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This paper presents a hybrid concept of interaction between scene and
sensors for image interpretation. We present a strategy for 3D building
acquisition which combines different approaches based on different levels
of description and different sensors: the detection of regions of interest,
and the automatic and semiautomatic reconstruction of object parts and
complete buildings.
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1 Introduction

Cities are the living place for more than 50% of the world population. Up
to date 3D information on buildings appears to be urgently necessary for ur-
ban management and all types of the planning referring to sound emissions,
air pollution, microclimatology or transmitter planning. Current maps mostly
contain only the groundplan of buildings together with reference to various
registers. Acquiring 3D information on buildings still is costly, only automatic
or at least semi-automatic methods appear feasible in the long run. This pa-
per discusses strategies for 3D building acquisition from various sensor data,
mainly, however, from aerial images.

Building acquisition has to face a number of problems, which altogether appear
as a challenge for automatic data interpretation. Some of these problems are:
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— The notion ”building” has many facets, economical, legal, architectural,
social, technical ones. Sensor data only provide access to the geometry and
the physics of a building in principle. Even with this restriction there is no
commonly accepted and enough formalized model of a building which can
be used in automatic interpretation. In Braun et al. (1995) we argued that
a volumetric representation may be the right level of representation in order
to facilitate a link to the meaning of the individual parts.

— There are various sensor yielded information on buildings. Images, espe-
cially aerial images, certainly are a main data source. Laser scanners are on
the verge of becoming an economical alternative if only geometry is of in-
terest. But also maps or geoinformation systems can be regarded as sensors
providing links to all types of registers and the corresponding semantics.

It is, however, by no means clear, which of these sensor scales and res-
olutions has which use in building acquisition. This has conceptual conse-
quences on which aggregation level a building actually can be observed, is
thus intimately linked with the complex aggregation hierarchy of buildings
and their parts.

— Sensor data are projections, thus only show a specific portion of the scene.
This projection leads to various defects, starting with the missing depth in
images or GIS, occlusions both in images and laser data. The problem of
automatically transferring 3D information about buildings to 2D-constraints
has not yet been solved in a general manner, only specific solutions are
knows, e.g. on invariants.

— Finally, strategies for inverting the imaging process, inverting the projection
are lacking. Many tools are available,which need to be adapted or evaluated
with respect to their use in building extraction. However, this does not
solve the problem really, as the impact of each of these tools on the solution
remains unclear. General tools such as optimization, constraint satisfaction
or heuristic search only provide a shell which needs to be filled.

The goal of this paper is to discuss the aspect of processing within automatic
interpretation more in depth, clarifying the role of algorithms as a link between
sensors and scene and in this way earning the description of certain strategies.
A more detailed description can be found in Brunn et al. (1996).

2 Layers, models and strategy

2.1 Levels of description for data and models

We assume image analysis to be a task driven process deriving an application
dependent description of the scene based on available sensor data. Both, scene
and sensor data have a complex structure. Scenes are composed of objects, giv-



ing rise to a containment hierarchy for composite objects, to a specialization
hierarchy for groups of objects and associations between objects for describ-
ing their mutual relations. Sensor data are complex, as we treat any type of
derived sensor information also as sensor data, thus subsuming intelligent sen-
sor systems under the notion sensor.! For discussing image analysis tasks we
unify scene and sensor model as both can contain known and unknown parts.
This allows to describe tasks, like detection, reconstruction, localization and
interpretation on the one hand, and orientation and calibration on the other
hand, in a uniform manner (Forstner, 1989).

An image analysis algorithm provides a link between a scene and a sensor
(cf. fig. 1). The scene provides the algorithm with the necessary and available
knowledge, e. g. the class of the object to be detected, the structure of the
object to be reconstructed, the representation in which the location is to be
given. The sensor provides the algorithm with an iconic or symbolic descrip-
tion of the image on the level of aggregation adequate for the algorithm, and
possibly information on its orientation, or other characteristics. The result of
the algorithm generally is both, the desired completion of the scene description
as well as of the sensor description.

