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Abstract: A new feature based correspondence algorithm for lmage mat-
ching is presented. The interest operator is optimal for selecting
points which promise high matching accuracy, for selecting corners
with arbitrary number and orientation of edges or centres of discs,
circles or rings. The similarily measure can take the seldomness of
the selected points intc account. The consistency of the solution is
achieved by maximum likelihood type (robust) estimation for the para-
meters of an object model. Approximate values have to be better than
1/31of the size of the image in shift, 20 * in rotation and 30 X in
s5cale.

0. _ Introduction

The paper describes a new feature based procedure for image
matching. It was motivied by the algorithm devalopped by BARNARD and
THOMPSON (1981). Their concept basicly resulted in a three step-pro-
cedure. Keeping their motivation for the individual steps, spacifi-
cally distinctness, similarity and consistency, the steps were re-
placed by slightly different ones ln order to arrive at a procedure
with a common theoretical framework, namely a maximum likelihood type
estimation for the parallax field (cf. PADERES et. al. 1884). Though
the actual implementation uses a comparably simple object model, the
concept is general encugh to handle piecewise smooth surfaces. The
procedure contains a new interest operator, which turned out <o have
attactive features, as it not only aims at finding points which pro-
mise precise parallax determination, but at the same time is an opera-
tor to find corners with edges of arbitrary number and orientation as
well as the centre of circles, discs or rings. In addition a simple
measure of seldomness has been developped in order to increase the re-
liability of the procedure in presence of repetetive patterns,

Feature based matching (FBM) procedures contrast to gray level or
area based methods, like classical image correlation or least squares
matching (LSM). FBM is superior to image correlation with respect to
speed and versatility and is superior to LSM with respect to range of
convergence, speed and versatility. Especially the high requirements
for approximate values of LSM, (< 1-2 pixels for shifts, < 20 * for
rotation, < 30 % for scale difference and shear) are reason enough to
use different concepts. FBM procedures are widely used in pattern re-
cognition and computer vision {cf. FORSTNER 1986) and find increasing
interest also in photogrammetry.

We will first outline the basic strategy and the requirements to be
met in the individual steps, and give an example. Section 2 then
describes the maximum likelihood type estimation of the parameters of
the mapping function between the images. The determination of prelimi-
nary weights for this robust estimation are discussed in section 3. It
is based on the points selected by the new interest operator whose
properties are described in detail in section 4.

1. Concept of Feature Based Matching
FBM procedures consist of three steps:

1. selecting distipct points in the images separately using a socalled
interest ocperator.

2. building up a preliminary list of candidate pairs of corresponding
points assuming a similaritv measure, and
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3. desizing the final 1list of polnt pairs consistent with an object
modae.s.

1.1 Selecting Distinct Points with an Interest Operator

In FBM instead of matching all pixels in an image, only selected
points with certain features are to be matched. The selection prin-
ciple should fulfill the following requirements:

- Distinctness: The peints should be distinct, i.e. be different from
neighbouring points. E. g. points on edges should not be selected
if the epipolar geometry constraint is not used; also points in
flat areas should not be selected. MORAVEC's and HANNAH's opera-
tors follow this aim: MORAVEC’'s coperator (1977) searches for
points with the largest minimum variance of gray level differences
in 4 directions, while HANNAH’s operator {1974) searches for points
where the autocorrelation function of the gray level function is
steep in all directions.

- Invariance: The selection as well as the selected position should
be invariant with respect to the expected geometric and radiomatriec
distortions. This, besides the distinctness, probably is the most
important requirement. The degree of invarlance directly influences
the precision and the reliability of the matching

- Stability: The selected points should be expected to appear in the
other images. Thus +the selection should be robust with respect to
noise. In image sequence analysis the selected points should appear
in long sequences of consecutive frames.

- Seldomness: Whereas distinctness guarantees local separability of
points seldomness aims at global separablility. This is essential in
images with partially repetetive patterns. In order to avoid confu-
=ion elements of repetetive patterns should not be selected or at
least should get a low weight. Thus +the selection of seldom or
interesting points leads to reliable results, explaining the notion
“interst operator". A similar line of thought leads to the notion
of salient features (cf. TURKEY et. al.).

