
Tracking Oncoming and Turning Vehicles at Intersections

Alexander Barth and Uwe Franke

Abstract— This article addresses the reliable tracking of
oncoming traffic at urban intersections from a moving platform
with a stereo vision system. Both motion and depth information
is combined to estimate the pose and motion parameters of an
oncoming vehicle, including the yaw rate, by means of Kalman
filtering. Vehicle tracking at intersections is particularly chal-
lenging since vehicles can turn quickly. A single filter approach
cannot cover the dynamic range of a vehicle sufficiently.

We propose a real-time multi-filter approach for vehicle
tracking at intersections. A gauge consistency criteria as well as
a robust outlier detection method allow for dealing with sudden
accelerations and self-occlusions during turn maneuvers. The
system is evaluated both on synthetic and real-world data.

I. INTRODUCTION

In 2008, 15.7% of all road accidents in Germany with
damage to persons happened at intersections and during
turning maneuvers [1]. Intersections are accident hot spots
and, thus, of special interest for future driver assistance
systems. Detecting and tracking vehicles at intersections with
stationary cameras, typically from elevated position, has been
addressed by many researchers in the past, e.g., [2], [3], [4].

Previous work on vision-based vehicle tracking from a
moving platform mainly concentrates on highway scenarios.
However, precise information on the behavior of the oncom-
ing and cross traffic at intersections provides a fundamental
basis for future driver assistance and safety applications.
The pose and motion state of oncoming vehicles, relative
to the ego vehicle, is an essential information for high-level
situation analysis, e.g., collision risk prediction for active
collision avoidance systems.

In [5], we have proposed a generic system for vehicle
tracking, in which objects are modeled as rigid 3D point
clouds moving along circular paths. An extended Kalman
filter is used for estimating the pose and motion parameters,
including velocity, acceleration, and rotational velocity (yaw
rate). In [6], we have extended this feature-based approach
by geometrical constraints that require the estimated object
pose to be consistent with object silhouettes derived from
dense stereo data.

The system model of the Kalman filter allows for modeling
a particular expected dynamic behavior of a tracked instance.
At intersections, there are typically two options: Straight
motion or turning. The former is best modeled by a stationary
process, e.g., constant velocity linear motion, while turning
vehicles require higher-order motion models that allow, for
example, to quickly develop a yaw rate. A system model
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Fig. 1. At intersections, a vehicle tracking system must be able to deal
with highly dynamic turn maneuvers and self occlusions. The tracked object
points building the object model are superimposed in the images (top) and
shown from bird’s eye view (bottom).

designed for mainly stationary processes may be too slow to
follow a maneuvering (turning) target, on the other hand a
dynamic model in general may be too reactive to errors in
the observations.

Several solutions to deal with maneuvering targets have
been proposed in the literature, including input estimation
[7], adaptive system noise control [8], and multi-filter ap-
proaches [9]. We have compared these approaches on sim-
ulated data in [10]. The Interacting Multiple Model (IMM)
approach of Bar-Shalom has resulted in the best compromise
between computation time and tracking performance on the
considered test bed. Kaempchen et al. [11] have successfully
applied the IMM framework to track leading vehicles in stop-
and-go scenarios.

Beside the choice of the right dynamic model, tracking
of quickly turning vehicles requires dealing with changing
visibility of object points. During the turn maneuver, some
object points become occluded, as the orientation of the
tracked vehicle changes, while others become visible and
have to be registered to the object model. An example on
the problem at hand is shown in Fig. 1.

In this contribution, we propose an IMM-based filtering
approach for vehicle tracking at urban intersections. The
system is able to automatically choose the right motion
model for typical urban scenarios. We extend the measure-
ment model to ensure a stable gauge definition by adding
additional constraints on the point cloud. Furthermore, we
introduce an adaptive outlier detection mechanism that is
able to prevent that all points are detected as outliers when
the vehicle enters the turn maneuver.

The tracking performance is evaluated based on real-world
scenes as well as realistic virtual scenes (rendered images)
with ground truth available.



Fig. 2. Coordinate systems from bird’s eye view.

This article will be organized as follows. In Section II we
will summarize the generic vehicle tracking framework and
propose several intersection specific extensions. The design
of the multi-filter approach is given in Section III. Exper-
imental results are presented and discussed in Section IV,
followed by our conclusions in Section V.

