
Feature Subset Selection with
Adaboost and ADTboost

Martin Drauschke

martin.drauschke@uni-bonn.de

TR-IGG-P-2008-04

25th March 2008

Technical Report Nr. 4, 2008

Department of Photogrammetry
Institute of Geodesy and Geoinformation

University of Bonn

Available at
http://www.ipb.uni-bonn.de/˜ martin/

Feature Subset Selection with
Adaboost and ADTboost

Martin Drauschke

martin.drauschke@uni-bonn.de

Abstract

This technical report presents feature subset selection methods for
two boosting classification frameworks: Adaboost and ADTboost.

1 Introduction

Feature selection is a challenging task during object recognition and image
interpretation. Especially, highly structured objects with a rich diversity
and in variable environments are often only separable using high dimensional
feature vectors. Then, the explosion of extracted features has to be faced by
reduction of the redundant ones to avoid computational costs.

Also, feature selection is used in data mining to extract useful and com-
prehensible information from data, cf. [Liu & Motoda, 1998]. One classical
approach, the principal component analysis (PCA), reduces the dimension of
the feature space by projecting all features, cf. [Bishop, 2006]. The resulting
feature set of a PCA is not necessarily a subset of all candidate features,
but combinations of the original features. Thus, the PCA is no appropriate
tool, if one wants to obtain a real subset of features for further investigations.

Structure of the Technical Report. In this technical report, we first
give a review on feature subset selection principles and methods in section 2.
The commonly used techniques can be combined with many single classifi-
cations, but we are interested to combine many weak classifiers to build one
strong classifier. This framework is presented in section 3, where we discuss
the functionality of two boosting methods: Adaboost and ADTboost. In
section 4, we present our feature subset selection scheme. An evaluation of
these strategies and an application on detecting buildings and building parts
is given in further publications.

3

Notation. Now, we want to formalize the problem and introduce our nota-
tion: Given is a data set of N training samples (xn, yn), where xn = [fn

1 , .., f
n
D]

is a real-valued feature vector with dimension D, and yn is the class mem-
bership, e. g. yn ∈ {−1,+1} in the binary case, or yn ∈ {1, .., K} if K
classes are given. For now, we only considered the binary case, but all ap-
plied algorithms have already been introduced for the multi-class case, cf.
[Schapire & Singer, 1999] and [Holmes et al., 2002], respectively. Our final
goal is not only the classification of these feature vectors, we additionally
want to select the best features to reduce the dimension of the feature space
and to eliminate redundant features.

2 Feature Subset Selection Principles

If we want to select a subset of appropriate features from the total set of
features with cardinality D, we have a choice between 2D possibilities. If we
deal with feature vectors with more than 100 components, the exhaustive
search takes too much time. Thus, we must find other ways to select a
subset of features. The principle techniques are discussed in the following
subsection.

There are mainly two strategies for avoiding the complete search: random-
based and deterministic greedy algorithms. According to [Mladenić, 2006],
the following basic search strategies are used for selecting feature subsets.

• Forward selection. This technique starts with an empty set and
greedily adds the best of the remaining features to this set. This process
is called stepwise, if only one feature is added in each step.

• Backward elimination. Here, we start with the full set containing
all features. Then we greedily remove the most useless features from
this set. This process is called stepwise, if only one feature is added
in each step.

• Random mutation. This strategy starts with a randomly selected
feature set and adds randomly selected features or removes them from
the set.

2.1 Deterministic approaches

Figure 1 shows the forward stepwise selection search paths for an example
with four features. The top node, where the search starts, contains the empty
set. In the first step, we can chose between all four features and select the

4

best feature. Afterwards, we check, if the selection of an additional feature
will lead to a better subset, and so on. The backward stepwise selection
would take the inverted paths and starts with the complete set of features.
Obviously, both strategies can miss the global optimum, if a wrong path has
been taken in an earlier step.

Figure 1: Forward stepwise selection search paths for selecting the best of
four features. Start is the top node, the empty set, and then one feature is
added to the set until e. g. a local optimum has been found.

Alternatively, feature selection methods can be divided into filters, wrap-
pers and embedded approaches, cf. [Mladenić, 2006]. For analyzing the
relevance of feature subsets, filters use evaluation functions that are indepen-
dent from the learning method, while wrappers evaluate the feature subsets
in respect to the learning result. In embedded approaches, the feature subset
selection and the learning method are interleaved.

As filter techniques, [Guyon & Elisseeff, 2003] propose feature subset se-
lection methods which are based on variable ranking. The ranking can be
done by e. g. squared Pearson’s Correlation Coefficient. Other ranking cri-
teria, as listed in [Guyon & Elisseeff, 2003], are on the mutual information
between each variable and the class index or on the predictive power of each
single variable. Each of these ranking methods is followed by the classifica-
tion step itself, which is done by only one classifier performing a e. g. linear
discriminant analysis or Naive Bayes classification.

These classification methods do not work, if the features are highly corre-
lated, and the training samples do not form compact clusters in feature space.
In such cases, it is much better to use a feature subset selection scheme which

5

combines several classifiers. This leads us to the concept of adaptive boost-
ing (Adaboost) where a strong (or highly accurate) classifier is found by
combining several weak (or less accurate) classifiers, cf. [Schapire, 1990].

2.2 Random approaches

Genetic algorithms are commonly used to select the best feature subset ran-
domly, cf. [Martin-Bautista & Vila, 1999]. The principle of genetic algo-
rithms is as follows:

[...] a population of individuals representing possible space solu-
tions is maintained through several generations. Each individual
is evaluated in each generation based on its fitness with respect to
the considered function to minimize or maximize. The selection,
crossover and mutation of the fittest ones produce new individu-
als. Through the generations, the population is led to the space
of the better solutions in the given domain.