- Interpretability: The selection principle should be interpretable
in some sense, e. g. looking for edges, ' corners, blobs or other
simple but labeled features. This requirement is not essential from
an engineering point of view, but may be essential if the interest
operator is used for image analysis. |

The result of this first step are two lists with the n’ and n"
points selected in the two images I’ and I", their pixel coordinates
and their description, e. g. in the form of +the local gray level
function in the selected window. The advantage of the selection is
obvious: it leads to a great information reduction, as we only have do
deal with the two 1lists not with all pixels. It explains the require-
ments for the selection principle as the selected points reliably have
to represent the total image content with respect to the matching
problem.

Fig. 1 shows an artificial image pair. The black dots are the
centres of the 7 by 7 windows selected by the new interest operator.
The two lists of selected points with their weights are given in table
1. A closer look at fig. 1 reveils that the selected windows are not
totally invariant as they appear at different places whithin the same
corner. The reason for this seemingly deficiency and a remedy are dis-
cussed in =ection 4.

1.2 Preliminary Correspondence based on Similarity
From the n’ x n" possible pairs of points only a few are pairs of

corresponding points. In this step a preliminary list of candidate
pairs is built, which iz based on the similarity of the points. Points
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are said to be similar if their description is similar. The similarity
measure should fulfill the following requirements:

- Invarjance: The similarity measure should be invariant with respect

to the expected geometric and radiomatric distortions between the
images. E. g. the correlation coefficient is invariant with respect
+to linear transformations of the gray values, but not with respect
to geometric distortions.
The problem with similarity measures is the form of the window
which usually is chosen to be sguare or circular and which in
general is not invariant with respect to scale differences or even
shears. E.g. affine invariant moments (HU 1962) of the gray level
function are invariant, only if the background is szero. Otherwise
the noninvariance of the window form with respect to affine distor-
tions, Dbecause of border effects, prevents the computed moments
from being invariant (cf. GEISELMANN 19884). If at least scale
differences between the images are to be expected the window size,
possibly also its form, has to be adapted. The approach of BURNS
et. al (1986) for extracting edges reflects this requirement as
they first determine the edge regiom, i. e. the window, dependent
on the local steepness of the edge, thus taking the - with respect
to an ideal edge - local scale into account. .

- Seldomness: The similarity measure should be able +to include the
seldomness of the individual points. Thus the degree of seldomness
of both points in concern should also decide whether they remain in
the preliminary list of the corresponding point pairs or at least
should influence the weight of the correspcondence.

- Heuristica: A priory knowledge may be incorporated in this step. E,
g. the maximum parallax to be expected may be used to further re-
duce the number of candidate pairs. A special case would be the
condition resulting from the known epipolar goometry reducing the
search space by one dimension.

- Metric: For a thorough analysis it is convenient if the similarity
measure has metric properties, i. e. besides being a distance
measure it fulfills +the triangle eguation dij < dax + dkj. This e.
g. holds for +the sum of squares of the gray level differences
between the selected windows. A large distance d may correspond to
a small similarity s = 1/d or 8 = 1-d.

The preliminary list of candidate pairs, resulting from this step,
is a further information reduction: Whereas in the previous step we
still kept the full description of the individual points we now only
need their position and the weight of the correspondence, unless it is
needed for achieving consistency. '

Table 2 shows the selected candidate pairs derived from table 1.
The selection was based on the correlation coefficient of the gray
level functions whithin the windows of the point pairs, which had to
be > 0.5 and the maximum parallax, which was assumed to be 15 pixels
in both directions.

1.3 Achieving Consistency

The local one-to-one comparison using the similarity measure and
the heuristics in general is not able to yield a globally consistent
matching result. Consistency here is understood as the fit of the data
with respect to an object model or at least to a global model for
the mapping function between the two images. In order to arrive at a
final solution we therefore have to

1. provide a 3D-model of our object. The strength of the model direct-
ly influences the quality of the solution. The model may alsc be
setup for the mapping function between the images, which - using
the invers perspetive relations - can be then interpreted as a
3D-model. BARNARD and THOMPSON (1981) e. g. require the parallax
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differencas tc be less or equal 1 pixel for points within a certain
radius of a point in concern, say 15 pixels, alsc allowing
exceptions. For the‘normal case of a stereo palr this is egivalent
to assuming the object surface to ba piecewise horizontal or hardly
sloped. Often the object model is not stated explicitely but is
hidden in the algorithmic solution.