We now want to break down scene and sensor models. In the most simple case
the scene may consist of objects of different type. Each of it may be described
by its containment and aggregation hierarchy. The scene related task and
the type of the unknown object task and type are lists, whereas the internal
structure is a tree or a more complicated representation structure. Any task,
type of object and internal structure may be combined leading to a specific
scene related task with specific preknowledge fixing a point on the vertical
axis. The task specifies which of the objects or structures are unknown.

The situation is a bit more complicated for the sensors. Besides the list of the
tasks, the list of the physical sensors and the internal structure of the possibly
aggregated sensor information we need to distinguish between 2D and 3D,
or even 4D, information derived from sensor data of lower dimensionality by
matching or tracking algorithms. Also here, any combination of task, aggre-
gation level, dimension or type of physical sensor may lead to a specific sensor
related task with specific sensor information fixing a point on the horizontal
axis.

The extremely high number of possible image analysis algorithms results from
the pure fact, that in principle all combinations between scene and sensor
related tasks, types, structure or dimensionality may be reasonable. The rect-
angle spanned by scenes and sensors (cf. fig. 1) thus qualitatively represents
the space of possible vision algorithms. This assumes single algorithms for

1 At this point we integrate the model for the physical sensor and the derived 2D
or 3D image, thus subsuming the image model under the sensor model.



each task, and does not take into account multiple goals or sensor fusion tech-
niques. Therefore strategies for selecting appropriate algorithms and especially
sequences of algorithms reveal to be necessary.

SENSORS

tasks
aggregation levels

dimensions of modeling

types of physical sensors

° e algorithms

SCENE
tasks
types of object

structure/substructures

Fig. 1. Tasks and structure of scene and sensor information. The points symbolize
some algorithms. The different sizes indicate different gain and usability of the
combinations.

Data driven and goal driven processes generally need to be intimately linked.
Aggregation, grouping or hypothesis generation tasks which necessarily need
to be initiated and controled by high level knowledge, task or scene specific.

The problem of control therefore has to solve several subtasks.

(i) Choose the best sensor for a given task.

(ii) Choose the best sensor combination for a given task (sensor fusion).

(iii) Choose the best hypothesis for a substructure of the scene for a given
sensor (hypothesis generation).

(iv) Choose the best hypothesis for a substructure of a scene for a given scene
interpretation (internal reasoning).

(v) Decide on the completion of the task or detect failures, and give control
to the operator (algorithm internal decision).

The proposed scheme can be interpreted as a structured blackboard having
different layers:

a) the layered structure of the scene referring to different levels of aggregation
or abstraction

b) the layered structure of the sensors referring to different levels of aggregation

c) the layered structure of the algorithms referring to the different layers of
aggregation.



Obviously any vision algorithm which is meant to be used by the system needs
documentation with respect to its use.

This general scheme needs to be realized in steps. The problem of building
acquisition seems to be of a complex enough nature to test the validity of the
setup. We therefore will specialize and give some examples in the following.

2.2 Selected strategy for building acquisition

We describe a special strategy for 3D building acquisition that is based on our
experiences with the applicability of different data sources and different algo-
rithms for this specific task. Because reconstruction using aerial image data
can not be solved in one step we split the task of 3D building acquisition into
different subtasks using different types of sensor information. The subtasks
are

— detection of regions of interest,
— 3D reconstruction by object parts, and
— 3D reconstruction of complete buildings.

This corresponds to a multiple usage of different paths in fig. 1. The output of
one subtask will be the input to the next subtask. Up to now the strategy is
fixed in order to exploit their usefulness. Other strategies need to be evaluated
in order to be able to adaptively choose an optimal sequence depending on
sensor data, quality of algorithm and specific task to be solved.

