NEW ORIENTATION PROCEDURES

Wolfgang Forstner
Institut fir Photogrammetrie, Universitat Bonn
Nussallee 15, D-53121 Bonwf@ipb.uni-bonn.de

KEY WORDS: projection matrix, camera calibration, camera orientatiself-calibration, Euclidean reconstruction,
projective reconstruction, direct linear transformatiessential matrix, fundamental matrix, trifocal tensor

1 ABSTRACT AND MOTIVATION

Orientation procedures are preceived as the central patt@bgrammetry. During the last decade the problem of deter
mining the interior and the exterior orientation of one orrmoameras has found high attraction in Computer Vision.

The problem was formulated newly within a projective franogkvfor several reasons: (1) often, the calibration of
the cameras in use was not known, nor could be determinedifi@), no approximate values for the orientation and
calibration parameters were available; (3) often, selibcation turned out to be instable, especially in case cdgm
sequences or of variable focal length; (4) special boundangitions, such as planar objects or the coplanarity optbe
jection centres allowed orientation and calibration wigkd corresponding points; (5) generating new views frorargiv
ones turned out ot be possible without calibration; (6) gsitore than two cameras with the same interior orientation
was proven to allow selfcalibration, after projective rastuction; (7) the epipolar constraint for image pairsad out
to be not sufficient for image triplets in practically releta@ases; last but not least: (8) orientation procedures wet
documented for non-photogrammetrists in photogrammiitiei@ture.

A set of new orientation and calibration procedures hasvebl

The imaging process is described in a projective framewSEMPLE & K NEEBONE 1952), explicitely interpreting
the 11 parameters of the direct linear transformation, dp#ie basis for a direct determination of the 6 parametergeof t
exterior and 5 parameters of the interior orientation. Ehegarameters guarantee the projection to map straiglt line
into straight lines. Cameras with some of these 5 parametgasown are called uncalibrated.

The relative orientation of two cameras with unknown caltlom can be achieved by a direct solution from cor-
responding points, leading to the fundamental mafphaving 7 degrees of freedom, establishing the coplanarity
epipolar constraint as matching constraint, and which eauaded to determine the two principle distances. Restri¢tio
calibrated cameras; reduces to the essential matixwith 5 degrees of freedom, already known in photogrammetry.

The relative orientation of three cameras with unknownbration can also be achieved by a direct solution, in this
case from corresponding points and lines, leading to thectl tensorT, having 18 degrees of freedom. It establishes
matching constraints for points and straight lines, andlzamwsed to determine a part of the calibration parameters of
the three cameras. Restriction to calibrated cameras esdoca metrical parametrization of the trifocal tensorhwliil
degrees of freedom, combining relative orientation of thet fivo cameras and spatial resection of the third.

The paper presents solutions to these problems useful f@oghammetric applications.

2 BASICS

We use homogeneous coordinates throughout the paper fotiaive outline in (BAUGERAS & PAPADOPOULO 1998)
indicating them with boldface upright letters. The vecterand Ax with A # 0 therefore represent the same object. We
distinguish geometric objects, nam@lgintsp(x) andlinesi(1) in the plane

x = (u,v,w)" = (z,y,1)7 1= (a,b,c)" = (cosp,sinp, —djg)"

relating the representation of the line to the Hessian nbfane with orientation¢ and distance to the origid,, and
points P(X), planess(A)

X = (U, V', W7T)T = (‘Yﬂya Z71) A= (AzB:C7D)T = (nw7ny7n27_dEO)T

again relating the representation of the plane to its Hasszamal form with normah and distance to the origit, and
lines L(L) in Plucker coordinatewvith their dual lineL(L) in 3D space

L= (Ly,Ly,Ls, Ly, L5, L) " L = (L4, Ls,Lg, Ly, Lo, Ls)T"

The line parameters have to fulfill thiicker condition

1 _
LiLs+ LoLs + LyLg = ELTL =0



It will be shown: the vectofL,, Lo, L3) is the direction of the line and the vect@t,, L;, Lg) is the normal of the plane
through the line and the origin. The Plucker condition egses the orthogonality condition of these two vectors.