2. choose a consistency measure which is able to determine +the close-
ness of fit of the data with the model. The choice of the target
function is difficult in cases where different types of deviations
between data and model have to be balanced. A classical problem i=s
the proper relative weighting of the measuring errors, the smooth-
ness of the surface and the frequency of discontinuities. A common
theoretical framework, which e. g. allows maximum likelihood esti-
mation, seems to be of great advantage for a thorough setup.

3. choose an algorithm to find a solution of optimal or at least
satisfying consistency. There are various algorithms in use: In
image s=equence analysis nearest neighbourhood nethods are very
common (cf. KORIES 1986), they correspond to +the minimal mapping
approach proposed by ULLMAN (1979). Relaxation schemes as e. g.
used by BARNARD and THOMPSON (1981) are very popular, as they may
incorporate quite different types of consiastency conditions. The
clustering approach proposed by STOCKMAN et. al. (1982) shows in-
tuitively that a global solution is aimed at.

Table 3 contains the final result of the new procedure. It is a
robust estimation for the 6 parameters of an affine transformation
batween the two images, corresponding to a tilted plane as object
model. All point pairs of the list of preliminary correapondencies
together with their welghts were introduced. The corresponding polints
are shown in fig. 2. The algorithm thus yields two results, which may
be the basis for further analysis:

a. a list of pairs of points which are consistent with the global
model and additional points in both images where point transfer
promises to be accurate.

b. parameters of the mapping function, which allow a point transfer of
other points=, possibly not selected by the interest operator.

The next sections describe the three steps of "the new procedure in
detail.

The object model is setup in a parametric form to be able to aesti-
mate the parameters using maximum likelihood (ML) methods. This is no
severe restriction as very general surfaces, specifically piecewls=e
smooth surfaces can be represented in parametric form.

2.1 Object Model

For a first implementation of the algorithm a simple cobject model
has been chosen. The surface of the object as far as it is shown in
the images is assumed to be a tilted plane. This is a reasonable
approximation if +the images are not too large, say 40 x 40 to
120 x 120 pixels of size (20 pm)*. This object model is jdentical to a
linear mapping function between the images. Thus in general we obtain
the linear model for the parallaxes px = x" - x’ and py = y" - ¥’ of
the corresponding points:

] pxi 1 |1 0
+ Al D = - (2-1)
f YL wi (0 1

-~
pxi + vpxi a xi°
= o~

oy o)

pyi + vprid d yi®

Solving for the 6 unknown parameters a to f yields the result of the
o9D-matching result. In case the epipolar geometry is known we obtain d
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= e = £ = 0 if the parallaxes in the normal image are used. The para-
meter & measures the slope along the epipolar line, which is assumed
to be roughly parallel to +the x-axis, the parameter T measures the
slope across the epipolar line, and € the parallax. If only points in
one epipolar line are used for matching the parameter b has to be
excluded, as it is not estimable. The 2D-matching in this case reduces
to 1D-matching of a gray level line.

The model eqgq. (2-1) for the parallaxes is assumed to be valid for
all corresponding points. The covariance, or dispersion matrix for the
parallaxes depends on the type of the point, specifically its texture,
and on the similarity between +the left and the right image of the
object point. Due to +the selection principle of the interest operator
for Z2Dmatching +the x- and y-parallaxes are assumed to be uncorrelated
and of equal precision. Thus we have one weight for the parallaxes of
each point pair.

The non corresponding point pairs can be treated as outliers with
respect to the model. As we =tart from the 1list of preliminary
correspondencies, not knowing the true ones, all parallaxes may be
assumed to beleng to a long tailed distribution. The most reasonable
assumption for this distribution would be the ocutlier model F = a N +
(1. - a) H being a mixture of a normal distribution N and a very broard
arbitrary distribution H. More simple approximations to F are the
Laplace-Distribution £(x) = ¢ exp(-‘x|) or the Cauchy-Distribution £ =
c/ (1 + x*).

2.2 ML.—Estimation

In order to eliminate the effect of ocutliers onto the result one
now can use ML or ML-type estimators. Then, instead of the (weighted)
sum of the squares of the residuals vi the sum of a less increasing
function T(vi) is minimized (HUBER 1881):

2 g(vi) => min (2-2)

which reduces to ML estimation if t(x) is proportional to the hegativa
logarithm of the denszity function.

