B
X = W A= c
T D
resp. which can be derived from the usual representation
X Ng
x=1| Y A=Vaipyc2| ™
A n,
1 —d
where again the factors can be chosen arbitrarily # 0.
Lines L(L) in 3D are represented with their Plicker coordinates
Ly
L,
| Ls | _( L
| -(2)
Ls
Le

It can be derived from two points with Euklidean coordinates X and Y

Y-X Y-X X-Y X-Y
W) =( x5y )= (soov ) == (smx )=~ (Fax ) =1ax @
Observe, the line coordinates are linear in X; and in Y; and change their sign with the exchange of the
points. Also, changing the points generating the line does not change the ratio of the line parameters.
E. g. exchanging X by X + MY — X) leads to (1 — A)L. Therefore the line parameters are independent

from the generating points.
The dual line L(L) in 3D space is given by

(%)

With the matrix

it can be written as

As C> =T we have L = L.
The line parameters have to fulfill the Plicker condition

1— 1
LiLy+ LyLs + LsLg = L' Lo = iLTL = 5LTCL =0 (6)

which is clear, as L =Y — X is orthogonal to Ly = X x Y.

2.2.1 Relations between Geometric Entities

All links between two geometric elements are shown to be bilinear in their homogeneous coordinates, an
example being the line joining two points in 3D in (4). Thus the coordinates can be written in the form

7 = Ale)B = B(B)a

Thus the matrices A(a) and B(8) have entries being linear in the coordinates. At the same time they
are the Jacobians of ~:

oy oy
a8~ Ala) - =B()

In detail we obtain the following relations:
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1. The line /(1) joining two points p(x) and ¢(y) in the plane is given by

l=xAy=xxy=S(x)y=-S(y)x=-y xx

(7)

The join in 2D obviously is equivalent with the cross product of the homogeneous coordinates.

This can be shown easily: A point x lies on the line 1if 1"x = 0 as known from the Hessian normal
form. As1"x =1TS(x)x =1"x x x = 0 and 1"y = —1S(y)y = 1"y x y = 0 both points lie on the

line.

2. The intersection point p(x) of two lines [(1) and m(m) is given by

x=l"m=1"m=1xm=51m=-S(m)l=-mnl

(®)

This is the dual situation to the previous one, as the homogeneous coordinates of dual points and

lineas are identical.

3. The line L(L) joining two points P(X) and Q(Y) in 3D space is given by (cf. (3))

L=XAY=T(X)Y=-TI(Y)X

with the matrix

X4 0 0 | —-Xi
0 X4 0 —-Xs
| o 0o xi|-X,
mX) = 0 X, X, 0 (10)
X3 0 -Xi 0
X Xi 0 0
4. The line I(L) being the intersection of two planes €1 (A) and e2(B) is given by
L=ANB=AAB=TI(A)B=CTI(A)B=T(A)B=-T(B)A (11)
with the matrix
0 X3 X5 0
X3 0 -Xi 0
v | =Xx2 X 0 | 0 |_
m(X) = X, 0 o x| = CTT(X) (12)
0 Xy 0 — X5
0 0 Xy | —X;

being dual to TT(X). Thus we could have written L = CL = A A B = TT(A)B. Multiplying with
C™' = C would have lead to (11). Observe that

THX)TT(X) =0

This is the dual situation to the the previous one, as analogeously, points and planes which are
mutually dual, have the same coordinates.

. The plane €(A) joining a point P(X) and a line L(L) is given by

A=XAL=TTX)L=ML)X=-TML)X=LAX (13)
with the matrix
0 —L3 L2 L4
_ L 0 —Li|\Ls | _
=1 _7, , o | |=T® (14)

—Li —Ly —Lg| 0

This can easily be seen if the line is the join of X = (X", 1)T and Y = (Y',1)T, thus L=XAY

as then SY-X) XxY
— X
ML) = ( -X"xY" 0 )

and therefore X A (X AL)=XTA=0and YA(XAL)=YTA=0.
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6. The point P(X) being the intersection of the plane €(A) and the line L(L)
X=ANL=AAL=TT"(A)L=T(L)A=-T (L)A=LNA (15)

with the rank 2 matrix

ML) = (L) (16)
This is the dual situation to the the previous one. Observe that
M(L)F(L) =0
Therefore the nullspace of (L), which we need later, is the column space of I'(L), thus can be

spanned by the two columns of (L) with largest absolute value. The same holds vice versa.