[Martin-Bautista & Vila, 1999]

Genetic algorithms are relatively insensitive to noise, and there is no do-
main knowledge required. This makes genetic algorithms so favored in many
applications. But we want to learn the relevance of features from only a
few samples (if possible). Then, the creation of new individuals within the
generation development might lead to wrong solutions. Furthermore, the
computational time of genetic algorithms in combination with a wrapped
classification method is not efficient, cf. [Martin-Bautista & Vila, 1999].

Another technique based on random decisions are random forests, cf.
[Breiman, 2001, Ho, 1998]. The classification with random forests is based
on a majority vote in respect to the results of weak randomly constructed de-
cision trees. In [Ho, 1998], a random selection of a predefined small number of
features is used for constructing decision trees. This procedure is equivalent
to projecting the feature vectors into a space with much lower dimension-
ality, but the projections differ from one decision tree to the others. The
decision trees in [Breiman, 2001] randomly choose a feature from the whole
feature set and takes it for determining the best domain split. Both methods
only work well, if the number of random decision trees is large, especially if
there are only features which are nearly uncorrelated with the classes. In his
experiments, [Breiman, 2001] uses five times more decision trees than weak
learners in Adaboost. Furthermore, if the number of decision trees is high,
the number of (randomly) selected features is also quite high. Then, we do

6

not benefit on feature subset selection, because almost every feature has been
selected.

[Rogers & Gunn, 2006] show that ”the lack of implicit feature selection
within random forest can result in a loss of accuracy and efficiency, if irrele-
vant features are not removed”. They use the expected information gain as
a criterion for removing such irrelevant features, thus their feature selection
is not based on classification results. We would prefer wrapper methods in-
stead of filter methods to assure the get nearly optimal classification results.
That’s why we studied the boosting methods in more detail.

3 Adaboost and ADTboost

3.1 Adaboost

In this subsection, we introduce the adaptive boosting (Adaboost) frame-
work. For better readability, we firstly introduce our notation in table 1, and
then we explain the principle of Adaboost.

Table 1: Notation for Boosting algorithms.
xn D-dimensional feature vector, n = 1 . . . N
yn binary target {+1,−1}, n = 1 . . . N
t iteration index of boosting algorithm, t = 1 . . . T
cj classifier candidate, j = 1 . . . Jt

W n
t Weight of n-th sample in t-th iteration

W+(cj) sum of weights of all samples with target +1, where cj predicts +1
W−(cj) sum of weights of all samples with target −1, where cj predicts +1
W+(¬cj) sum of weights of all samples with target +1, where cj predicts −1
W−(¬cj) sum of weights of all samples with target −1, where cj predicts −1
W∗(¬cj) sum of weights of all samples, where cj predicts −1

ht best weak classifier at iteration t, ht : x 7→ {+1,−1}
αt predictive value of ht

H strong classifier, H : x 7→ {+1,−1}

The basic Adaboost algorithm as presented by [Freund & Schapire, 1996]
is sketched in fig. 2. The first weak classifier (or best hypothesis) is learnt on
equally treated training samples (xn, yn). Then, before training the second
weak classifier, the influence of all misclassified samples gets increased by
adjusting the weights of the feature vectors. So, the second classifier will
focus especially on the previously misclassified samples. In the third step,
the weights are readjusted once more depending on the classification result

7

of the second weak classifier before training the third weak classifier, and so
on.

Input: (x1, y1),. . . , (xN , yN).
Initialization: W n

1 = 1/N .
Repeat t = 1,. . . , T :

• Determine best weak hypothesis ht using Wt.

• Determine αt

• Determine distribution Wt+1

Output: H with H(x) = sign (
∑

t αtht(x)).

Figure 2: Algorithm of Adaboost (binary case) by [Schapire & Singer, 1999]

In more detail: Let there be a set of Jt classifier candidates cj in the t-th
iteration of Adaboost. Then, we determine its discriminative power for each
classifier candidate cj by

Zj = 2
(√

W+(cj)W−(cj) +
√
W+(¬cj)W−(¬cj)

)
, (1)

where W+(cj) is the sum of all weights from samples of the positive class
which have been classified to the positive class, and W−(¬cj) is the sum of
all weights from samples of the negative class which have been classified to
the negative class etc. Then, the best weak classier is that candidate which
minimizes Z:

ht = ct with t = argminjZj.(2)

In the next step, the weak classifier ht receives a predictive value αt which
depends on its success rate. According to [Schapire & Singer, 1999], the
predictive value αt is derived from the classification result rt of the weak
classifier ht:

αt =
1

2
ln
(

1 + rt + ε

1− rt + ε

)
(3)

where

rt =
N∑

n=1

W n
t ynht(xn). (4)

The product ynht(xn) is +1, if xn is correctly classified by ht, otherwise the
product is −1. Since Wt is a distribution, e. g.

∑
nW

n
t = 1, we derive as a

range for the classification result:

−1 ≤ rt ≤ +1. (5)

8

rt is +1, if all samples have been correctly classified, and it is −1, if all
samples have been misclassified. So, the range for αt is

−∞ < αt < +∞, (6)

and

αt


> 0, if rt > 0
= 0, if rt = 0
< 0, if rt < 0

(7)

The updating of the weights is based on the classification of the last chosen
weak classifier ht:

W n
t+1 = W n

t exp (−αtynht(xn)) , (8)

and afterwards Wt+1 is normalized again. Thus, the weight Wt+1(n) of the
n-th sample increases if it has been misclassified by ht, otherwise the weight
of the sample decreases, cf. [Schapire & Singer, 1999].