1. Chossing T(v) = v*/2 gives the least squares estimator, neglecting
the weights for the moment.

2. Chosing T(v) = |v|P /p vields the estimator minimizing the Lp-norm.
A special case is cbtained for p = 1: Minimizing Zz(v) = 2]v| is
the well known least sum method being the ML-estimate for the
Laplace-Distribution. It is the multiparameter version of the me-
dian.

3. The choice of T can be guided by the socalled “Influence Curve”
(IC) (HAMPEL 1973) being proportional to the derivative B6(v) =
dt/dv of the minimum function. IC(v) or 9(v) give an indication how
strong the influence of an outlier is onto the estimates in depen-
dency of the size of the outlier.

4. The solution of eg. (2-2) can use existing programs for least
squares solutions by either modifying the residuals or by modifying
the weights, as :

Zt{vi) = Z %}:%% !%: = 2 wivi) E%:-=> min (2-3)
using the weight function
wivi) = —gbvi) (e << vi*/2) (2-4)

Vi’;g + c

In an iterative solution the weights of all obgservations are up-
dated depending on their residuals from the previous iteration.
§. If the function t(v) is convex, thus ©(v) iz non-decreasing, and
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the model is linear then convergence 1is guaranteed under broard
conditions (cf. HUBER, 1981, =mect. 7.8).

Thus minimizing the Li-norm seems to be optimal, as it is robust, and
convergence is guaranteed. This method has, however,iwo disadvantages:
1.) z(v) has no derivative at 0, thu=s, IC(v) is not continuocus, which
does not guarantee a unique solution and 2.) IC{v) = sign(v) is not
zero for large values. Thus even large outliers have still an influ-
ence onto the result, which is not desirable. We therefor propose to
use the following weight functions:

1. In order to ascertain convergence and a unique solution we slightly
modify the minimum function of the Li-norm (cf. fig. 3)

Ti(v) = 2 (LT ¥+ V372 -1)
wm(v) = 4 ({1 F¥v/2 -1) / v (2-5)
1 (v) =v /41 + V72

T1(v) is strictly convex with decreasing curvature for large v.

2. After having reached convergence, one can assume to have good
approximate values for +the parameters. In order to eliminate the
influence of large outliers one could take one of +the following
minimum functions:

Starting from a Cauchy-Distribution on obtains:
‘t2a{v) = ln(1l + v*/2)
wza (V) 2 In(1l + v*/2) / v* ({2-8) -
82a(v) = v / (1 + v2/2)

No convergence is guaranteed in the general case. Also as 0(v) is
descending for large v, no unique solution is guaranteed if ar-
bitrary approximate values are allowed. This is meaningful as the
Cauchy-Distribution has neither mean nor variance.

The following minimum function is proposed by KRARUP et. al. (1980)
which considerably reduces the weights of false observations due to
its exponentlial form:

2B (V) = vV /2 exp(~-v*/2)

wzb {v) exp(-v*/2) (2-7)

02b (v) v (1 -v/2) exp(~-v*/2) "
This weight function fulfills opractically all requirementsz for a
woll behaved weight function (HAMPEL 1973, WERNER 1984). It, how-

ever, cannot be derived from a density function, thus does not lead
to a Ml-estimate.

The functions are shown Iin £fig. 3 together with the minimum-,
weight- and influence-function of the least squares To(v) = v* /2.

2.3 Algorithmic Solution

In each iteration of +this robust estimation, the parameters, the
residuals, the precision of the estimates and the average weight are
determined, and the weights are adapted for the next iteration. If a
welight is smaller than a certain percentage (say, 10 X} of the average
weight, it is set to zero, eliminating this point. The first few (3 or
4) iterations are performed with the weight function w, after which
the redescending function w2v is applied. The algorithms stops if
either the reqired precision of the parameters is reached, not enough
corresponding points are 1left, or a preset number of iteratioms is
reached. The residuals of the last iteration are then tested and with
all points passing this test one additicnal iteration with equal
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welghts is performed to obtain the final parameters.

The obtained 1list of corresponding points may then =till be
ambiguous, as the same point in one image might correspond to several
points of a cluster in the other image. The list of pairs of points is
then cleaned keeping’' those correspondencies which have the smaller
residuals (cf. table 3).