Incidence of two objects can use the inner products, namely for points and lines in the plane, for points
and planes in 3D-space and for pairs of lines

<x1>=x"1=0, <X, A>=X"A=0, <LM>=L™M=L"CM=0 (17)

The first two relations directly follow from the Hessian form of the 2D line and the plane. The last
relation can be derived from the coplanarity condition of four points. Observe the selfduality of these
relations. Also, the Pliicker condition can be expressed as

<LL>=L'CL=0
The incidence of a line L with a point X or a plane A can be expressed as
XAL=T (X)L=ML)X=0 ANL=T"(A)L="(L)A=0 (18)

Both constraints result from the fact that the plane X A L and the point A N L generated from two
incident entities are indefinite, thus their homogeneous vectors are 0. Observe, both constraints only
represent two geometric constaints (FORSTNER et al. 2000), e. g. the line needs to be parallel to the
plane and have distance zero. They are linear in the coordinates of both entities which will be intensively
used in the following.

Table 1 summarizes the expressions for constructing new geometric entities.

Table 1: Construction of new geometric entities. The matrices S, TT, TI, T and T are given in egs. 1,
10, 12, 14 and 16 resp. All forms are linear in the coordinates of the given entities allowing rigorous
error propagation.

entity link expression eq.
p(x), q(y) l=pAg 1=S(x)y = -S(y)x (7)
1(1), m(m) p=IlNm x = S(I)m = —S(m)1 (8)
PiX),P,(Y) [ L=P, AP, | L=TI(X)Y =-TI(Y)X | (9)
€1(A),e2(B) | L=e1Nea | L=TI(A)B =-TI(B)A | (11),(5)
PX),L(L) | e=PAL | A=TT (X)L=ML)X | (13)
e(A), L(L) P=enL | X=T"(A)L=T(L)A (15)

2.2.2 Uncertainty of Geometric Entities

The uncertainty of the geometric entities can be represented by their covariance matrix. Due to the
homogeneity of the representation the covariance matrices do not have full rank. All entities, except 3D
lines, have covariances with rank deficiency 1, due to the unknown scaling; 3D lines have a covariance
matrix with rank deficiency 2, due to the additional Pliicker condition (6).

For testing and inversion we need the nullspaces of the covariance matrices. In case the given covariance
matrix already has the correct rank, we only need to know its null space H. The pseudo inverse can be

determined from )
=+ —H(HTH) ! S H\
—H"(H"H)~! 0 “\LUH" o (19)
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As the product of both matrices is / we find XH = 0 and X7 H = 0. The calculation using the inversion of
an extended matrix is more efficient than the use of the explicit expression 2+ = (S4+H(H'H)"'H")~1 -
H(HTH)"'HT.

In case we fix the length of the geometric entities and take the Pliicker condition for 3D lines into
accout we have the following null spaces of the covariance matrices:

N(Emv) =X, N(Z”) = 1, N(EX)() = X, N(EAA) = A, N(ELL) = (L,f) (20)

These null spaces can be used to enforce the covariance matrix to have the correct rank.
In case the given covariance matrix of an entitiy is 2 and does not have the correct rank, the
covariance matrix we will use can be determined by

Spe = P,ZOP,, with P, =1—H(H"H) 'HT (21)

where H is the null space of the geometric entity.

We finally may use error propagation or the propagation of covariances of linear y = Ax functions of x
with covariance matrix ¥, leading to X,, = AX,, A" to obtain rigorous expressions for the covariance
matrices of constructed entities v = A(a)8 = B(B)a:

Yoy = A(a)ZsAT (@) + B(B)ZaaB'(B)

in case of stochastic independence.

2.3 Projection and Inverse Projection
2.3.1 Points

The projection of a 3D point P(X) onto the image plane yields the image point p'(x') via a direct linear
transformation (DLT, cf. Fig. 1).

u! 17 <1,X >
x' =PX or o =1 2T |X=]| <2,X>
w' 37 <3,X >

with the projection matrix
P=KR(Il|l-X,)

where (-]-) denotes concatenation.

The 3 x 4 projection matrix P can be explicitely related to the 6 parameters of the exterior orientation
and 5 parameters of the interior orientation namely the Euclidean coordinates X, of the projection centre
0O(X,), the rotation matrix R, the principle distance ¢, the coordinates (x’;, y}) of the principle point,
the shear s and the scale difference of the z'- and the gy’-coordinates. The parameters of the interior
orientation are collected in the 3 x 3 calibration matriz

c cs zhy 1 s xhy c 00
K={ 0 cl+m) oy |=|0 1+m 4 0 c 0 (22)
0 0 1 0 0 1 0 01

It is an upper diagonal matrix and can be arbitrarily scaled, if no interpretation of its elements is required.
Observe the part R(I| — X,) transforms the object coordinates into the camera system, the second factor
Diag(c,c,1) of the calibration matrix performs the projection and the first factor the calibration.