Finally, after T weak classifiers have been chosen, the result of the strong
classifier H can be depicted as the sign of the weighted sum of the results of
the weak classifiers:

H(x) = sign

(∑
t

αtht(x)

)
. (9)

The discriminative power of the resulting classifier H can be expected to
be much higher than the discriminative power of each weak classifier ht, cf.
[Rätsch et al., 2001].

The original Adaboost algorithm has been adapted in various ways. One
important improvement is ADTboost, where the weak classifiers can addi-
tionally be arranged in a hierarchical order. We introduce it in the next
subsection.

3.2 ADTboost

The boosting with Alternating Decision Trees (ADTboost) as proposed by
[Freund & Mason, 1999] is an extension of Adaboost which has been clearly
re-formulated by [De Comité et al., 2001]. The extensions of Adaboost to-
wards ADTboost are the following: Primarily, the weak classifiers are put
into a hierarchical order - the alternating decision tree. The tree consists
of two different kind of nodes which alternately change on a path through
the tree, cf. fig. 3. Secondly, each decision node contains a weak classifier
and has two prediction nodes as its children. These two predictive values α+

t

and α−t depict the performance of the weak classifier, similarly to the αt in
Adaboost. The weak classifiers in upper levels of the tree work as precon-
ditions on those classifiers below them. If not all preconditions are fulfilled

9

for a given sample, the response of a weak classifier is set to 0. And third,
the root node contains the predictive value α0 of the true-classifier, which
always returns +1. Thus, α0 is derived from the ratio of the number of sam-
ples between both classes and, therefore, it can be interpreted as a a prior
classifier.

Figure 3: Alternating Decision Tree: Rectangular nodes represent a weak
classifier, elliptic nodes the predictive values. The root node contains the
predictive value α0 of the true-classifier. Due to the hierarchy of the classi-
fiers, h1 and h3 are pre-classifiers of h2 and h4, respectively.

Before starting ADTboost, we have to set the samples’ weights, and,
additionally, we declare a set of preconditions P . Initially, this set only
contains a tautological true-classifier. At the end of each iteration step, P
is extended by two additional preconditions h+

t and h−t . (Again, ht is the
currently chosen weak classifier). So, in the t-th iteration step, we select the
best weak classifier from the combinations of all 2 · (t− 1) + 1 preconditions
with all unselected classifier candidates. This quadratic search can be reduced
to a nearly linear search by a heuristic search, cf. [Pfahringer et al., 2001].
If the best classifier candidate is cj with its precondition hp, then the new
best weak classifier ht is set ht = hp ∧ cj, and the set of preconditions will
be extended by P = P ∪ {hp ∧ cj, hp ∧ ¬cj}. Technically, we determine the
predictive values with ε = 1 by

α+
t =

1

2
ln

(
W+(hp ∧ cj) + ε

W−(hp ∧ cj) + ε

)
(10)

and

α−t =
1

2
ln

(
W+(hp ∧ ¬cj) + ε

W−(hp ∧ ¬cj) + ε

)
, (11)

10

and the update of the sample’s weights at the end of each iteration is done
by

Wt+1(n) = Wt(n) exp (−rt(xn)yn) , (12)

where

rt(xn) =


= α+

t , if hp(xn) = +1 and cj(xn) = +1
= α−t , if hp(xn) = +1 and cj(xn) = −1
= 0, if hp(xn) = −1.

(13)

If a sample does not fulfill the precondition hp, i. e. hp(xn) = −1, then the
sample’s weight remains the same. In the initialization step, we start with
equal weights W1(n) = 1, and there is no normalization of the weights neither
within the initialization step, nor after each update of the weights. But in
our point of view, this is only a minor change which effects in more significant
changes of the weights.

The determination of the best classifier candidate has also been slightly
adapted. Considering Adaboost, the Z-value describes the separability of
a classifier candidate cj. Now we have to integrate the separability of the
precondition hp as well:

Zpj = 2
(√

W+(hp ∧ cj)W−(hp ∧ cj) +
√
W+(hp ∧ ¬cj)W−(hp ∧ ¬cj)

)
+W∗(¬hp)

.

(14)
The best weak classifier minimizes Z over all hp and all cj.

Since ADTboost is an extension of Adaboost, we can visualize the re-
sulting Adaboost-classifier by an equivalent tree structure. Then, we have
to fill the two prediction nodes beneath the decision node of the classifier
with the positive and negative of the weak classifier’s weight. Furthermore,
all decision nodes are fastened onto the prediction root node which contains
a 0, since Adaboost has not integrated any prior decision. Fig. 4 shows
the ADT-like visualization of a strong Adaboost classifier with four weak
classifiers.

3.3 A synthetic example: Adaboost vs. ADTboost

We implemented Adaboost and ADTboost using the formulations presented
here which are taken from the algorithms in [Schapire & Singer, 1999] and
[De Comité et al., 2001], respectively. Both algorithms are optimized with
respect to find the best weak classifier, to determine the classifier’s weight
or the predictive values, respectively, and to update each sample’s weight.

11

Figure 4: ADT-like visualization of classification with Adaboost.

There are only two unsolved questions that are left to the user. The first
question refers to the maximum number of iterations. We stop the training
either after T steps or earlier, if the error rate on the training samples is below
threshold θ. The other question deals with the generation of the set of clas-
sifier candidates. Since we are interested in the subset selection of the given
features, we consider only threshold classification on single features. Then,
we avoid the combinatorial explosion which would occur, if we would also
consider linear separation with 2 or more features. Thus, our decision trees
will be k-d-trees and no oblique decision trees or other domain partitioning
structures.