The result obtained this way has to be checked independently in
order to be able to guarantee for its correctness. For this purpose a
global correlation coefficient is calculated from the gray levels of a
regular grid, taking the estimated mapping into account. If this
correlation coefficlent is below 0.5 the result is rejected, which may
be cauvsed e. g. by non-sufficient approximate values. We made the
experiance that this indicator is very reliable: it never suggested a
false solution to be correct.

2. _Bimllarity Measure

The estimation procedure requires initial weights for the observa-
tions which in our case are the parallaxes of the point pairs in the
list of preliminary correspondencies. Hence the majority of the obser-
vations are outlliers and assuming equal weight would prevent the solu-
tion from getting started.

Now the weights can be obtained from the covariance matrix of the
estimated shifts if we would apply LSM to all point paira. It is given
by (cf. FORSTNER 19886):

PX . Z gx* Z gx-gri-1 -
€C=D = o =0 Q (3-1)
vy A8 ]2 gy-gx I gy" A€

where £ is the gray level function of the object, restored from g’ and
g€", Oag® is the estimated variance of the gray level differences thus
the noise, and gx and gy are the derivatives in x- and y-direction
resp.. The sums are to be taken over all pixels of the window around
the points in concern.

The covariance matrix fully describes the precilision of the match
‘between the gray level functions g' and g" and can be visualized by an
error ellipse. A good match therefore must fulfill the following two
regirements:

C1: the error ellipse should be close to a circle, otherwise the
match is not well dfined in one direction, e. g. at an edge.
C2: The error ellipse should be small.

The intere=t operator is based on these two criteria. As the cova-
riance matrix directly measures the curvature of the ZD-autocovariance
function within the window, the interest operator, except for the norx-
malization, is essentially identical with HANNAH’s operator. It is
however, much more simple tc be calculated.

We now can assume the error ellipses of all selected peints tc be
close to a circle. Then the weight can be directly derived from the
trace of the covariance matrix:

w:l/tr(C):l/(a" tr (Q) ) (3-2)

Observe, that the trace is invariant to, rotations. Taking the gray le-
vel differences directly to estimate G4¢® has the disadvantage of
being biased if the two images have different brightness eor contrast.
The correlation coefficient is known tc be a better measure. Now, if
one, for simplicitity, assumes the images g’ and g" to be related to
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the true image g by g’ = a’ (g + n’) + b’ and g" = a" (g +n") +Db"
with o%n° = o®*n® = o2n where a and b represent contrast and bright-
ness, the signal to noise ratio SNR* = og® /on® is functionally related
to the correlation coefficient r by:

[~ S o*
- g’'e" _ € _ SNR* _ r -
r= C - og * on = BART + 1 or SNR* = y——F (3-3)
By using the approximations Zni* ~ N on® (N being the number of pixels
in the window), og® =~ gg' og", tr Q~ 4 tr Q@ tr @ and oag®™ ~ 2 on*
we obtain the following relation for the welight of the parallaxes:
waBS_x 1 1 (3-4)
21-r Ogr g IIrqQ rra

Discussion:

1. The weight depends on four terms. The number N of pixels in the
windows is equal for all points, thus can be neglected. The second
one reflects the similarity between the two points in concern and
needs to be calculated for all pairs of points. Actually only those
correlation coefficients are calculated where the parallaxes are
less than a prespecified task dependent thraeshold. The other terms
depend on values obtainable separately from both images and are
provided from the interest operator.

2. The traces tr Q' and tr Q" measure the distinctness or the locat-
ability of the points and are aritical for the selection of appro—
priate points. The reason is, that the noise level can reasonably
be assumed to be constant in both images (cf. eq. 3-2). )

3. The -weight is a generalization of the one used by BARNARD and
THOMPSON (1981). It is independent of brightness and contrast and
takes the texture of the points into account.

4. A simple and reasonable criterion to reject pairs of points based
on the correlation coefficient iz r < 0.5. This is equivalent to
requiring SNR to be larger than 1.

5. As the correlation coefficient, thus the similarity measure 1s not
jnvariant with respect to scale, rotation and shear, the approxi-
mate values for these unknown parameters still have to be better
than 30 %. .