The projection matrix in general has rank 3 and the null space of its transpose is the homogeneous
vector X, = (X I, 0)" of the projection centre as PX, = 0. Therefore the three row vectors 1, 2 and 3 of
the projection matrix P can be interpreted as the parameters of planes. The vector 1 is a plane through
the lineuw' = 0asuw' =1-X =< 1,X >=0, for all X and passes through the projection centre. Similarily
2 is a plane through v = 0, and 3 is the focal plane parallel to the image plane, as then w' = 3-X = 0.
The three planes intersect in the projection centre:

X,=1n2N3
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Figure 1: shows the geometric situation for the projection of a 3D point X and a 3D line L into one
- - T

image, yielding the image point x' = PX and the image line 1 = PL. The projection ray L' = P x' and

the projection plane A' = PTY' can easily be determined using the projection matrices for points and lines.

1N2 213

X 3n1

2.3.2 Lines

A similar projection relation holds for 3D lines. We obtain the direct linear transformation of 3D lines
(FAUGERAS & PAPADOPOULO 1998, FORSTNER 2000)

a' iT <1,L>
I'=PL or ¥ | = 2T |[L=| <2,L>
c 37 <3,L>
with the 3 x 6 projection matrix P
(2n3)T
P=( B3n1)T (23)
1n2)T

Its three rows are 6-vectors representing 3D lines, namely the intersections of the principle planes, thus
the three coordinate axes of the camera system.
2.3.3 Inversion

Inversion of the projection leads to projection rays L' for image points x’

L'=P'x' =u/'2n3+v'3N1+w'1N2 (24)

The expression for L' results from the incidence relation x''1' = 0 for all lines ' = PL passing through

x', leading to (x''P) L = < L/,L, >=0.
A similar expression can be given for the projection planes A’ for image lines I
A'=P'I'=d1+b2+(3 (25)
The expression results from the incidence relation 1'' x' = 0 for all points x' = PX on the line I, leading

to (I''P) X =< A/, X >=0.

3 ESTIMATION

3.1 Best Estimates

We assume our estimation problem to have a special structure:
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1. We want to determine U unknown parameters §,,u = 1,...,U, collected in the vector 3. We have
I groups of observations y;,¢ = 1, ..., I having n; observations each. They may be collected in the
vector y with length N = 3. n,.

2. In our application we assume each of the I groups of observations to be linked with the unknown
parameters 3 by a set of m; constraints w;;,j = 1,...,m; collected in the vector

wi(y;,0) = A;r(yz) B=0 (26)

leading to the M = )", m; constraints
w(y,8)=A"(y) =0 (27)
The essential part is the linearity of these constraints in the unknown parameters and their homo-

geneity'.
We later assume the constraints also to depend linearily on the observations, thus being of the
structure

wi(y;,8) = Ai(y;)B = Bi(B)y; =0 (28)
The constraints are supposed to be valid for the true values of the unknown parameters and the
observations. They should also hold for the fitted values 4 and (3.

With the matrices
Ai(yy)
Aly) = B(83) = Diag(B;(8))
Ar(yr)

the bilinear constraints can be written as
w(y,8) =A(y)B =B(B)y =0

3. Due to the homogeneity of the constraints (26) we need the additional constraint between the
unknown parameters only

BTB=1 (29)

4. In case of estimated 3D lines we in addition have the Pliicker condition LTL = 0 being a constraint
of the form 1

5 BTCB=0 (30)

5. The observed values are uncertain, their uncertainty is given by

Q ~ N(ga Eyy) = N(ga Dlag(zyzyz))

stating the groups to be mutually independent, however allow for full covariance matrices within
the groups, the tilde ~indicating the true value.

The optimal estimate B for B is given by finding the minimum

1 1
Q= @-9)' L@ -y =5 > G- 1) =, G- ) (31)
i=1
under the given constraints. Observe, we allow the observations to be correlated with a covariance
matrix not having full rank. The effective number of observations then will be lower than N namely
Zz’ rk (Eyiyi)'

We will split the estimation problem into two parts: The first one takes only the basic constraints
(27) and the normalization constraint (29) into account. Instead of iteratively solving a set of normal
equations we iteratively solve an eigenvalue problem, which practically needs no approximate values. The
solution is a direct generalization of the classical procedure for directly solving a problem of type (26)
with constraint groups of size 1.

The second step then updates this estimate based on the additional constraints (30).

This two step procedure is due to Matei et al. (MATEI & MEER 1997, LEEDAN 1997). In our case the
basic constraints are all bilinear which leads to a simplified procedure.