We want to discuss the functionality of both algorithms by presenting
their workflows on a synthetic data set, which we visualized in fig. 5. It
consists of points which belong to two classes (red and blue). The target
of the red class is yn = 1, and the membership to blue class is encoded by
yn = −1. We work with a 2-dimensional feature vector, and its domain is
xn ∈ [0, 1]× [0, 1]. The class membership of a given data point xn is defined
by

yn =


+1 (red) - if fn

1 < 0.4 and fn
2 > 0.4 or

fn
1 > 0.6 and fn

2 < 0.6
−1 (blue) - else.

(15)

Besides the four domain bounds, we only need four other discriminative
lines for describing the feature set. Therefore, we limit our set of classifier

12

Figure 5: Synthetic data set with 2 features and 2 classes (red and blue).

candidates onto these eight items:

c1 : if f1 < 0.4 then red else blue
c2 : if f1 > 0.6 then red else blue
c3 : if f2 < 0.4 then red else blue
c4 : if f2 > 0.6 then red else blue
c5 : if f1 < 0 then red else blue
c6 : if f1 > 1 then red else blue
c7 : if f2 > 0 then red else blue
c8 : if f2 < 1 then red else blue

(16)

If a candidate is selected, we also determine, if cj or ¬cj is the best weak
classifier according to their classification errors. We do not list both classifiers
in the set of candidates, because we get the same Z-value for both candidates
due to the symmetry of its determination. Furthermore, we want to avoid
duplicate selections of weak classifiers. Considering Adaboost, we reduce
the set of classifier candidates by the chosen weak classifier at the end of
each iteration step. In respect to ADTboost, this procedure is a little more
complicated, because we ignore a already chosen classifier only, if it part of
the precondition. So, a weak classifier may occur twice or more often, if the
preconditions of these weak classifiers differ. The calculations can further
be reduced, because all four domain bound classifiers c5-c8 will produce the
same Z-values.

13

3.3.1 Adaboost

In this part, we document the functionality of Adaboost. Initializing the
system, we only have to set up the weights, including their normalization.
Since we will not gain an errorless classification, we will stop after the fourth
iteration, when only the domain bounds classifiers are left to choose.

1st Iteration. In the first iteration step, the classifier candidates produce
the following Z-values:

c1 :
W+(c1) = 0.24,W+(¬c1) = 0.24
W−(c1) = 0.16,W−(¬c1) = 0.36

⇒ Z1 = 0.9798

c2 :
W+(c2) = 0.24,W+(¬c2) = 0.24
W−(c2) = 0.16,W−(¬c2) = 0.36

⇒ Z2 = 0.9798

c3 :
W+(c3) = 0.28,W+(¬c3) = 0.24
W−(c3) = 0.32,W−(¬c3) = 0.16

⇒ Z3 = 0.9906

c4 :
W+(c4) = 0.28,W+(¬c4) = 0.24
W−(c4) = 0.32,W−(¬c4) = 0.16

⇒ Z4 = 0.9906

c5 :
W+(c5) = 0,W+(¬c5) = 0.48
W−(c5) = 0,W−(¬c5) = 0.52

⇒ Z5 = 0.9992

(17)

The first candidate minimizes Z, so c1 becomes the first weak classifier h1 =
c1. Then, its predictive value is

α1 =
1

2
ln
(

1 + 0.2

1− 0.2

)
= 0.2027. (18)

So far, the total classification will return 40% errors on the training data.

2nd Iteration. Thus, we perform the second iteration step, but without
considering c1 as a candidate:

c2 :
W+(c2) = 0.2976,W+(¬c2) = 0.2016
W−(c2) = 0.1344,W−(¬c2) = 0.3664

⇒ Z2 = 0.9436

c3 :
W+(c3) = 0.2352,W+(¬c3) = 0.2656
W−(c3) = 0.3008,W−(¬c3) = 0.1984

⇒ Z3 = 0.9912

c4 :
W+(c4) = 0.2992,W+(¬c4) = 0.2016
W−(c4) = 0.3648,W−(¬c4) = 0.1344

⇒ Z4 = 0.9900

c5 :
W+(c5) = 0,W+(¬c5) = 0.4992
W−(c5) = 0,W−(¬c5) = 0.5008

⇒ Z5 = 1.0000

(19)

The second candidate minimizes Z, so c2 becomes the secondly chosen weak
classifier h2 = c2, and its predictive value is

α2 =
1

2
ln
(

1 + 0.328

1− 0.328

)
= 0.3406. (20)

14

After the first two iterations, the strong classifier consists of two weak clas-
sifiers, and it performs a classification with still an error of 40%.

3rd Iteration. At this stage, we want to demonstrate, that Adaboost
may select a weak classifier twice, if one does not reduce set of candidates.
In this case, we would not improve the total classification, because there is
no new weak classifier, but its predictive value will change. If this duplicate
selection repeats again and again, we would only suffer from computational
costs.

So, we obtain for all five listed candidates

c1 :
W+(c1) = 0.3,W+(¬c1) = 0.2232
W−(c1) = 0.1488,W−(¬c1) = 0.3280

⇒ Z1 = 0.9638

c2 :
W+(c2) = 0.2232,W+(¬c2) = 0.3
W−(c2) = 0.2,W−(¬c2) = 0.2768

⇒ Z2 = 0.999

c3 :
W+(c3) = 0.2768,W+(¬c3) = 0.2
W−(c3) = 0.3744,W−(¬c3) = 0.1488

⇒ Z3 = 0.9888

c4 :
W+(c4) = 0.2256,W+(¬c4) = 0.2512
W−(c4) = 0.3232,W−(¬c4) = 0.2

⇒ Z4 = 0.9882

c5 :
W+(c5) = 0,W+(¬c5) = 0.5232
W−(c5) = 0,W−(¬c5) = 0.4768

⇒ Z5 = 0.9989

(21)

Since we discard the candidates which have been selected so far, c3 is the
the best candidate left. Without discarding, we would enter a loop where
the candidates c1 and c2 would be reselected again and again. Since the
total Adaboost classification would perform better, we favor the discarding
of these classifier candidate set after their first selection. The predictive value
of the third weak classifier h3 = ¬c4 is

α3 =
1

2
ln
(

1 + 0.1488

1− 0.1488

)
= 0.1499. (22)

Now, the strong classifier which relies on the predictions of the three weak
classifiers has a classification error of 32%.