In the first step we use pixel based 2.5D sensor data from automatically gen-
erated Digital Surface Models or laser scanners for extracting those regions
which contain the desired objects (buildings) with a high probability. In this
subtask buildings are searched in a high generalization level represented by
low level pixel attributes (e.g. height). For these extracted building segments
approximate structures of buildings can be derived depending on the resolu-
tion of the available 2.5D sensor data. The resulting segments of the elevation
model are used as input for the following 3D reconstruction by object parts.
This second step additionally uses a feature extraction of local structures in
multiple monochrome or multichannel images. The automatically derived 3D
structures are the input for the 3D reconstruction of complete buildings. This
last step can be formulated on a lower aggregation level because of the strong
impact of the integrated human operator even with only one stereo pair. Dur-
ing the third step prior results can be verified, corrected and improved. This
step will be required for quite some time as a fully automatic acquisition of
complex buildings can not be achieved due to the high variability of buildings.
The amount of human interaction depends on the required detail of acquisi-
tion, the complexity of the buildings, and the availability and quality of sensor



data. Partial solution neglecting one or more steps of our proposed procedure
may be sufficient for special requirements. The algorithms of these three sub-
tasks are described in the next chapters.

3 Detection

Both methods described in the following sections need a priori focusing on a
region of interest (ROI) to reduce the search space. We apply a hierarchical
focusing techniques for grid based data. In addition to the presentation of
a realization for focusing in this chapter we want to show that statistical
influence diagrams as a specialization of Bayesian networks can be used for
low level, pixel based image interpretation.

Several focusing techniques have already been presented in the literature on
image processing and interpretation, each using special data sources. In con-
trast to those methods using image pyramids (Ackermann and Hahn, 1991),
and others using a scale space algorithm (Ravela et al., 1996), we follow a strat-
egy based on statistical classification to find ROIs. Statistical methods support
the fusion of different data sources and integrate uncertainty and errorness of
observed data. Especially Bayesian networks supply a close connection to pyra-
midal image interpretation as will be shown below. Hierarchical approaches
for segmentation tasks reduce the complexity of search (Terzopoulos, 1986).
The algorithm we use differs from complex approaches (e.g. Bouman and Liu
(1991)) because we use a simpler, more straight forward propagation to reduce
the computational effort.

3.1  General strategy

The focusing procedure consists of two steps: the generation of a feature pyra-
mid and the goal-oriented evaluation of the branches of a deduced pyramid
of random variables. Let a feature vector field f(r,¢),r € {0,...R — 1},¢c €
{0,...C — 1} with n observations in each vector be given, that should hold
information about the interest of the pixels, which is coded in the assigned
feature vectors. During the preprocessing we build up an image pyramid using
techniques from multichannel image processing (e.g. Lee et al. (1992)). Let be

folr,c) := f(r,c) then follows

fip(rie) =M © f(2r,2¢) with [e€{0,...,L -1} (1)

when L is the number of layers. The amount of grid points decreases by the
1

5 in each reduction step. M is an information preserving multidimen-

factor



sional filter. We have tested several morphological and statistical filters. Which
filter should be applied depends on the specific problem, i.e. the type and the
amount of noise in the data.

After creating the feature pyramid we start the evaluation of the feature vec-
tors. We use every feature vector to determine whether the grid position is of
interest for the specific task. For this purpose we interpret the feature vectors
as observations of a measuring process and assume that — due to the central
limit theorem- they are normally distributed. Because it is not possible to
estimate any statistical parameter from one observation, we take the observa-
tion as representative of the mean value and use a covariance matrix given a
priori.

f(r,c) ~N(f(r,c),C) (2)

At this point we start to build a dynamical generated pyramid of random
variables v(r, ¢). Each random variable can hold the two statements “the grid
point is member of a ROI” and “the grid point is not member of a ROI” for
each pixel in each layer. The Probability that a grid point is member of a
region Of Interest (PrOI) will be denoted with p(v;(r, ¢) = t) where 't means
true, p(v(r,c) = f) resp. It is calculated by the probability that a feature
vector belongs to a ROI © in the object space a priori defined.