'In case they are not homogeneous, the following expressions become more involved (MATEI & MEER 1997)
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3.2 Minimizing the Algebraic Distance

We first give a solution which does not take the uncertainty of the observed values and the additional
constraint into account. Thus we give a solution to the problem

B ~T~
Al@)B=0,I=1,..1 Bp=1

The first constraint will not be fulfilled by the given observations y; leading to the residuals of the
constraints

Therefore we minimize the algebraic distance

I I
=) wiwi=g" (Z Ai(y;) AJ(w)) B under pBTA=1
i=1 i=1

This minimization problem leads to the solution:
B= €;|\i(M) = min

stating the optimal estimate B to be the smallest normalized eigenvector of the matrix

I
M= Aily) Al () = Aly) A" ()
i=1

This is a direct solution, as no approximate values are necessary. This solution can also be used in case
the constraints are linear only in the unknown parameters but possibly nonlinear in the observations (cf.
(Dubpa & HART 1973), pp. 332, pp. 377 and (TAUBIN 1993)).

The solution obviously is suboptimal as it depends on the mutual scaling of the observations and does
not take into account their uncertainty. Taubin gives a solution which is invariant to the scaling of the
variables (TAUBIN 1993), which is identical to the optimal solution for uncorrelated observations with
the same variance. Matei and Meer give a solution to the case of observations of different weight.

3.3 Minimizing the Weighted Algebraic Distance

The following solution is equivalent to the one of Matei and Meer 2. but it is much simpler.
We just need to take the uncertainty of the residuals w;(y;,3) of the constraints into account. This

follows from (26)
T
awi yzaﬂ
A) Yyiyi ( 7{; ) A) (32)
y=7,6=P Yi  ly=g.5=p

This leads to the following optimization problem which in case of normally distributed observations yields
the ML-estimate: Minimize the form

S = (Li(y“ﬂ)
o Jy;

WiWq

1
Q=w'S} w= z w, X} . w; = min (33)
i=1

under the given constraints. The pseudo inverse is to be taken in case the constraints are linearily
dependent.
It is known from adjustment theory, that the minimum of

~T ~
Q= E;‘y =w's! w
from (31) is identical to the minimum of Q in (33) in case the same constraints are used.
The reason is that the two models, the Gau3-Helmert model
cy +AAJ —Be=0 D(e) =3, (34)

with
cw = w(y?,89) + By —y) (35)

2except for the bias, which is taken into account in theirs.



Forstner 78

and the Gauf3-Markov model
—¢, +v=AAB  D(v)=B%,B' (36)

with
v = Be

under the same constraints lead to the same normal equation system, thus to the same estimates and
therefore to the same sum of the weigthed squared residuals (cf. Appendix). Here B(A3) is identical to
the Jacobian in (32). This reduction of the Gaufl-Helmert model (34) to the Gaufl-Markov model, also
called the Vermittelnde Ausgleichung (36) here leads to the Quasi vermittelnde Ausgleichung useful for

modeling the block adjustment with independent photogrammetric models (WROBEL 1971).

We now specialize to the structure of our constraints. Together with the factorization of w we therefore
need to find the optimal value for 8 minimizing

Q=8TAT(y) (B(ﬂ)EyyBT(ﬂ))+ Ay) B

under the constraint .

B B=1
This leads to the optimal estimate B being the normalized eigenvector corresponding to the smallest
eigenvalue of the matrix® (see appendix eq. (55))

M = AT (3) (B(B)EWBT(Z?))+ Aly)

Observe, we need the estimated values 3 for the error propagation of w(y, ,[A-]) in B(B)Eyy BT(E) and the

fitted observations g in the left factor AT(g). Therefore we need to iterate. This is done by using the

~ —1 ~ — . . . .
unknown parameters (3 (=1 and the fitted observations y(" Y from the previous iteration and determine

~(Vv

the minimum eigenvector 3 ) of

~(vr—1) ~(v—1)

AT@GY ) (B(ﬂ )2,,B7(B B =x3"

+
)) Aly) B =ApB (37)
The fitted values of the observations can be determined individually from

~v=1) ~(v—1)

(1) _ T 120D\ o1 50D
Y; =|1-%,,B;B ) | Bi(B )2y.4:B; (B ) B; (B )| Yi (38)

AT~
Taking the constraint 8 8 = 1 into account we also can determine the covariance matrix EEE of the
estimated value from

555 = [AT@) (BB)Z,B(B)) AG)I* (39)

using its null space A3 in (19).
The estimated variance factor is given by:
Q
% =5 40
0o R ( )
where Q is taken from (33) and the redundancy R is the number of effective constraints G o reduced by
the number of effective unknowns U — 1, i. e.

the number of unknown parameters 3; being U. In case the redundancy is large enough, say > 30, this
can be used to determine the estimated covariance matrix of the unknown parameters

o ae
Y55 =00%pp

3Matai and Meer first take the Jacobian of © with respect to the unknowns B and from that derive a generalized
eigenvalue problem to solve for 8. Here we obtain an ordinary eigenvalue problem.
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3.4 Further Constraints

In cased further constraints are to be fullfilled we need to update the estimate. This is performed using
the method of constraints between the observations alone by taking the estimates 8 as observations and
impose the desired constraint.