Incidence of two objects can use inner products, namelydartpxand linedl in the plane, for pointX and planes
in 3D-space and for paird., M) of 3D lines

<xI>=x"l=x1=0 <X, A>=XTA=XA=0 <LM>=LM=LM=0

The first 2 relation result from the definition of the 2D linedathe plane in their Hessian form. The last relation will be
proved below.
We can construct 2D lindsasjoin A of two pointsx andy and points asintersectiom of two linesl; andl,

l=xAy=xXxy x=1Nlk=1 x1

We also can construct 3D-lindsas joinL. = X A'Y of two points or as intersectian = A N B of two planes, defined
viatheduallindb=ANB=AAB

L=XAY=AX)Y=-A(Y)X L=ANB=AAB=A(A)B=-AB)P
with the matrix at the same time being a Jacobian

T 0 0 -U
o T 0 -V

LOXAY) | 0o 0o T -w
AX ="y~ 0o w v o
64 w0 —U 0

-V U 0 0

using the convention homogeneous matrices to be uprigstsenf letters. Observ&(X)X = 0,VX and rkA(X) = 3.
The line coordinates obviously are bilinear in the homogesecoordinates for the points and for the planes. Settiag th
fourth coordinate of the two homogeneous vectors to 1, we(findL,, L3)T =Y — X and(L4, L5, Lg)T = X x Y
with the Euklidean coordinateX andY of the two points indicated with slanted bold face letterbe Telations for the
planes exploit the duality of points and planes in 3D, spedliff the duality of the joim and the intersection.
We also obtain the plane coordinates as the join of a poinadimé and the intersection of a line and a plane
A=XAL=ATX)L=-B(L)X X=ANL=AT(A)L=-B(L)A
with the Jacobian
0 Ly —Ly —Ly4
. (L AX) (X AL) —Ls 0 L —Ls T T
B(L) = = — = =AB' — BA
(L) oX 0X Ly, -I, 0 —Lg
L, Ls Lg 0

where the last expression is valid for the line to be given iy intersection of two plane6 = A N B. Observe
B(L)B(L) = 0 and rkB(L) = 2. The expressions fok = X A L andX = A N L are consistent, as e. & € A dueto
<X,A>=XTAT(X)L =0andL € A dueto(X AL)NL = (—B)(L)(-B(L)X) = 0.

We now can prove the condition L, M >= 0 for two lines to intersect. LeL be given as the joil. = X AY =
—A(Y)X. Then the intersection condition is equivalent to the cbodithe pointX to lie in the planeA = M AY =
AT(Y)M which leads taXTA = (XTAT(Y)) M = -L™™ = 0.

We finally need conditions for two lines to intersect, in ctegy are given by two points or two planes.

(|1X1, X5, X3, X4/ =0 A1, Az, A3, Ayl =0 (XAY)N(ANB)=X"(AB" -BANHY=0 (1)

The first and second condition results from the coplanafith® points or from the intersection condition for four pésn
The last condition useX "R = X"B(L)Y = 0 where the plan® = L A Y is the join of L = AN B andY.

3 PROJECTION

3.1 POINTS

The projection of a 3D poinP(X) onto the image plane yields the image pgit{x’) via a direct linear transformation
(cf. Fig. 1).

x'=PX or (u,0,w)"=(1,2,3)TX=(1X,2X,3-X)"  with P=KR(l|-X,)

where(-|-) denotes concatenation. TBex 4 projection matrixP can be explicitely related to the 6 parameters of the
exterior orientation and 5 parameters of the interior daéion namely the Euclidean coordinatXs, of the projection
centreO(X ,), the rotation matri>R, the principle distance, the coordinateéz’,, y},) of the principle point, the shear

s and the scale difference of thé- and they’-coordinates. The parameters of the interior orientati@callected in the

3 x 3 calibration matrix



Figure 1:shows the geometric situation for one, two and three images
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K= 0 ¢(l4+m) yy | =0 14+m yy 0 ¢ O (2)
0 0 1 0 0 1 0 0 1

Itis an upper diagonal matrix and can be arbitrarily scaifath interpretation of its elements is required. Obseneshrt
R(I| — X,) transforms the object coordinates into the camera systegdcond factoPiag(c, ¢, 1) of the calibration
matrix performs the projection and the first factor the aatlon. The projection matrix in general has rank 3 and it nu
space is the projection centre X, = 0. Therefore the three row vectols 2 and3 of the projection matri¥P can be
interpreted as the parameters of planes. The vdci®a plane through the ling =0 asu’ =1-X =< 1,X >=0,VX
and passes through the projection centre. Simil&ilg a plane through’ = 0, and3 is the focal plane parallel to the
image plane, as then’ = 3-X = 0. The three planes intersect in the projection ceXg:=1n2nN 3.