O = [ 3O-FnCT O~ F )
punlr ) = 10) = = / = o (3
These boundary information of © can be obtained by estimation from a train-
ing set. We use a multidimensional open box with the edges f, = (fui), ¢ €
{0...n — 1} and infinity as subspace ©. That means that high values of the
feature vector are more interesting than low ones. If all observations in the fea-
ture vector are uncorrelated, the integral can be calculated as a product from
the normal distributions of each observation. The probability of the comple-
mentary outcome is calculated from eq. (3) as the complementary probability.

Starting from the highest pyramid level we perform a depth-first search to
obtain the ROI. We evaluate all grid points on the L-th level and sort them in
descending order p(vi(r, ¢)maz =)y ...y ploi(r, ¢)min = t). In the next level
we start with those pixels that are linked to the most promising element of
the highest level. This is performed for all lower levels to come. Except in the
highest level, we use two pieces of information, both, the actual information at
the current level and the information aggregated in the previous level, which
takes the conditional probabilities into account (cf. fig. 2). We neglect the
correlations between the two sources due to the feature pyramid generation.
Therefore, we have to distinguish between the two PrOls, the first based on



Fig. 2. Propagation of the probabilities of interest in the pyramid.

the information provided only by the feature vector p(vi(r, ¢)) and the second
on the posteriori PrOI p(v;41(r, ¢)) at each level of the pyramid. In this refined
notation holds

plu(r,c) =t) o > pui(r, )i ([r/2], [e/2]), vig(r, c))
vig(re)orgn ([r/2],[c/2])

p(oia([r/2], [e/2]))p(vis(r, ¢)) (4)

when [¢] means the highest integer that is smaller or equal . We do not
introduce special application dependent knowledge in the conditional proba-
bilities: when both information sources support each other, we strengthen that
content, otherwise we delay the decision.

This procedure is done for each level of the pyramid up to a given pixel
resolution depending on the specific task. The first pixel extracted by this
depth-first search defines a first element of the ROIs and can be used as a
focus for the next step of interpretation (cf. sec. 4). By backtracking in the
pyramid other elements of ROIs are found. Up to this moment we have not
made experiences, where to stop backtracking because classification against a
ROI cannot be done at higher levels. Fine structures might appear in lower
levels depending on the filter generating the feature pyramid. Only when using
a maximum filter this decision can be done on a higher level, assuming the
noise to be negligible.

This algorithm for focusing onto the relevant parts of data, in particular the
evaluation step, can be interpreted as a dynamical Bayesian network (Pearl,
1988). Each pixel with its probability of interest represents a random variable
in the Bayesian network and the conditional probabilities are associated with
the edges of the graph. This configuration makes two extensions obvious: on
the one hand grid points that are far apart should influence one another by
incorporating more model knowledge about neighborhood relations between
ROIs. On the other hand, if one region is a priori known it should influence
the PrOI of related regions. Thus solving data restoration and data interpre-
tation in a common algorithm becomes possible. That would mean bottom-up



Fig. 3. a) DSM of 1982; b) DSM of 1993; For visualization the two DSMs are spread
on 256 grey values. (Bright/Dark pixel mean large/low height.)

propagation in the notion of Bayesian networks. Bayesian networks seem to
be a feasible tool for hierarchical image interpretation, not only for grouping

as Sarkar and Boyer (1993) and Koch (1995) showed.

3.2 Using Digital Surface Models (DSMs) for focusing

The aggregation of the dataset for focusing should be very low cost or fully
automatically to enlarge its advantage. So we use DSMs for focusing either
directly scanned with an airborne laser scanner or automatically generated
using correlation or matching techniques.

For focussing done by change detection we used two DSMs from an area
in Alfter-Oedekoven. Both were derived by image matching. One dated back
to 1982, the other to 1993. The ground resolution was 2m x 2m (cf. fig. 3).
The images? with an image scale 1:12000 do not allow the generation with a
finer grid with more surface information. We use the height difference as the
feature for determining the ROIs to update a map from the earlier datum.
By experiences made previously, we define a height variance o, = 2m for the
statistical distribution. The ROI in the feature space for the height differences
is defined as f, = 4m which is motivated from the usual height of a building
storey. In fig. 4 the results are shown. Dark regions are classified as regions of
change. For the purpose of visualization we show all pixels of the presented
layers. Because of the coarse DSM grid it is not possible to stop at a higher
level than the lowest one. The result shows some blurring due to effects from
the automatic generation of the DSMs and to the changed vegetation of eleven
years. To improve the detection, further data have to be integrated, especially