In case these further constraints are of the form

h(B) =0
the optimal estimate is given by R
B=p-¢
with R
€=55J(J"255)) " h(B)
where T
,_ (@)
op B=B©

is the Jacobian of the constraints evaluated at an initial value for the final estimate. This induces an
iteration procedure, which however, will converge quickly in our case, as the initial values are very close
to the final estimate.

In our case we have the constraint h(8) = %ﬂT CB = 0 with the Jacobian

J=cp»
with
O =p
in the first iteration. Therfore the estimate can be obtained iteratively from
2 . ~ AT ~
B=B-25CB(B C'25;CH)"h(B)

This can be simplified using

o} =B CT=;5CB (41)
to R
p =B85 (42)
The covariance of the final estimate is given by
S =% - 3 BB CTR (43)
B BB 27BR 3B

The estimated variance factor of the complete estimate can be determined from

h2

QO+ —

5 %
° R+1
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Figure 2: shows 3D point X7 observed from 4 cameras. In two of the images the point is observed, namely
X7, in image 1 and X45 in image 3. In the other two images 2 and 4 two lines Ly and Ly are observed
leading to 1}, and l},. Estimation of X7 uses the incidence of the projecting lines Lh, and L5 and of the
projecting planes Al, and Al, with the 3D point X;.

AXOZ

o3

R
[/
.

4 SUBOPTIMAL ESTIMATES FOR 3D POINTS AND LINES

4.1 Minimizing the Algebraic Distance for Estimating 3D Points

We want to determine the coordinates of a 3D point (cf. Fig. 2). We assume I image points x}, and
J image lines 13'19 to be observed, the second index indicating the image in which the feature has been
observed. The observed points are images of the unknown 3D point, the observed lines are images of 3D
lines passing through the 3D point.

We first want to give the solution for a 3D point X when minimizing the algebraic distance.

We have the point-line constraint for the i-th point x}, observed in the k-th image using (18)

0 =wir = X AL}, = [(L})X
with the projecting ray L} from (24)
L = ﬁ’lXék
We also have the point-plane constraint for the j-th image segment 1%, in the k-th image using (17)
0=wj, =< A}, X >= ATX
with the projecting plane A’ from (25)

1 _plTy
Ajk—ijk

E T E 2
Q= Wi Wik + ka
ik ik

Minimizing

is identical to minimizing

-
Q=X" ZFT( i) ( h)*‘ZA;’kAjkl X
ik ik
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Figure 3: shows 3D line Ly observed from 4 cameras. In two of the images the line is observed, namely
1L, in image 2 and 1, in image 4. In the other two images 1 and 3 two points X1 and Xo on Ls are
observed leading to x|, and x4;. Estimation of Ly uses the incidence of the projecting lines L}, and L,
and of the projecting planes AL, and AL, with the 3D line Ls.

AXOZ

o3

05

under the constraint X"X = 1. The direct solution is given by the smallest normalized eigenvector of

.
M= Z MM (L)L) + ZA}kAjkl
ik jk

X o4

4.2 Minimizing the Algebraic Distance for Estimating 3D Lines

Analogically we can setup constraints for an unknown 3D line L (cf. fig. 3).
In case we observe the j-th line 13. & in image k we have the line-plane constraint, namely the projecting
plane A;- to pass through the 3D line

where the projecting plane again can be determined from A;- = PZI} &
In case we have the image point x}, of a 3D point lying on the unknown 3D line we have the line-line
constraint, namely the projection ray L, to pass throught he unknown line
T
~T
where again the projecting line can be determined from L}, = P x},. Minimizing

2 T
Q= E Wi + E Wik Wik
ik ik

is identical to minimizing
— =T
Q=L" ZLz’kLlik + Z TT( Q'k)TrT( i) | L
ik ik

under the constraints LTL = 1 and LTL = 0 The direct L solution for L without the second constraint
is given by the normalized smallest eigenvector of

1
N = ZLikLlik + Z TT( Q'k)TrT( i) (44)
ik ik
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The final solution, which takes the Pliicker constraint into account can use C8 = CL = L in (42) and
is given by

L=L- EEELU%
with
h=s<Bi>
2
and

4.3 Minimal Solutions

The above mentioned direct solution require a minimum number of observations to be available.
The estimation of the 3D point is possible if we have

1. at least two non parallel projecting rays L' or
2. at least three pairwise non parallel projecting planes A’ or
3. at least one projecting ray L' and one non parallel projecting plane A’

Then the rank of the matrix M is three.