3.2 LINES

A similar projection relation holds for 3D lines. The imagred!l’ = x' Ay’ of a 3D lineL = X A'Y can be expressed as
a function of the images’ = PX = (1-X,2-X,3-X)T andy’ = PY = (1-Y,2-Y,3-Y)T of two object pointsX and
Y, namelyl’ = x’ x y' or

I'=(,b,)" =(1X,2X,3X)" x (1Y,2Y,3.Y)"
This expression can be simplified. E. g. the first elena¢ig o’ = (2-X)(3-Y) — (2-Y)(3-X) = X"(237 - 32T)Y =

(XAY)N(2n3) = (2n3)-L. Similarily we obtain expressions féf and¢’. We therefore obtain the direct linear
transformation of 3D lines

'=PL o I'=(1,23)"L=>1L2L3L)" with P=(2n3,3n1,1n2)"

with a3 x 6 projection matrixP. Its three rows are 6-vectors representing 3D lines, narti@yintersections of the
principle planes, thus the three coordinate axes of the aystem.

3.3 INVERSION
Inversion of the projection leads to projection rdysfor image points<’ and projection planeA’ for image lined’
L' =P'x =u/2n3+v3N1+w'1n2 A =P'I'=d'1+02+3

The expression foL' results from the incidence relationt’ 1’ = 0 for all linesY’ passing througlt’, leading to(x’TIS) L
= < L',L >= 0. The expression foA’ results from the incidence relatidh'x’ = 0 for all pointsx’ on the linel’,
leading to(l’TP) X =< A’,X >= 0. The projection ray and the projection plane can be exptessa function of the

3D point and the 3D line resp. showing the concatenated xrfa{rlP only to depend on the projection centre

L'=P PX=X,AX=A(X,)X, A =PPL=X,AL=AT(X,)L with P P=A(X,)

4 ONE IMAGE

4.1 OBSERVATION EQUATIONS AND CONSTRAINTS

We now easily can write down thebservation equatiorf®r points in one image, i. e. the collinearity equations

, u 1.X , v 2X
w 3-X w 3-X



from which two contraints can be derived
A(z')X =0 B(y' )X =0 with A )=2'3-1=24'3-w'1 B(y')=2—-¢y'3=w'2-1'3
The planesA and B pass through the image point and the projection centre aad #pe image ray ad N B =

(W3 —-—wl)N (w2 -23) = —w@2N3+v3N1+wln2)usingCnNnD = -Dn C,VC,D, the factor
—w' # 0 has no effect. A similar derivation of observation equasiand constraints can be performed for observed lines.

4.2 ORIENTATION OF ONE IMAGE

The projection matriP can easily be determined if > 6 corresponding pointg; andX; are given. Its row vectors can
be collected in the 12-vectar™ = (17,27, 3T) leading to

1
T; (3-X,;) -@ax)\ _ [ -xXI' o' 2 XT _ o .

An estimate foru is the adequately normalized eigenvedtocorresponding to the smallest eigenvalue of the matrix
C = (C,), leading to an estimated projection matrix

P=(123)" = (D|d) = (KR| - KRX,)

This requires at least > 6 image points to be given. It can be partitioned into adefi3-matrixD and a righ8 x 1-vektor
d from which the parameters of the exterior and the interiggrmation can be directly computed in four steps:

-~

— ~~T ~ ~— ~ ~
1. X,=-D'd 2. KK =DD' using a Choleski partitioning 3. R =K 1D 4. K =K/Kss

The normalization of the calibration matrix is necessary @rone wants to interprete its entries. Due to the gengral
the model this procedure is much simpler than the one givéBaPrP& K RAUS 1978). It only works in case the points
are not coplanar and do not sit on an algebraic curve of thildro FAUGERAS 1993).

A similar estimation procedure can be developed for obsklves, leading td® from which the rows oP can be
determined by joining the corresponding principle rayg.d =2A3=3N1A1N 2.

5 TWO IMAGES

We model the geometry of two images using the projectionioesr
Pr=(1,2,3)" =K,R;(110) Py =(4,5,6)" = KyRy(I| - T)

thus putting the origin of the object coordinate system thfirst projection centre. We will also use tieeluced image
coordinates

kxl _ R;]K;]X’ kxu _ R;]K;]X”
which represent the intersections of the image rays withriaanalized cameras looking downwards, having horizontal

image planes, and principle distange= ¢, = 1.
We do not need to model the projection of 3D lines as they deootribute to the orientation of an image pair.