II. VEHICLE TRACKING APPROACH
One filter cycle consists of three parts: First, the object

state is predicted based on an object shape and motion model
(Kalman filter prediction step). Then, the predicted state
is updated based on a measurement model, incorporating
depth and motion information from the stereo vision system
(Kalman filter update step). Finally, the object shape model
is refined outside the filter. In the following we will explain
the different parts in more detail.

A. Object Model

In our approach, objects are modeled by a rigid 3D point
cloud Θ, with Θ = [ oP 1,

oP 2, . . . ,
oPM ]

T representing
the object’s shape, and a surrounding cuboid approximating
the object dimensions with parameters D = [w, l, h]T,
corresponding to the width, length, and height, respectively.
Fig. 2 gives an overview on the object model and the defined
coordinate systems. Decoupling the object dimension from
the point cloud is especially beneficial at intersections, since
the observable object point cloud might be incomplete, e.g.,
due to visibility constraints or partial occlusions. It further
enables opportunities for sensor fusion of extended objects,
e.g., with lidar data.

1) Gauge Definition: We attach a local object coordinate
system (at theoretically arbitrary position) to the object
point cloud, which defines the pose of a rigid body. In our
approach, the centroid and main principal axis of the initial
point cloud are used. Each point of the rigid point cloud has
a fixed position within the object coordinate system. This
gauge (or datum) definition allows for inferring the object
pose at consecutive time steps based on observations of the
point cloud. One has to ensure that the gauge definition
is consistent over time, to be able to deal with a varying
number of objects points, e.g., due to changing visibility
during turn maneuvers. This will be addressed in more detail
in Section II-C.

The pose of the object coordinate system with respect
to the ego vehicle is fully defined by six parameters (3D

translation and 3D rotation). However, only the lateral and
longitudinal coordinate of the object origin in ego coor-
dinates (a coordinate system attached to the ego vehicle),
denoted as reference point ePref = [ eXref,

e0, eZref]
T, as

well as the rotation around the height axis by angle ψ are
estimated, as this is the only rotational parameter that can
be controlled by the driver using the steering wheel.

2) Motion Model: Movements are restricted to circular
path motion based on a simplified bicycle motion model,
since road vehicles typically cannot move sidewards. This
motion model is parametrized by velocity v and acceleration
v̇ in the moving direction as well as the yaw rate ψ̇, i.e., the
change of orientation. Straight motion can be thought of as
driving on a circle with infinite radius. To be able to deal
with sudden changes of the yaw rate, we also incorporate
the yaw acceleration ψ̈ into our motion model, assuming
constant yaw acceleration instead of constant yaw rate. In
general we can write the motion model as nonlinear function
f , with

x̂−(k) = f
(
x̂+(k − 1),u(k)

)
+ ω, (1)

i.e., the a priori state x̂− estimate at discrete time k is
derived from the a posteriori state estimate x̂+ at time k−1
and some control input vector u incorporating, for example,
the ego motion. Higher-order terms are modeled as additive
zero-mean white Gaussian noise process ω with covariance
matrix Cωω (system noise matrix).

The motion model further requires the object origin to
be located at the center rear axle of the vehicle, which we
will denote as rotation point, P rot = [ oXrot, 0, oZrot]

T, in
the following, and the moving direction χ = ψ + β to be
aligned with the longitudinal axis (Z-axis) of the vehicle.
Since both the relative position of the rotation point to the
reference point (object origin) and the moving direction are
typically not known at initialization, these parameters have
to be estimated.

3) Filter Representation: The pose and motion parameters
are summarized in the following state vector:

x =

 eXref,
eZref, ψ︸ ︷︷ ︸

pose

, oXrot,
oZrot, β, v, v̇, ψ̇, ψ̈︸ ︷︷ ︸

motion


T

. (2)

With the parameters oXrot, oZrot, and β it is possible
to transform any point in object coordinates into a virtual
vehicle coordinate system with the origin at the center rear
axle and the longitudinal axis corresponding to the moving
direction.

4) Initialization: Object points are detected and grouped
based on the Gestalt principle of common fate, i.e., points
of common motion are likely to belong to the same object.
This idea is used both for initialization of new object tracks
and for adding new points to existing object models. We
independently track the 3D position and 3D velocity of a
number of good-to-track image features, distributed over the
whole image plane, based on the 6D-Vision principle [12].



Fig. 3. The stixel world [14] is a compact 3D representation for traffic
scenes, including information on free space and obstacles. The color coding
here is red ↔ green as close ↔ far.