The estimation of the 3D line is possible if we have
1. at least two non parallel projecting planes A’ or

2. at least one projecting plane A’ and two projecting lines L' which are not parallel to A’ and do
not meet the plane in the same 3D point.

3. at least 5 (!) linearily independent projecting lines L’ or

Then the rank of the matrix N is five.

Actually there is also a minimal solution for the 3D line, having four degrees of freedom, in case of only
four lines meeting it. The matix N then has rank 4, thus there is no unique eigenvector corresponding to
the smallest eigenvalue. If the nullspace of N is spanned by the two vectors e; and es the unknown 3D
line is

L=2Xe;+(1-MNey

for some \. The Pliicker condition
LTCL=0

leads to a quadratic condition for A, which then yields two solutions for the unknown line. This special
solution, however, is not contained in the general setup.

5 ML-ESTIMATION OF 3D POINTS AND LINES

5.1 Optimal 3D Points

Now take covariances into account. .
The covariance of the i-th residual wy, = TT (X)L}, of the point-point constraint is given by

20 b = T XO)D,, p, THE®)

Wik Wik

where the Jacobian dw;;, /0y = m ()A((")) needs to be evaluated at the estimated 3D point. The covari-
ance matrix of the projecting line L}, can be determined from

~T -
EL'IikLik = Pk Ez{ikzl Pk

ik
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assuming the orientation parameters to be error free. The variance o2, , of the j-th residual wj;, = xT A'
of the point-plane constraint is given by

ijk (X(V)) EA};@A;-;C (X(V))
The covaraince matrix of the projection plane A;- can be determined from
T
Xa, A, =PrXe i Py

Omitting the iteration index we need to minimize

— T s+
Q - Z WikEw,-kw,-k
ik

or
Al AT
ZFT w,kwlkr( {Lk) +Z 2 : X
ko
AT~
under the constraint 3 8 = 1.
The solution therefore is the smallest normalized eigenvalue of
_I_
M= (L X)Zr, 1, TX) (45)
ALY ) Zk Koy X

The determination of M needs to use the fitted values )A( L . and K; & initiating an iteration scheme.

For determining the pseudoinverse of ¥, = il ( VXL L:Tl'(i) we need its rank. The point-point
constraint w = 0 has two degrees of freedom, which easily can be seen in case the line is approximately
parallel to the Z-axis through the origin: then a point in the XY -plane close to the origin lies on the
line if its two coordinates are identical with those of the intersection point of the line with the XY -plane.
Therefore the rank of X,,,, is 2, and the null space has dimension 2.

The covariance matrix of the optimal point is

— Mt
E)A(X_M

using (45) where the nullspace X is taken to determine the pseudo inverse with (19).

5.2 Optimal 3D Lines

The procedure is similar for the estimation of 3D lines.
The covariance of the j-th residual wj;, = TI'T(A;.k)L
by

T(L)A’, of the line-plane constraint is given

pCONN G OO >SRN ol N
ik ik

where the Jacobian 0w, /0y = F(f;(")) needs to be evaluated at the estimated 3D line. The covariance
matrix of the projecting line A;- can be determined from

_pT
Xaran, =PpXy v P

The variance o2, of the i-th residual wy, = L' Z-TkL of the line-line constraint is given by

) ~)\ T ~(v)
O = | L Y, (L

The covariance matrix of the projection line L, can be determined from

S, = PiSa o Pa
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Figure 4: shows three images of a polyhedron. In each image the four points X;,1 =1,2,3,4 and the three
lines Lj,j = 1,2,3 have been observed. Based on hypotheses about the object, image points may be used
to determine the geometry of the 3D line and image line segments can be used to determine 3D points.
Observe, point 1 in the right image 3 does not correspond to the others. The coordinate system is in the
centre of the polyhedron. On the right hand the numbering of the points and lines is given together with
the coordinate system.

Omitting the iteration index we need to minimize

sz Zk +Zwkzw3kw1k
ik

or

) T
o-ur ¥ B "“+Z” )50 T (AG) | L

ik wzk

under the constraints LTL =1 and LTCL = 0 R
When only taking the first constraint into account we therefore obtain the estimate L as the smallest
normalized eigenvalue of

i L i =T =\t
N = ZAT A S TT(AY) (FE)Z a4, T (B) T (AL) (46)
R SR T

~ PN
Observe, the determination of the matrices (L) in N needs to be based on the fitted values L, L;; and
K; &, initiating an iteration scheme.
The rank of 3, ;, again is 2 allowing to determine the pseudo inverse.
Taking the Pliicker constraint into account we obtain the final estimate

~ ~ ~T .
PN T ~ o~ =~
=L- ;71‘ EL +CL=L—%7A£ LAN+L
The covariance matrix of the final estimate now is
1 ~~T
Yoz =3pp = U_%LEEELL Yit

using 77 = N* in (46) with its nullspace L.