2 The images were kindly provided by the LVA NRW (Bonn, Bad Godesberg, Ger-

many).
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Fig. 4. a) Third layer and b) lowest layer of the classification pyramid. Small dis-
turbances due to changed vegetation and due to the automatic DSM generating
process exist in the resulting classification image.

information on color. In contrast to a simple thresholding of the difference
DSM, this method reduces random noise of the difference DSM, because of
the used neighborhood information from previous layers. Thus it reduces split-
ting of segments. Furthermore the depth-first search leads the following 3D
acquisition to the ROI in descending order of interest; dominant buildings can
be reconstructed at first. At the moment those extracted regions are classified
by the building extraction technique of Weidner and Forstner (1995). In future
work we want to improve the detection in context of building extraction by
extending the feature vector and introducing color and texture observations
in the focusing step.

4 3D Reconstruction by Object Parts

In this chapter we present a procedure for fully-automatic 3D reconstruction
which infers local 3D structures in space from its observed local 2D structures
in multiple images. The result of the low-level pixel based image interpretation
is used to restrict the aerial image to small regions of interest, which serve as
input for the subsequent process of 3D reconstruction. The orientation data of
the images are assumed to be known, leading to geometric restriction during
the matching procedure.

4.1  General aspects

The following aspects are decisive for characterizing our procedure :

Feature extraction and feature aggregation: Based on a polymorphic

10



feature extraction (cf. (Forstner, 1994)) we derive a rich symbolic image de-
scription consisting of attributed features F?P, namely points, lines and re-
gions together with their mutual relations, that are contained in a feature
adjacency graph (FAG). Analyzing the relational image description, we are
able to derive sets of basic aggregates A?P by a bottom up process. These are
point, line and region induced structures namely vertices V2P, wings W?2P,
cells Z?P containing all neighbors and possibly indirect neighbouring features
These basic aggregates serve as starting point for our reconstruction.

Object Modeling: For introducing scene knowledge into the reconstruction
process, the 3D object model must be placed at the same representation level
like the image aggregates A% which we propose for reconstruction. Transfer-
ring the 2D aggregates A?P into 3D aggregates AP results in a local bound-
ary representation of object parts P of three different semantic classes, namely
corners C, edges E and faces F. They are components of the hierarchically
structured 3D building model which we proposed in (Braun et al., 1995). For
reconstruction we especially use object parts of class corner. Corners are spe-
cialized into different subclasses. Each corner is described by the corner point,
several lines and planar faces. The partitioning of corners is described by their
line attribution, giving by the semantic labels (h), (v) or (o). This description
is further refined by distinguishing vertical and oblique lines due to their slope
into (v+), (v-), (o+) and (o-). Finally, different geometric constraints between
the corner components like e. g. symmetry and orthogonality are considered. We
also model corner pairs which eases the connection and grouping of corners to
a complete surface. All these semantically attributed subclasses are collected
in the set Qc.

4.2 Procedure and Results

As for vertex structures VP, being the projections of 3D vertices V3P into
the images, the imaging geometry gives strong restrictions during the corre-
spondence analysis, we focus on the 3D reconstruction of corners C3P, with
corners being interpreted vertices. The reconstruction is done by following the
hypothesize and verify paradigm:

Construction of Corner Hypotheses: Starting point for the analysis are
the 2D vertices V2P, In the first step we generate 3D vertices: Selected tu-
ples of corresponding vertex structures form the basis for the transition to
3D-vertices V3P, The correspondence analysis is performed by heuristically
selecting a suitable sequence of vertices using the epipolar geometry and eval-
uating the structural similarity of matching candidates. Relational matching
of the features F?P_ which describe the vertex structures of the correspondence
tuple leads to a 3D vertex.