5.1 EPIPLOAR LINES AND COPLANARITY

For each object point the two projecting linksandL’ need to intersect which can be expressed in two ways as adanct
of the rows in the projection matrices (cf. Fig. 1)

L'NL" = (u'2N8+v'3N1+w'1N2)N(u"'5N6+0v"6N4+w"4N5) = (A;(z')NB:(y'))N(Ax(z")NBa(y")) =0

This coplanarity conditioris linear in all image coordinates and can be expressed as

2,3:5,6] [2,3:6,4] |2,3:4,5|
TEx" =0 with F=| |3,1;5,6/ [3,1;6,4] |3,1:4,5
11,2:5,6] [1,2;6,4] |1,2;4,5|

) bl bl )



where the3 x 3-matrix F is thefundamental matrixWe also may use the coplanarity of the three directidns” and
T, given in the same coordinate system

0 -Z Y
bx (T x kx") = Ex'TSpx" or x'K;'TRiS7R, 'K, 'x" =0  with  Sr=[ Z 0 -X
Y X 0

where the skewsymmetric mati$¢- of the vectorl" can be used to express the cross produgtX = Sy X = —SxT.

We therefore have an alternative expression for the fundgahenatrix in dependency of the parameters of the interior
and exterior orientation of the two cameras. In case of knoalibration thuK; = | andR; = | andR, = R it reduces

to theessential matriE yielding the coplanarity conditiodx'' E *x" = 0. Thus we have

xFx" =0 with F=K;'TR;S/R,'K," and *x"Efx"=0 with E=S;R ! (3)

As St has rank 2, als& has rank two ofF| = 0. AsF is only defined up to scale it has only 7 degrees of freedom.
It captures the complete geometry of the image pair, as witknowledge of the interior orientation the 3D structure,
i. e. the photogrammetric model, can only be captured up t@ggtive transformation with 15 degrees of freeddth (
leaving2-11 — 15 = 7 free parameters.

The essential matri has only 5 degrees of freedom, 2 for the direction of the basts3 for the rotation matrix,
requiring two additional constraints ()] ANG & FAUGERAS 1989). This relation has already been published ingp-
SON 1968).

Given a point in one of the image its projection ray maps togbipolar linein the other image. They are given by

II(XH) — FX” III(XI) — FTX/

They intersect on thepipoles Therefore the coordinates of the epipadésande! in the first in the second image are left
and right eigenvectors of the fundamental matrix

Fel =0 Fle, =0
The epipoles also are the images of the projection ceMges= 1 N2 N 3 andXy: = 4N 5N 6, thus
ehb =P X =(4,1,2,3],/5,1,2,3/,16,1,2,3))" and e/ =PyXy =(|1,4,5,6[,|2,4,5,6/,|3,4,5,6))"

5.2 RELATIVE ORIENTATION

The coplanarity condition is linear in the unknown paransetd the fundamental matrix. Therefore we can estimate the
parameter vectdf = ved from

xiox{)Tved=0 i=1,..,n =  Af=[xiex])T)f=0
as the eigenvectcﬁof A corresponding to its smallest eigenvalue, Ieadin@.td’his would require> 8 corresponding

points(x}, x!') and would not take the rank conditid%\ = 0 into account. Therefore we use the maffiwhich is closest
to F using a singular value decomposition. The three steps ftfuicedure are

1. F=UAV with A =Diag(A;, A2, Amin) 2. A =Diag(Ai,X2,0) 3. F=UAV

with the orthogonal matriceld andV and the diagonal matriA of the singular values. It works for arbitrary > 8.
A procedure with 7 pomts can use a different procedured dken has two eigenvalues close to zero. It uses the two
elgenvectorsfl = vedF, andf, = ved corresponding to the two smallest eigenvalues déading toF; andF,. The
condition N N N
[F| = |sF1 + (1 —s)F2] =0

leads to polynomial of third degree inwith 1 or 3 zeros, thus to one or three solutionsFawrith 7 points.