6 EXAMPLES

Fig. 4 shows three images of a polyhedron. The three projection matrices P; for points have been
estimated using a DLT based on 13 observed points exploiting the special structure of the polyhedron.
The object coordinate system is in the centre of the polyhedron.



Forstner 85

We give the projection matrix P53 here

0.062307122  0.0070222277 —0.064360979 —0.61856139
Ps = 0.021465382 —0.086378179 0.0037555823 —0.77547722
—0.026349715 —0.023352877 —0.061182468 —2.6455633

The three projection matrices P; have been derived from P; based on (23). The transposed projection

matrix Py is:

0.0053725339  0.0019326512 —0.0055330116

0.0012143465 —0.0055079970 —0.0016155325

BT _ —0.0027773188  0.0012700169 —0.0055327105
T 0.077221631 —0.18113636 0.035040097
—0.21040932  —0.033022936 0.058875784

0.057381241 0.13242593 —0.052233531

We analyse the aggregate of four points with the given object coordinates:

42 2 2
E(X1,X2,X3,X4)=| 00 2 0
000 2

The three neigbouring lines L; are
E(Ly) = E(X2) A E(X41) = (1,0,0,0,0,0)"
E(L2) = E(XQ) A E(X3) = (07 1,0,0,0, 2)T

E(Ls) = E(X3) A E(X4) =(0,0,1,0,-2,0)T

where 22 denotes proportional to.
We automatically measured and numbered the following points in the three images using the software
package FEX (FucHs 1998) (cf. fig. 4:

L 1 178.653 195.386 172.133 240.403
(331,332,$3,.'B4)1 =

1000 \ 211.444 255.175 283.147 254.897

(mlla ml27 "I:I37 wfl)Z

1 168.716 196.003 180.674 239.210
1000 ( 230.514 258.052 301.273 257.671 )
1 164.776 182.537 173.359 220.103

1000 ( 261.775 271.594 327.718 257.569 )

(mlla 33,23 wga -'1551)3

We might confirm point 2 in image 3 by projecting the ideal point:
—.493947 183.06_3
E(xbs) = P3E(Xy) = | —.732546 | = | 271.49
—2.69826 1

We also measured and numbered the following three line segments in image 1:

0.914567  0.768382  0.014422
(1,,1,,15); = | —0.404434 0.639991  0.999895
—76.67_5 —314.36_5 —258.05_3
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The image line segments in image two are:

—0.685392 0.934881 —0.031488
1,115, = | 0728173 0.354959  0.999504
~50.14 3 —275.61 3 —250.13 3

The image lines in image three are

—0.377482  0.985130  0.360059
(1,1,,15)s = | 0926016  0.171807  0.932929
—179.60_s —227.09_3 —318.85_5

We might confirm line 3 in image 3 by backprojecting the ideal line
E(Ls) = E(X2) A E(X4) =(0,0,1,0,-2,0)"

using the projection matrix for lines:

o ~0.985263 0.357745
E(l) =PsE@s) = [ —0.171042 | = | 0.933819
0.336387 ~319.01_3

We now give the results for the estimated points, once when minimizing the algebraic error, once when
using the ML-estimate. As point 1 in image 3 is not corresponding to the points in the other images, it
is not used. We also give the estimated 7y, being the factor by which the standard deviations provided
by the feature extraction are too optimistic. The results for 3D points are:

point | type | X [mm] Y [mm] Z [mm] |red. Go[l] | o [mm] op [mm] o5 [mm]

1 alg. 3.90 -0.16 -0.14 4
opt. 4.20 0.03 009 | 4 1.56 0.35 0.27 0.31

2 alg. 1.95 -0.09 -0.06 | 12
opt. 1.99 -0.01 -0.07 | 12 2.08 0.88 0.70 0.96

3 alg. 2.04 1.89 -007 | 6
opt. 2.13 1.95 003 | 6 3.92 0.57 0.46 0.62

4 alg. 2.25 0.14 221 | 6
opt. 2.08 0.04 1.04| 6 4.41 0.49 0.41 0.58

The ML-estimates appear to be better than the algebraic estimates. This is confirmed by the average of
the 6 normalized distances compared with their mean. The r. m. s. distance reduces from 1.31 mm to
0.96 mm. The estimated values for & are in the range of 1.5 to 4.5 which suggests the estimates of the
feature extraction to be a bit optimistic. The standard deviations of the estimated 3D coordinates are in
the range betweeen 0.3 and 1.0 mm, point 1 being most precise and point 2 being worst.