6. However, the separation of +the different terms in eq. (3-4) has
the advantage in its ability to include other measures of similari-
ty. The correlation coefficient needs not be derived from gray le-
vels but may use other features of the points, e. g. one could use
a small set of features just to decrease the computing time, e. g.
the low frequency terms of a cosine transformations or one could
ase structural information, the result of a classificaticon or a
linguistic description in combination with statistical measures,
in order to obtain invariance with respect to the expected geome-
tric distortions. The only requirement for the measure is to have
the properties of a correlation coefficient, orx r/(i-r) to be a
metric distance measure.

4. The Interest Opexator

The interest operator has to find points with the two req rements
for the error ellipse which one would obtain from point transfer: Cl:
it should be close to a circle and C2: it should be small. Now, the
error ellipse can only be calculated using a the gray levels within a
certain window, which usually is chosen 5 x 5 or T x 7 pixels. The
centre of the window in general is not the best point for matching, as
the transformation of this point is not invariant to geometric distor-
tions (cf. fig. 4a). An optimal point within the window is the
weighted centre of gravity, which proves to have attractive features.
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4.1 Selecting an Optimal Window

We have required that the error ellipse representing the covariance
matrix of the parallaxes is close to a circle. Moreover, we require
that the point can well be located. Measures of both requirements
(C1 and C2), should, in a simple way, be derivable from the gray level
function of the image patch, as they are to be determined for all

pixels, 1. e. all possible positions of a small window within the
images.

Now the eigenvalues of the covariance matrix are invariant to rota-
tions. We will use them to determine the closeness of the error
ellipse to a circle. Moreover, the eigenvalues of the coefficient
matrix, say Q', and those of the inverse N’ = (Q')-1 are related by

mi{Q’) = 1/ui (N’). Thus, let u1 and uz be the eigenvalues of N’, then
the ratio

_ 4 det N _ 4 mi p3 -
S T LD L (TR O D L 1 - T ” (4-1)

is an adequate measure for the roundness of the error ellipse. If q =
0 (and not both u1 and uz are zero) then det N’ is zero and the matrix
is singular. This means that gx and gy are lineariliy dependent thus
the point may ly on an edge (of. NAGEL/ENKELMANN 1986). The case q = 1
is reached only if the eigenvalues are egqual thus representing an
error cirele. The calculation of q needs not use the eligenvalues, but
rather the determinant and the trace of N’ which can be derived from
the sums Zgx*, Zgy® and Zgxgy. We also do not need to invert N'.

Similarily we can derive an expression for tr Q':
tr Q@ = tr N’ / det R’ (4-2)

Thus the selection of the optimal windows can be accomplished for both
images separately in the following steps: :

1. Determination*the elements of N, which easentially are three convo-
lutions, namely of the three derived images gx" (i, J), &*(L,)) and
@x(1,3)°gr(i,3), with a separable kernel containing only 1’s, which
needs just 4 additions per pixel if calculated recursively.

2. Determination of tr Q and of q using eq. (4-1) and (4-2).

3. Determination of the interest value, being a preliminary weight for
each pixel:

- 1 tr it > gqumin (e. g. 0.5
W= [ 0 élse Q q qQ ( 4 ) (4_3) |

4. Suppression of all local non-maxima by setting the function W%(i, J)
to 0 at local non-maxima.

5. Extraction of all windows for which W(i,J) is not 0.

Until recently we treated the centres of +tihe windows as selected
points. The example given 1in section 1 is based on this selection
principle. For images with sharp edges this selection principle re-
veals severe deficlencies increasing with larger window slzes, vhich
has also been discussed by DRESCHLER (1881). There a specialized inte-
rest operator for finding corners has been developped. Thi= seems to
be too restrictive for general imagery. We therefore follow a diffe-
rent approach.

4.2 Selecting Optimal FPoints

The selection of optimal windows was based on the expected preci-
sion of LSM. By taking the relative maxima of w, the expacted pre-
cision using the small window is better than the precision obtainable
with all neighbouring windows. Now it can be shown that this selection
principle also yields optimal precision for three other tasks, which
lead to a normal eguation matrix N with the same eigenvalues:
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. The determination of the weighted centre of gravity =z = (x, y)t of
the window leads to the following model:

¥ o+wvi =% gxit® gxi-gyi
. Wi o= (4-4)
vi + vi = ) 4 Exic*gyi gyi®

Thus each pixel contributes to the weighted centre of gravity
according to the size and direction of the local gradient.