4th Iteration. In the fourth iteration, we can only choose between the
original third classifier candidate c3 and the domain bounds:

c3 :
W+(c3) = 0.2928,W+(¬c3) = 0.2216
W−(c3) = 0.3640,W−(¬c3) = 0.1216

⇒ Z3 = 0.9814

c5 :
W+(c5) = 0,W+(¬c5) = 0.4856
W−(c5) = 0,W−(¬c5) = 0.5144

⇒ Z5 = 0.9996
(23)

15

Then, in the fourth iteration, the third candidate is also chosen as a weak
classifier h4 = ¬c3 with its predictive value

α4 =
1

2
ln
(

1 + 0.1712

1− 0.1712

)
= 0.1729. (24)

Unfortunately, the strong classifier is not improved by this additional weak
classifier, so we remain with a final classification error of 32%. The final
predictions of the Adaboost classifier are obtained for a given x = [f1, f2] by
the sign of the weighted sums of the predicitions of all weak classifiers:∑

αtht(x) f1 < 0.4 0.4 ≤ f1 ≤ 0.6 f1 > 0.6

f2 > 0.6 −0.1149 −0.5203 0.1609
0.4 ≤ f2 ≤ 0.6 0.1849 −0.2205 0.4607
f2 < 0.4 −0.1609 −0.5663 0.1149

. (25)

Classification errors only occur, if f1 < 0.4∧ f2 > 0.6 or if f1 > 0.4∧ f2 > 0.6.
In all other subdomains, Adaboost predicts correctly. The strong Adaboost
classifier is visualized by the tree representation from ADTboost in fig. 6.
We do not consider further iterations, because the domain bounds will always
have an error of at least 48%. In reality, Adaboost could choose several other
axis-parallel classifiers as f1 < 0.5, and so the classification can furtherly get
improved.

Figure 6: Visualization of Adaboost’s result within the tree-drawing frame-
work of ADTboost.

3.3.2 ADTboost

In this part, we document the functionality of ADTboost. First, we ini-
tialize the system, and then we discuss each iteration step until the total
classification error is decreased to 0% after the 4th step.

Initialization. The initialization ADTboost contains the three steps. Firstly,
we define the first weight per sample, and we define the set of preconditions,

16

containing only the true-classifier. We initially set all weights to 1 without a
normalization step afterwards. The domain of our synthetic data set can be
divided in 9 subdomains, according to first four classifier candidates in eq.
25. When presenting the weights and their sums in respect to the success of
a classifier candidate, we use 100 samples distributed according to the area
of these subdomains. Only the amounts of the summed weights are effected
by this decision. The ratios of the weights stay similar and the minimum
detection in respect to Z remains the same.

In figs. 7 and 8, we present the weight of one sample of each subdomain.
The upper left corner stands for the subdomain with the bounds 0 ≤ f1 ≤ 0.4
and 0.6 ≤ f1 ≤ 1, etc. Secondly, we determine the prior classifier

1 1 1
1 1 1
1 1 1

Figure 7: Initialization of
weights.

0.96 1.04 1.04
0.96 1.04 0.96
1.04 1.04 0.96

Figure 8: Weights after in-
tegrated prior classification.

α0 =
1

2
ln

(
W+(true)

W−(true)

)
= −0.04, (26)

which is the predictive value of the true-classifier. In the third step, we
update the weights in respect to the results of the prior classification, see fig.
8.

1st Iteration. The first iteration of ADTboost starts with only one pre-
condition h0 : true and we may select each of the eight given classifier can-
didates from eq. 25. We determine the following Z-values for these classifier
candidates:

c1 :
W+(c1) = 23.04,W+(¬c1) = 16.64
W−(c1) = 23.04,W−(¬c1) = 37.44

⇒ Z01 = 97.90

c2 :
W+(c2) = 23.04,W+(¬c2) = 16.64
W−(c2) = 23.04,W−(¬c2) = 37.44

⇒ Z02 = 97.90

c3 :
W+(c3) = 15.36,W+(¬c3) = 24.96
W−(c3) = 30.72,W−(¬c3) = 29.12

⇒ Z03 = 98.98

c4 :
W+(c4) = 15.36,W+(¬c4) = 24.96
W−(c4) = 30.72,W−(¬c4) = 29.12

⇒ Z04 = 98.98

c5 :
W+(c5) = 0,W+(¬c5) = 46.08
W−(c5) = 0,W−(¬c5) = 54.08

⇒ Z05 = 99.84

(27)

17

Again, Z is a function for evaluating the separability of a classifier. A clas-
sifier is more discriminative, if it has a less Z-value. So, obviously, the first
chosen weak classifier is h1 = c1 with the true-classifier as its precondition.
The predictive values of the first weak classifier h1 are:

α+
1 =

1

2
ln
(

1 + 23.04

1 + 16.64

)
= 0.15 (28)

and

α−1 =
1

2
ln
(

1 + 23.04

1 + 37.44

)
= −0.23. (29)

And similar to Adaboost, we obtain a classification error of 40% for the
strong classifier. Finally, the updated weights are presented in fig. 9.