The results for 3D lines are:

line | type | Lq[1] Lo (1] Ls[l] L4 [mm] Ls[mm] Lg[mm] |red. 0,[1]

1 | alg. | 0.999 0.009 0.008 0.000 -0.157 0.187 | 8
opt. | 0.993 0.041 0.105 -0.007 0.443 0.238 | 8 2.10

2 | alg. | -0.024 -1.000 0.019 -0.042 -0.378 -1.981 | 8
opt. | -0.081 -0.995 -0.062 -0.146 0.131 -1.908 | 8 1.02

3 | alg. | 0.102 0.067 0.992 -0.011 -2.018 0.138 | 8
opt. | 0.072 0.047 0.996 0.054 -2.085 0.095 | 8 2.00

The average angular between all pairs of 3D lines error increases from 5.58°% to 6.48°". The reason
might be, that the precision of the observed edges is not very high in this case, but due to the non
adequate weighting in the algebraic minimization do not influence the result, as the coefficients L;;, are
two orders of magnitude lower than the corresponding coefficients TT (A ;).

The results suggests that the a priori estimates for the variances of the lines might be too optimistic.
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7 CONCLUSIONS

The paper showed the advantage of new geometric and statistical techniques for classical problems in
photogrammetry. The rigorous use of projective geometry simplifies object reconstruction. The linearity
of estimation models w. r. t. the unknown pameters obviously is also of advantage in case the model
is nonlinear as such and in case the model also is nonlinear in the observations, as eigenvalue solutions
become possible which pose much less restrictions on the quality of approximate values, without loosing
tools for quality evaluation. These techniques need to be explored in further applications.

APPENDIX

Minimizing the quadratic form (31) under the constraints w(y, 3) = 0 and h(8) = 0 we have to minimize
the form

25,8 m) = 5y~ 9) 55,y ~ 5) + A\Tw(@ B) + uTh(B) (47)

where A and p are Lagrangian multipliers.
~(0
For solving this nonlinear problem in the classical iterative manner we need approximate values ﬂ(
N ~ ~(0 —_— =R =R — . . . —_— —
and y(o) for the unknowns 8 = ,8( ) + AB and ¥y = y(o) + Ay which contain corrections AZ and Ay.

With the Jacobians
6w(y,ﬂ)> oh(B)
o B=| —~—"72 ~oy H= | ——=~ 4,
p=300) ( 6y p=30) 6ﬂ ﬁ:E(O) ( 8)

dw(y,B) )
A= | 22D
( oB y=g y=g®

and the relation Ay = (y—ﬂ(o))—é we obtain the linear constraints w (¥, 8) = w@(o), B(O))+Az\ﬂ+BZ;\q

or w(@:ﬁ) =cCy + Az\ﬂ — Be and h(a) =cp+ HKTB with

~(0) ~(0)

co =w@®,8”) + By -5 =w@,8”) and  cn=nE") (49)

are the contradictions between the approximate values for the unknown parameters and the given ob-
servations and among the approximate values for the unknowns. Setting the partials of & (47) zero
yields

i3 P
% =-%te+BA=0 ‘;T =A"TA+H p=0 (50)
Y B
o — . 0% —
From (50a) follows the relation
e=3%,,B"\ (52)
When substituting (52) into (51a), solving for A yields
A= (BZ,,B") !(c, + AARB) (53)

Substitution in (50b) yields the symmetric normal equation system

( AT(Bzy;_,lBT)—lA I-(I]T ) ( Z\.E ) _ ( —AT(BE_yng)‘lcw ) (54)

The Lagrangian multipliers can be obtained from (53) which then yields the estimated residuals in (52).
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Up to this point all derivations are known. In our context the contraints are w (9, ﬁ) = A(;T/)B =0and
AT~ ~ — ~
h = 1B B — 1. This leads to H' = B. In the case of convergence we have A8 = 0 and ¢,, = A(y)B and

therefore the first equation of (54) leads to
wB =A@ (BZy,B") ' Aly)B (55)

This shows the unknown parameter vector to be an eigenvector of an unsymmetric matrix. We however
also find the following: As in the case of convergence AB = 0 the weighted sum of the squared residuals
can be rewritten

Q= aTZZry/é = ¢y, (BEy,B") By, - 2y - 2y BT (BEy,BT)ey
~T ~
= ¢, (BEyB ) e, =B Ay)"(BZ,,B ) TA®Y)B = w =, w

This proves minimizing Q = w' X} w leads to the ML-estimate.
The estimated variance factor is given by

a _ exte wrhw (56)
Geff —Ueff  Geff ~Ueff  Geff — Ueff

The redundancy R is the number of effective contraints

Gegr = Z rk (B, w;)

~2

above the effective number Uett
Ugg=U-H

of unknown parameters, which is neccessary for determinimg the unknown parameters.
We finally obtain the estimated covariance matrix

~

$55=5"%55 (57)

of the estimated parameters, where X35 results from N = [AT(Bx,,BT) 1At
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