We want to give an explicit expression for the relative ot@ion for the case of known interior orientation. Based on
an estimate for the essential matixve can derive estimates far andR. This can be performed in three steps:

~ o~ ~T ~
1. T'E=0" 2. ES;=UAV' 3. R=UV'
AsTT'S; = 07 the estimated base vector is the adequately normalizegitgfhvector of corresponding to its smallest
eigenvalue, allowing to determirg;. Following (ARUN et al. 1987) we can determine the rotation maRixninimizing

the Frobenius nordﬁ — SfFAZ ] | using the singular value decompositio@Tfo.

In case more than two parameters of the interior orientasarot known relative orientation is not possible. A direct
solution for the case where besides the direction of thestaasi the rotation matrix also the two principle distadcand
¢’ are unknown is given in @& 1999).

Observed 3D lines cannot be used to support relative otientas they do not put a constraint on the relative orieotati
of two images: Any two line$ and!” in the two images of arbitrary orientation can be caused bl &rge.



6 THREE IMAGES

The orientation of image triplet, already explored by MikHaf. (M IKHAIL 1962, MKHAIL 1963)), has quite some
advantages over image pairs.

e The orientation can be based on homologeous points and liesh can be extracted easily and with high precision.
(SPETSAKIS& ALOIMONOS 1990).

e The constraints for homologeous points as well as for hogemaos lines are linear in their homogeneous coordinates.
For homologeous points this already has been shown bigiikiL 1963). In addition they linearly depend on the
elements of 8 x 3 x 3 tensorT — thus from threg x 3-matrices — the socalled trifocal tensorARTLEY 1995). This
tensor plays the same role for the image triplet as the furedahmatrix for image pairs.

e The prediction of points and lines into a third image is eagh this trifocal tensor, whithout going via 3D space. Again
this is in full analogy to predicting the position of a pointthe second image of an image pair leading to the epipolar
line. Here, however, the prediction generally leads to guairesult.

In general the prediction of points could be performed bgiisection the epipolar lines with respect to the first twoges
(FAUGERAS & ROBERT 1994). But this generally is not possible in case the pr@jeatentres are collinear, which is the
standard case in a photogrammetric strip, as then the epiplaines coincide. In this important case the predictiah wi
the trifocal tensor is possible again without going via tleéetimination of the 3D point.

The prediction of lines still has some prerequisites: theyusd not go through the one of the projection cen@rer O"
or lie in an epipolare plane through O".

6.1 PREDICTION AND CONSTRAINTS FOR POINTS AND LINES

We first discuss the case when a 3D line is observed in threemathe condition that the image linEsl” undl"”’ are
homologeous can be easily written down using the projectiatricesP;, P, undP3 of the three images.

Following fig. 1 we need to express the condition that theahmmjection plane®’ = P,l', P = P,1' andP"’ =
P31 intersect in a 3D line. They intersect in case they meet twtually different planes in two single points. If we use
one of the threee plands 2 or 3 then, using (1.2), at least two of the following three coiotis must be valid

ILPIV,PJI", P =0  |2,P{I',PJI".Pj1"| =0  |3,P{I',PJ1",Pj1"| =0 )

We now want to give an explicit expression for the paramaiétise linel’ which only depends on the two image linés
and!l’"” and the orientation parameters.

For simplicity we assumB; = (1|0), Py = (r1,r2,r3,14) andP3 = (s1,s9,83,54) With I’ = (a’,¥',¢')T we obtain
for the first constrainte;, P I', PJ1”, P31""| = 0 or

1 (1/ ,’,;I'ln S;rl///
0 b/ ,’,'2|'1// S'2|'1/// —0
0 cl 7,,'3|'1H S'3I'lm
0 0 rj1" sl
With the three3 x 3-matrices or 8 x 3 x 3-tensor
T, = TiSI — 7‘482— or Tijk =TijSka — T4jSki (5)

we obtain after expanding the expressif TT;1" — /1" TTol" = 0thush’ : ¢ = (1" TT,1"") : (1"TT31"). Analogically
we may handle the other constraints in (4) and obtéinbd' : ¢’ = (I"TT;1") : (I"TT,1") : (1"TT31"). This can be
written aspredictionfor the image lind’ in two ways using the tensor (5)

3
1/ — (a/7 bl, C/)T — (IHTT1 1///’ l”TTglm, l//TT31///)T or — Z Z l//l///T”IC i= 1’ 27 3 (6)
7j=1k=1

Thus the prediction of homologeous image lines is extrersietple using bilinear forms and the using the trifocal tenso

(5).
The relations for homologeous poin®é(x’), P"(x") und P"'(x""") are somewhat more complicated.