2nd Iteration. In the second iterative step, we must evaluate the classifier
candidates in combination with three preconditions: h0, h

+
1 = h1 and h−1 =

¬h1. The summed weights of the samples which do not fulfill a precondition
are, respectively,

W∗(¬h0) = 0
W∗(¬h+

1) = 58.92
W∗(¬h−1) = 39.28.

(30)

Now, we obtain for all possible classifier candidates and each precondition
the following Z-value:

h0 ∧ c2 : Z02 = 92.80
h0 ∧ c3 : Z03 = 97.34
h0 ∧ c4 : Z04 = 97.20
h0 ∧ c5 : Z05 = 98.20
h−1 ∧ c2 : Z22 = 78.56
h−1 ∧ c3 : Z23 = 91.96
h−1 ∧ c4 : Z24 = 73.30
h−1 ∧ c5 : Z25 = 98.19
h+

1 ∧ c2 : Z12 = 98.20
h+

1 ∧ c3 : Z13 = 58.92
h+

1 ∧ c4 : Z14 = 81.60
h+

1 ∧ c5 : Z15 = 98.20

(31)

The minimal Z is obtained when we combine the third classifier candidate
with the precondition h1 to the secondly chosen weak classifier h2 = h+

1 ∧¬ c3.
Its predictive values are

α+
2 =

1

2
ln
(

1 + 19.92

1 + 0

)
= 1.52 (32)

18

and

α−2 =
1

2
ln
(

1 + 0

1 + 19.36

)
= −1.51. (33)

At this stage, ADTboost performs with a total classification error of only
24%, which is a value Adaboost never reaches in our scenario. The updated
weights are shown in fig. 10.

0.83 0.83 0.83
0.83 0.83 1.21
1.21 0.83 1.21

Figure 9: Weights after 1st
iteration.

0.18 0.83 0.83
0.18 0.83 1.21
0.27 0.83 1.21

Figure 10: Weights after
2nd iteration.

3rd Iteration. In the third iteration, the search will include five possible
preconditions, and the two added preconditions are h+

2 = h2 and h−2 = ¬h2.
Their partial input to the according Z-values is

W∗(¬h0) = 0
W∗(¬h+

1) = 58.92
W∗(¬h−1) = 8.64
W∗(¬h+

2) = 63.24
W∗(¬h−2) = 63.24.

(34)

When searching for the combination of precondition and classifier candidate
which minimize Z, we start with the precondition with the lowest impact on
Z. If a combination produces a Z-value which is lower than the impact of
other preconditions, we may stop without considering the left preconditions.
Here, we obtain the following intermediate results:

h0 ∧ c2 : Z02 = 58.30
h0 ∧ c3 : Z03 = 65.21
h0 ∧ c4 : Z04 = 56.86
h0 ∧ c5 : Z05 = 67.55
h−1 ∧ c2 : Z22 = 47.92
h−1 ∧ c3 : Z23 = 61.32
h−1 ∧ c4 : Z24 = 42.65
h−1 ∧ c5 : Z25 = 67.55.

(35)

The current best combination of ¬h1 and c4 is also the globally best com-
bination, because its separability-value is less than the impacts of the other

19

preconditions. Thus, the third best weak classifier consists of h3 = h−1 ∧ ¬c4
and its predictive values are

α+
3 =

1

2
ln
(

1 + 29.04

1 + 9.96

)
= 0.50 (36)

and

α−3 =
1

2
ln
(

1 + 0

1 + 19.92

)
= −1.52. (37)

At this stage of the process, we have a total classification error of only 12%.
The updated weights are shown in fig. 11.

4th Iteration. Now, we have to consider seven possible preconditions,
and the two new ones are h+

3 = h3 and h−3 = ¬h3. Their partial input to the
according Z-values is

W∗(¬h0) = 0
W∗(¬h+

1) = 38.28
W∗(¬h−1) = 8.64
W∗(¬h+

2) = 42.60
W∗(¬h−2) = 42.60
W∗(¬h+

3) = 12.96
W∗(¬h−3) = 42.60.

(38)

Again, we only have to consider those preconditions which have less impact
on Z than the currently best combination. The Z-values for the combinations
are:

h0 ∧ c2 : Z02 = 33.79
h0 ∧ c3 : Z03 = 46.68
h0 ∧ c4 : Z04 = 46.73
h0 ∧ c5 : Z05 = 46.81
h−1 ∧ c2 : Z22 = 22.85
h−1 ∧ c3 : Z23 = 46.40
h−1 ∧ c5 : Z25 = 46.78
h+

3 ∧ c2 : Z52 = 12.96.

(39)

The last combination is the globally best one, thus we set the fourth best
weak classifier to be h4 = h+

3 ∧ c2 and its predictive values are

α+
4 =

1

2
ln
(

1 + 17.52

1 + 0

)
= 1.46 (40)

and

α−4 =
1

2
ln
(

1 + 0

1 + 16.44

)
= −1.43. (41)

20

The weighted predictions of all weak classifiers are presented in fig. 12. We
derive classification results of the strong classifier with no error at all, since
the signs of all predictions are correct. The visualized alternating decision
tree is shown in fig. 13.

0.18 0.18 0.18
0.18 1.37 0.73
0.27 1.37 0.73

Figure 11: Weights after 3rd
iteration.

1.63 −1.79 −1.79
1.63 −1.20 1.69
−1.40 −1.20 1.69

Figure 12: Predictions of
weighted weak classifiers.

Figure 13: Visualization of Alternating Decision Tree on synthetic data set.