11



Fig. 5. shows the result of the automatic 3D reconstruction: a. original image; b.
partially reconstructed roof in 3D composed by different corners, which are denoted
by circles; c¢. connections between corner pairs given as a graph with the nodes
being classified corners; d. result of a 3D grouping process, which connects the
reconstructed 3D corners based on the corner graph.

Establishing corner hypotheses uses the corner model in the following way.
We interpret the generated 3D vertices V3P by a first classification, leading to
admissible corner subclasses {)¢. First, the line attributation is used to obtain
a subset g of {)¢. For each element of )} the geometric constraints, associated
by the model, yield a further reduced Q¢ C €, each element in QF being an
admissible interpretation of the 3D vertex. This way we obtain several corner

hypotheses ¢*P. This principle of domain reduction of possible interpretations
3D 3D

27, ¢}”) leading to a corner

is also applied for the generation of corner pairs (¢
graph.

Verification of Corner Hypotheses: As the corner classification for each
3D vertex generally will be ambiguous, we perform a second rigorous classifi-
cation by statistical analysis. This is an optimization problem for finding the
best interpretation of the data by a maximum likelihood parameter estima-
tion. The functional model describes the relation between observations and
the unknown parameters for the unconstrained corner. Additionally hard and
soft constraints, given by the corner class w¢, are introduced. The result of
the estimations are evaluated corner interpretations including their geometric
constraints, which are fundamental for a geometrically improved and verified
corner reconstruction.

Figure 5 shows an example of the fully automatic 3D reconstruction. Fur-
ther details of the corner reconstruction approach can be found in (Lang and

Forstner, 1996b).

Connection to overall strategy: The corner reconstruction conceptually
works in parallel on all vertices found in the images and guarantees local con-
sistency. Nevertheless, the information achieved so far may be incomplete, as
some corners or mutual relations between corners may not be found. Perform-
ing a subsequent aggregation, using the part-of hierarchy of our object model
(cf. (Fischer et al., 1997)), we are able to link to the modeling tools from CAD,
which e. g. forms the basis for our 3D reconstruction of complete objects. Fi-
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nally we can reach global consistency of the result by a parameter estimation
of volumetric object primitives as presented in (Lang and Forstner, 1996a).

5 3D Reconstruction of Complete Buildings

The human operator is on the top level of our strategy and is required to final-
ize, correct or validate the reconstruction of complete buildings as the methods
above may not produce a sufficient level of detail or may produce incomplete
results. To ensure reliability and completeness we propose semi-automatic pro-
cedures, related to early work done at SRI (Quam and Strat, 1991). The system
developed by (Lang and Schickler, 1993) has been extended in cooperation
with the Inst. of Computer Science III, University Bonn (Englert and Giilch,
1996), using the Constructive Solid Geometry principle (Hoffmann, 1989) for
the 3D modeling of complex buildings. The system does not require stereo-
viewing and is such suitable also for non-photogrammetrists.

5.1 Semi-automatic system and connection to overall strategy

In the semi-automatic approach the operator is providing the interpretation
step, supported by various automated modules given the orientation data of
the images.

The operator may zoom down into one aerial image and focus his interest on
a particular building. This step can be replaced by the automated detection
procedure described above.

The modeling phase is performed by a semi-automatic form and pose adap-
tation of 3D models in one image, i.e. of volumetric primitives following the
CSG principle. By boolean operations of this primitives very complex building
structures can be reconstructed, if required. During the adaptation process a
3D visualization of the building is used to check for completeness and cor-
rectness. The in-heritage of parameters allows rapid acquisition in areas with
similar building types. A precise docking of primitives is enabled by matching
and gluing lines and faces to already instantiated primitives.

One homologous point has to be measured in the images in order to com-
pute 3D world coordinates. The measurement of homologous points for single
primitives can be replaced by an automated, robust model to image(s) match-
ing procedure (Labe and Ellenbeck, 1996) or by a successful reconstruction of
parts.

The output of the whole process are composites of 3D volumetric primitives

13



with 3D world coordinates. In addition to the geometric acquisition a module
for the extraction of texture from one or more images provides fully automatic
photo-realistic texture mapping on the 3D object surfaces for visualization and
animation.