We need three constraints for the three projection linestrsect in one 3D point, as we have 6 observed coordinates
and 3 independent unknown point coordinates. For pointdyirng on the trifocal plane through the three projection



centres we could just use the three pairwise epipolar caingst Otherwise at least one constraint including co@tdia
are necessary. An example set of contraints is the folloffGRSTNER2000a):

‘A1 (wl)7 B, (yl)7 A, (:L‘”), BQ(y”)| =0, ‘A1 (xl)ﬂ B, (yl)7 A, (:L‘”), Aj (CL’”’)‘ =0, |A1 (wl)7 B, (y’)7 A, (CL’”), B3(y”’)| =0

In all constraints the two first planes; andB; span the first projection ray. The intersection with #feplane defines the
3D point uniquely. This point must lie on thg-plane of the second camera, being identical with the epipmmnstraint.
Moreover, the point must lie on the ray defined by the two plahg andBs.

Prediction of points is a bit more complicated. The coortiaa;’ of the point in the third image can be derived from the
coordinates in the first two images by ARTLEY 1995):

3
v = @y (2 Teje — 2 Tha),  i,j =1,2,3, choosable (7
k=1

The prediction is not unique in case of noisy data, as the@wdiundj can be schosen freely under the constraigt,
unless the homologeous point fulfill the epipolar constrairthe first two images. For standard cases, especially with
collinear projection centres one can give rules for sabgctionstraints (BRSTNER2000a).

6.2 ESTIMATION OF THE RELATIVE ORIENTATION OF IMAGE TRIPLET S

Linear Parametrization: As the constraints linearily depend on the tensor coeffisieme can directly estimate the
tensor coefficients, in full analogy to estimating the fumeatal matrix of stereo pairs in case at least 26 constraiets
available. This solution, however, turned outto be quistdble (FARTLEY 1994b), as the trifocal tensor overparametrizes
the geometry of the image triplet.

Minimal Parametrization: In reality the trifocal tensor only has 18 degrees of freedasthe projection matrices of the
three cameras (33 parameters) can only be determined upDopadgective transformation (15 parameters). Therefore
there exist 9=27-18 independent nonlinear constraintherparameters of the trifocal tensor, which need to be taken
into account (RUGERAS & PAPADOPOUL01998) or one minimally parametrizes the trifocal tensor.as é (TORR &
ZISSERMAN1997).

In case the interior orientation of the cameras is known oag parametrize the trifocal tensor Euclidean, as then the
3*6=18 parameters of the exterior orientation of the thr@eras can be only determined up to a similarity transfaonat
with 7 degrees of freedom, these are 5 for the relative cai@nt of the first two cameras and 6 for the exterior orieotati

of the third cameras, a standard procedure in Photograrjraatt used for trilinear constraints already in IQWAIL
1962, MKHAIL 1963). We used it for analysing triplets in image sequenSesINES & A BRAHAM 1999, ABRAHAM
2000). Of course approximate values are required for thmatibn, but one directly obtains orientation parameters.

Determining the orientation parameters: There are rich relations between the coefficients of thedaf tensor, the
fundamental matrices, and the projection matrices. Thaybeaused to derive the parameters of the relative oriemtatio
of the three image pairs and, after fixing a coordinate sysfemdetermining then projection matrices. ARTLEY
1994a, hRTLEY 1994b, AUGERAS & PAPADOPOUL01998).

Our experience confirms that the local geometry can be détedrmuch more reliably and more robust from image
triplets than from image pairs, which are only weakly ovéedmined (ABRAHAM 2000)

7 OUTLOOK

We discussed the geometric relations useful for orientingls images, pairs and triplets. Whereas the singularsciase
the single image and the image pair are well understood,lhatitical configurations for triplets are known. There als
exist interesting procedures for orienting streams of iesaJOMASI & K ANADE 1997, KANADE & M ORRIS1998) or
of image pairs, including general analyses on critical gamitions (SURM 1997).

Parallel to these very important geometric findings, resal automating the orientation using matching techniques
are available, both on points, and lines, though orientatith lines turn out to be not as stable as with points. In
all cases robust estimators with high break-down point a$ ageclassical M-estimators (FCHLER & BOLLES 1981,
ROUSSEEUW& L EROY 1987) are applied.
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