The same equation system would be cbtained for LSM if xi and w4
would mean local, i. e. pixelwise estimates for the shifts x and y
from xi = (@" - @') / gx1 and ¥4 = (g@1" - §°) / gyi. Because
derived from +the same gray level difference they are 100 % corre-
lated with the weight matrix in eq. (4-4).

. The determination of the intersection of all gray level edges in
the window leads to the following model:

di +vi —cosai X + sina ¥ D(di) = g ’® (4-5)

with tam oi = gyi/gei, 84 = xa cos ai + yi sin ai, and @’* =
gxi® + gy1®. Thus each jndividual edge-element contributes to the

intersection point according to the square of the magnitude of the
gradient.

The determination of the intersection of all local 1lines of
steepest descent, thus of slope-elements, within the window leads
to the following model:

N

di #vi = -sinas X + cosai ¥ D(di) = g ’* (4-6)

with the same abbreviations as before. Thus each individual slope-
element, which is perpendicular %o +he local edge—-element, con-
tributes to the intersection point according to the sauare of the
magnitude of the gradient. If the gray level function is consisting
of one or several circularily formed edges the intersection of the
slope-elements is the centre of these circles.

_ The selection of windows, which are optimal for matching are also
optimal for determining the weighted centre of gravity, the inter-
section point or the centre of a circle or a set of rings.

. The numerical solutions of problem 1. and 2. coincide, 1i. e. the
weighted centre of gravity is identical to the intersection of all
edges in the window. Thi.sA can be seen by setting up the normal
equations. The solution is z = (Wi )-) (W =), with m=(xi, ¥ n.
The estimation of the images of corner points of polyhedra 1is
invariant to rotations in space, i1f based of +the model eq. (4-5).
This is probably the most far reaching consequence of this deriva-—
tion.

. The number of edges within a window needs not to be known in ad-

vance in order to be able to estimate the intersection point {cf.

fig. 5: 1-6,13-15)

. Similarily the number of edge-rings within a window needs not to be
known in advance (cf. fig. 5: 10-12) :

. Also mixtures of intersecting edges and lines can be determined.

Moreover, the end point of a line can be estimated due to the

existende of an edge-element at the end of the line (cf. fig. 5=

7-9, 18-18).

The ML-estimate provides the precision of the estimated point. The

standard deviations of the estimated coordinates usually are below

1/4 of a pixel.

. The classification of the point can be based on the closeness of

£it with respect to the 3 models (general point, intersection
point, centre of rings), which has not performed in the examples in
fig. 5.
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Fig. 4 shows the centre of the selected windows (4.a) and the se-
lected points (4.b) for a checker bord in tweorientations. Nearest
neighbourhood resampling was used for the rotated ocne. In fig. 5 seve-
ral image patches are shown together with the edge- or slope-
elements, the estimated point and the confidence ellipse derived from
the fit of the gray levels with respect to the model. The true point
with a probability of 99 X lies within the confidence ellipse, provi-
ded the model holds. The edge- and slope elements are positioned
between +the pixels a= Roberts gradient has been used. The examples
clearly demonstrate the capabilities of the point selector.

4.3 A Measure for Seldomness

The preliminary weight W = 1 / tr Q (eq. 4-3} for the points smelec-
ted this way only takes the local gray level function into account,
thus 1s independent on the other selected points. In images with re-
retetive patterns one, however, should give those points a higher
weight whose features are seldom, in order to increase the reliability
of the initial estimate.

The problem of finding seldom, thua specific structures for
matching is a very general one. There are basicly two solutions:

a. The supervised selection of features uses the information of cor-
rect matches of a representative sample. Thus those features are
selected, which in a training phase gave best results. The approach
by KAK et. al. (1988) follows thiz line.

b. The unsupervised selection of features is based only on the mutual
similarity of the points or objects in concern, specifically how
dissimilarity can be expexted to infiuence the matching result. The
approach by TURNEY et. al. (19885) follows this line.

For supervised selection the representativity of the training
sample is crucial, whereas for unsupervised selection the uanrlying
mathematical model for matching is decisive. We are only intersted in
a relative weighting of the points and , because of the inherent limi-
tations of training procedures, do not want to rely on a - possibly
large -~ =met of correct matches. We therefore propose the following
simple method for measuring the seldomness of the selected polnts,
which can be derived after the selection frem +the set of points in
each of the images alone.