3.3.3 Comparison of Adaboost and ADTboost

Although we have demonstrated the functionality of Adaboost and ADT-
boost on a very simple synthetic data set of two non-overlapping classes,

21

we are able to assert one major difference between both approaches. We
designed our weak classifiers such that each classification within Adaboost
is a interpretable as a division of the 2D feature space into two half spaces.
Alternatively, the hierarchical order of these weak classifiers builds a multiple
k-d-tree, see fig. 14. Multiple, because we could have several weak classifiers
with the same preconditions. In logical terms, the hierarchical compositions
of classifiers describe AND relations. If several classifiers have the same pre-
condition, they are composed by a OR relation.

Figure 14: Feature space partitioning by weak classifiers (left: Adaboost,
right: k-d-tree of ADTboost).

ADTboost favors to expand the alternating decision tree in depth. There-
fore, we assume ADTboost to select less weak classifiers than Adaboost, if
the error bounds of both approaches have to be fallen below a certain thresh-
old. Then, we also might have fewer features involved in the classification
progress. Unfortunately, this behavior of ADTboost also leads to overfitting.
For avoiding such overfitting, one could either restrict the depth of the alter-
nating decision tree, or the splitting must be done in respect to significant
large subsets. So far, we have not implemented such restrictions.

4 Feature Subset Selection with Boosting

The goal of our work was to classify samples and to select the subset of their
most relevant features. In worst case, the boosting techniques have a similar
performance as random forests, i. e. we obtain a long list of weak classifiers
and from a certain stage on, all features are involved in the classification
process. In this section, we discuss a greedy strategy to select the most
appropriate features, if (nearly) all features are used by the weak classifiers.

22

4.1 Two Greedy Strategies for Adaboost

In our point of view, we have two ways to derive these most appropriate
features:

1. In the first variant, we would perform the selection process when train-
ing the weak classifiers. This will lead to a constricted training, where
we may learn the weak classifiers on all features until the number of
features used by the weak classifiers reaches the limit of appropriate
features we have set. Then we only may precede further choosing weak
classifiers on the features that have been selected so far.

2. In the second variant, we would select the features from the strong clas-
sifier after the training by removing the most ineffective weak classifiers
again. This strategy is adequate to pruning the Adaboost tree.

First, we want to study the effects of the first proposal, where we consider
the synthetic data from the preview section again. The first two chosen weak
classifiers use f1, the last two use f2. When selecting a subset containing only
one feature, this strategy will lead to the selection of the first feature. If the
order of the weak classifiers turns around, this strategy leads to the selection
f2. Should the chronology of the weak classifiers be relevant for selecting the
feature subset, or do the predictive values tell more about the significance of
a weak classifier?

Equ. 9 describes the impact of each weak classifier on the strong classi-
fier. The chronology of the weak classifiers does not have any influence on
the strong classifier, but their predictive values αt do. If these αt for each
weak classifier would decrease monotonously, the influence of further weak
classifiers would also decrease, and then this strategy would be very sensible.
But there is no proof that the predictive values fulfill such order. Thus, it
seems to be more sensible to evaluate the weak classifiers when all αt are
known.

This condition is fulfilled in the second proposal, where we evaluate the
weak classifiers and their associated features after the training of the strong
classifier has finished. This will lead to the ranking of weak classifiers and
their features, respectively: The impact of each weak classifier ht depends on
the absolute value of αt. Then, the impact of a feature on the classification
result can be measured by its contributive value C as

C (fi) =
∑

t

|αt| where ht works on fi. (42)

23

Considering the synthetic data set example, we have four weak classifiers
with the predictive values:

α1 = 0.2027, α2 = 0.3406, α3 = 0.1499, α4 = 0.1729.(43)

This leads two the two contributive values:

C (f1) = |α1|+ |α2| = 0.5433
C (f2) = |α3|+ |α4| = 0.3228.

(44)

Both strategies for feature selection lead to the same result in respect
to the synthetic data set, but the second method always and definitely se-
lects the most relevant features concerning the impact on the classification
with Adaboost. In the next subsection, we will adapt these strategies on
ADTboost.

4.2 Adapted Greedy Strategies for ADTboost

ADTboost produces a partial order of the weak classifiers due to their hierar-
chy. This order has to be taken into account when selecting the most relevant
classifiers and most relevant features. Obviously, the first variant as intro-
duced in the previous subsection does not have to get modified. And again,
this selection scheme has influence on the selection of the weak classifiers
without evaluating their relevance.

The second feature selection scheme rates the features by their contribu-
tive values which does not interferes the selection of further weak classifiers.
When extending this approach for ADTboost, we should adapt equ. 42, since
we determine two predictive values:

C (fi) =
∑

t

|α+
t |+ |α−t | where ht works on fi. (45)

Checking the effect of this adaptation in respect to the synthetic data set,
we determine the contributive values

C (f1) = |α+
1 |+ |α−1 |+ |α+

4 |+ |α−4 |
= 0.15 + 0.23 + 1.46 + 1.43 = 3.27

C (f2) = |α+
2 |+ |α−2 |+ |α+

3 |+ |α−3 |
= 1.52 + 1.51 + 0.50 + 1.52 = 5.05.

(46)

The weak classifiers have high absolute values as predictive values, if their
classification performance is excellent. While the first weak classifier has to
distinguish from the whole domain, and therefore, has a bad performance, the
other weak classifiers only work on a portion of the domain, and therefore,

24

have better classification results. This disadvantage of the more general
classifiers can be overcome, if we weight the predictive values of each weak
classifier by the portion of its domain ωt. Then we gain:

C (f1) = ω1·
(
|α+

1 |+ |α−1 |
)

+ω4·
(
|α+

4 |+ |α−4 |
)

= 1.00 · (0.15 + 0.23) + 0.24 · (1.46 + 1.43)
= 0.38 + 0.6936 = 1.0736

C (f2) = ω2·
(
|α+

2 |+ |α−2 |
)

+ω3·
(
|α+

3 |+ |α−3 |
)

= 0.40 · (1.52 + 1.51) + 0.60 · (0.50 + 1.52)
= 1.212 + 1.212 = 2.424.