5.2 Ezperimental results with the semi-automatic system

Three projects have been performed with standard and non-standard situa-
tions. The given average gross acquisition times contain the time for modeling,
the local and global navigation and organization.

Two projects have been performed with stereo pairs of digital aerial pho-
tographs. In the sub-urban area Oedekoven 5499 volumetric primitives (90 secs
per primitive) have been extracted. The gross time is about 25% shorter com-
pared to an earlier version of the system. The higher performance is com-
bined with a more detailed building acquisition and with texture extrac-
tion. 371 primitives in the center of Rostock, have been acquired by a non-
photogrammetrist after four hours training only. The time per primitive is
only 150 secs and such not even factor 2 higher as for trained users.

In downtown Frankfurt/Main 549 primitives (112 secs per primitive) where
extracted from one tilted aerial photograph and known ground heights only,
which demonstrates the flexibility of this system. From the aerial image, tex-
ture was extracted automatically and mapped to the 3D faces. A subset of
the model is given in figure 6 which demonstrates the animation potential of
photo-realistic 3D data.

The accuracy of the system depends on many factors, like image scale, se-
lection and measurement of models or the generalization level. All results so
far indicate a performance which corresponds to analytical photogrammet-
ric methods. An extended description of the empirical tests can be found in

(Giilch, 1996).

6 Discussion and Conclusions

The paper wants to discuss strategies for 3D-building acquisitions by giving a
frame of reference for describing the role of algorithms and for making control
tasks explicit. Three examples illustrate what type of problems we encounter
when automating image interpretation for building acquisition.

It seems useful to discuss the role of the three examples within the complete
- though by no means completed - process.

14



Fig. 6. Part of 3D building model FRANKFURT with automatically provided tex-

ture

(1)

(iii)

Focussing on areas of interest necessarily requires low level, i.e. raster
models of the objects to be found. Thus the appearance of buildings in the
raster data needs to be available. The use of Bayesian nets for modelling
the context, stored in the higher levels of a feature pyramid, seems to
be promising. Focussing thus is interpreted as generating hypotheses on
regions for which a likelihood is given, which can be used for controlling
the next steps.

3D-reconstruction is shown to be feasible on the mid- and the high level,
as geometric and semantic models are integrated into the matching pro-
cess. Again the result are hypotheses on corners of buildings. Their likeli-
hood can be used in the grouping process. Obviously the verification step
which uses a classification procedure integrates geometric knowledge, in-
formation on defects of the feature extraction and semantic knowledge
and requires an optimal geometric reconstruction as a prerequisite.
Semiautomatic procedures will be necessary as long as the variety of
buildings is larger than covered by the models used in the automatic
procedures. The building models used in the two previous examples are
too coarse and not general enough. Semiautomation always faces the
problem to reasonably divide the work between computer and operator,
here by performing the measurement tasks to the computer and leaving
the decision steps to the operator. The CSG-modelling has shown to be
quite effective. The achieved acquisition times always need to be seen as
reference for automatic procedures, which claim to be operational.

The chosen strategy in all three cases was an interpretation of bottom-up

with top-down processes: grouping hypotheses were generated data driven,
these hypotheses were then verified using higher level models, where the final
verification was left to the operator.
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This report on ongoing work leaves enough open problems. Without going into
the details of the described algorithms only two should be mentioned:

— The current exploration of finding good algorithms for investing the ob-
servability of building features by various sensor data should be continued.
Their performance should be clearly documented in order to make these
algorithm available to other research groups.

— Only after this stage different strategies, i.e. sequences of processes/algorithms
can be compared in case these sequences are not meant to be fixed. The com-
parison then may refer to both, the theoretical performance, i.e. the perfor-
mance prediction, and the empirical performance. Here standard tests are

helpful.

As a consequence of these open problems we can expect progress to be slow
but steady. This avoids unnecessary hurry and allows time to discuss the real
interesting questions, why algorithms actually work.
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