Seldom points have features which are different or dissimilar from
those of all other points. As we used the correlation coefficlient for
measuring the similarity of points in different images we now also use
the correlation cosfficient for measuring the =imilarity (or dissimi-
larity) between points within one image. Let R = (rij) be the correla-
tion matrix of all selected points within one image, derived from the
gray levels within the window arcund the points. Then the seldomness
Si of point i, similarily to eq. (3-3) for SNR, can be obtained from:

St =(1-r)/r forr >0, 81 = else . (4-8)
where ri is a cdrrelation cocefficient measuring the similarity of

point i with all other points. There are at least two choices at hand
for deriving such a summarizing value:

1. ri = max (xrij) (4-7.1)
i
2. r'® =1 - [{(R1)}1]1 = mt R-1 o (4-7.2)

The first choice ri just measures the maximum similarity of i with
all other points j. The second choice ri’ is the socalled total corre-
lation, which for instance is proposed by JACOBSEN (1982) for evalua-
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ting the mutual dependency of additional parameters for selfcalibra-
tion. It needs the diagonal elements of the inverse of the correlation
matrix. In eq. (4-7.2) x4 is the i-th column of R without the diagonal
element Rii = 1, and Ri is the correlation matrix without row and
column i. Obvicusly ri' is the weighted average of all correlations of
roint i with the other points. ri’ is theoretically more attractive
than ri, as i1t measures +the separability of point i and the other
points (cf. FORSTNER 1883). It can be algebraicly related to the in-
formation theoretic notion of seldomness in the sense of low probabi-
lity. This is, because for small ri’, thus for a point well separable
from the others, the information, measured in bits, necessary to
describe this point, given the others, is large, indicating the point
to be a seldom one. This forms a 1link to the supervised selection
principle for structural feature= proposed by KAK et. al. (1986).

But, as can seen from 2 x 2 matrices, for which n* = rz*r = |Riz
holds, 1ri’' cannot discern positive and negative correlations. We
therefore propose to use the, also more simple measure xi for deriving
the seldomness.

in both cases large correlations between +the points, thus large
off-diagonal elements in R lead to large summarizing correlation co-
efficients ri, thus to small seldomness measures, as should be expec-
ted.

Example: The correlations of the 3 first windows of fig. 5 are nri2 =
0.92, r1a = 0.29 and rza = 0.39. We obtain:

1: 81 = 0.08, 52 = 0.08, 83 1.5686
2: S1' = 0.43, 52' = 0.40, 83’ 2.29

both choices indicating the +third window +to have the most seldon
characteristics from these three windows, which corresponds to intui-
tion. The total correlations are r1’* = 0.B5, rz2’®* = 0.86 and r3’"® =
0.16. .

The preliminary weight Wi from eq. (4-3) of each point can now be
corractad for seldomness by multiplying it with Si. Altogether the
welght of a preliminary correspondence between point 1 in image I’ and
J in image I"” with eq. (3-4) now can then be written as: :

Wi j -g rid 1 | v u « 7B 83 {4-8)

1 - rij Um"am"
The main effort for deriving these weights is +the calculation of the
correlation coefficients of the points within and between the images.

5. _Conclusions

The feature based matching algorithm described above has been limple-
mented on a photogrammetric measuring device, a Zeiss Planicomp €100,
within the program PALM (SCHEWE/FORSTNER 1988) for automatic line and
surface measurments developped for the mensuration of car body sur-
faces. The algorithm supports +the least squares matching algorithm by
providing reliable and accurate approximate values if necessary. The
precision of this FBM procedure has been shown +to be appr. 1/3 of a
pixel in case the centre of the selected windows are used as feature
points and the images show enough texture. The time for matching two
images of 120 x 120 pixels is about 2 seconds on a VAX 11/780. On an
HP1000 A900 computer +the time for two images of 40 x 40 pixels is
appr. 8 seconds. The accuracy c¢an be expected to be significantly
better if the weighted centres of the windows according +to sect. 4.2
are used as feature points, then yielding accuracies which may be
sufficient for robot control or inspection tasks. The concept is able
+o 4include a similarity measure, being invariant to the ' expected
geometric distortions without changing the interest operator and to
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extend the object model to much more general surfaces. The ablility of
the.interest operator to find and accurately locate corners with
arbitrary number and orientatien of edges or lines need further in-
vestigation, specifically for supporting image analysis.
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