(47)

Furthermore, we should integrate the hierarchical structure of the weak clas-
sifiers when ranking the influence of the classifiers and the used features,
respectively. For ADTboost, a weak classifier consists of two parts, the pre-
condition and the classifier. So, the preconditions should also take benefit
from further good classifications. Then, the contributive values should also
consist of the predictive values where the feature is taken for getting a pre-
condition:

C (fi) =
∑

t

ωt ·
(
|α+

t |+ |α−t |
)

+
∑
p

ωp ·
(
|α+

p |+ |α−p |
)

, (48)

where ht is a classifier that uses fi and hp is precondition for classifiers that
use feature fi. Regarding the synthetic data set, we obtain the following
contributive values

C (f1) = 1.00 · (0.15 + 0.23) + 0.24 · (1.46 + 1.43) +
0.40 · (1.52 + 1.51) + 0.60 · (0.50 + 1.52) +
0.24 · (1.46 + 1.43)

= 0.38 + 0.6936 + 1.212 + 1.212 + 0.6936 = 4.1912
C (f2) = 0.40 · (1.52 + 1.51) + 0.60 · (0.50 + 1.52) +

0.24 · (1.46 + 1.43)
= 1.212 + 1.212 + 0.6936 = 3.1176.

(49)

The contributive value of feature f1 is a sum of five components. The first two
summands are the weighted predictive values that belong to the classifiers
h1 and h4, respectively. The other three summands are added, because h1 is
a precondition of the three classifiers h2, h3 and h4.

In this section, we discussed the feature subset selection strategies using
Adaboost and ADTboost. This subset selection leads to a pruning of the orig-
inal classifiers. A comparison of the strategies between Adaboost and ADT-
boost is given in [Drauschke & Förstner, 2008] and an application on detect-
ing buildings and building parts is presented in [Drauschke & Förstner, 2008 (to appear)].

25

References

[Bishop, 2006] Bishop, Chr. M. 2006. Pattern Recognition and Machine
Learning. Information Science and Statistics. Springer.

[Breiman, 2001] Breiman, L. 2001. Random Forests. Machine Learning,
45, 5–32.

[De Comité et al., 2001] De Comité, F., Gilleron, R., & Tommasi, M.
2001. Learning Multi-label Alternating Decision Trees and Applications.
Pages 195–210 of: Proc. CAP 2001.

[Drauschke & Förstner, 2008] Drauschke, M., & Förstner, W. 2008.
Comparison of Adaboost and ADTboost for Feature Subset Selection. In:
Proc. 8th PRIS 2008.

[Drauschke & Förstner, 2008 (to appear)] Drauschke, M., & Förstner,
W. 2008 (to appear). Selecting Appropriate Features for Detecting Build-
ings and Building Parts. In: 21st ISPRS Congress.

[Freund & Mason, 1999] Freund, Y., & Mason, L. 1999. The Alternating
Decision Tree Learning Algorithm. Pages 124–133 of: Proc. 16th ICML.

[Freund & Schapire, 1996] Freund, Y., & Schapire, R. E. 1996. Ex-
periments with a new boosting algorithm. Pages 148–156 of: Proc. 13th
ICML.

[Guyon & Elisseeff, 2003] Guyon, I., & Elisseeff, A. 2003. An Intro-
duction to Variable and Feature Selection. Journal of Machine Learning
Research, 3, 1157–1182.

[Ho, 1998] Ho, T. K. 1998. The Random Subspace Method for Constructing
Decision Forests. PAMI, 20(8), 832–844.

[Holmes et al., 2002] Holmes, G., Pfahringer, B., Kirkby, R.,
Frank, E., & Hall, M. 2002. Multiclass Alternating Decision Trees.
Pages 161–172 of: Proc. 13th ECML. LNCS 2430. Springer.

[Liu & Motoda, 1998] Liu, H., & Motoda, H. 1998. Feature Selection for
Knowledge Discovery and Data Mining. Kluwer Academic.

[Martin-Bautista & Vila, 1999] Martin-Bautista, M. J., & Vila, M.-
A. 1999 (July). A survey of genetic feature selection in mining issues.
Pages 1314–1321 of: Proc. CEC 1999, vol. 2.

26

[Mladenić, 2006] Mladenić, D. 2006. Feature Selection for Dimensionality
Reduction. Pages 84–102 of: SLSFS. LNCS 3940.

[Pfahringer et al., 2001] Pfahringer, B., Holmes, G., & Kirkby, R.
2001. Optimizing the Induction of Alternating Decision Trees. Pages 477–
487 of: 5th PACKDDM 2001. LNCS 2035.

[Rätsch et al., 2001] Rätsch, G., Onoda, T., & Müller, K.-R. 2001.
Soft margins for AdaBoost. Machine Learning, 43(3), 287–320.

[Rogers & Gunn, 2006] Rogers, J., & Gunn, St. 2006. Identifying Fea-
ture Relevance Using a Random Forest. Pages 173–184 of: SLSFS. LNCS
3940.

[Schapire, 1990] Schapire, R. E. 1990. The strength of weak learnability.
Machine Learning, 5(2), 197–227.

[Schapire & Singer, 1999] Schapire, R. E., & Singer, Y. 1999. Improved
boosting algorithms using confidence-rated predictions. Machine Learning,
37(3), 297–336.

27