Clusters of 6D vectors with common motion generate
object hypotheses. The average velocity vector gives the
initial moving direction and the initial vehicle speed. Both
the reference point and the rotation point are initialized at the
centroid of the initial point cloud. At the same time, tracked
image features, whose 3D position fall into the cuboid model
of an existing object, are added to the object’s shape model,
if also compatible in motion.

B. Measurement Model

The measurement model consists of two parts: Direct
measurements of the (sparse) object points and geometric
measurements of the rotation point, derived from dense
stereo vision.

1) Point Measurements: Each object point oPm with
oPm = [ oXm,

oYm,
oZm]

T ∈ Θ, 1 ≤ m ≤ M , is ob-
served in terms of an image coordinate 〈um(k), vm(k)〉 and
stereo disparity dm(k) at time k. These measurements are
summarized in zm(k) = [um(k), vm(k), dm(k)]

T.
The projection of each point onto the image plane is

tracked using a feature tracker, e.g., the well-known KLT-
tracker [13], to be able to reassign measurements of the same
3D point over a sequence of images. The nonlinear mea-
surement model h, from which the predicted measurements
ẑm = h(x̂−, oPm) are derived, directly follows from the
transformation between object and camera coordinates and
the well-known projection equations of a finite perspective
camera (see [5] for details).

2) Rotation Point Measurements: A good estimate of the
rotational center, located at the center rear axle of the vehicle,
is essential for the prediction of the point positions from one
to the next discrete time step. The rotational center, however,
is only weakly observable from the point movements during
turn maneuvers and not at all while the vehicle is moving
straight. The idea is to stabilize the rotation point estimate
by measuring its position geometrically.

The cuboid model is used to integrate a basic semantical
meaning on vehicle sides (front, rear, left, right) or character-
istic points, e.g., front left corner or center of the right side,
into the, beside rigidity, unconstrained point cloud model.

Given an object hypothesis, i.e., cuboid pose and dimen-
sion D, the objective is to refine the parameters of the cuboid
to yield an estimate which is consistent with the information

(a) Stixel Cluster (b) Refinement Result

(c) Geometric Constraints

Fig. 4. Several constraints on the object pose and boundaries, including
the viewing angle and distance of the most outer bounding box corners and
the centers of the visible sides, are derived from a stixel cluster. The initial
pose and cuboid dimension is iteratively refined by a maximum likelihood
estimation. See [6] for details.

available from dense stereo depth maps. We use a real-time
FPGA implementation of the semi-global matching (SMG)
algorithm as proposed in [15].

For real-time applicability we do not directly work on
the per pixel depth information, but utilize an efficient
intermediate representation, denoted as Stixel World [14],
that models the 3D environment in terms of so called stixel
entities. Fig. 3 shows a stixel world example for a typical
intersection scene. Each stixel contains information on dis-
tance, height, and viewing angle with respect to the camera
center. This compact representation covers both information
on the drivable free space and obstacles. The main principle
of the pose refinement is visualized in Fig. 4.

From the refined object pose we derive a pseudo-
measurement of the rotation point position, defined at the
lateral center of the cuboid at a constant distance to the
rear side. It is integrated into the Kalman filter as direct
measurement of the rotation point.

3) Outlier Detection: As all mean-squares like estimation
techniques the Kalman filter is quite sensitive to outliers in
the measurements. Thus, outliers have to be detected and
removed from the measurement vector before an update. If
the measurements are uncorrelated, an outlier test can be
performed for each measurement separately based on the
normalized innovation squared (NIS) measure:

δm = rTm

(
C(m)
rr

)−1
rm (3)

where rm = zm− ẑm indicates the residual between actual
and predicted measurement of point oPm and C(m)

rr the



corresponding 3 × 3 covariance matrix. The square root of
this measure corresponds to the Mahalanobis distance and
expresses the residual in terms of standard deviations.

If
√
δm > σmax, e.g., σmax = 3, this measurement is

rejected as outlier. A robust, M-estimator like reweighing of
points that pass this test is applied to reduce the influence of
remaining outliers in the data as proposed in [16].

Outlier detection during a maneuvering phase requires a
special consideration. At the beginning of the maneuver,
larger deviations between prediction and measurements oc-
cur. The filter has to compensate for that deviation by altering
the object pose and motion parameters. However, as these
deviations can be significant if a vehicle starts to turn quickly,
all points might be detected as outliers and the tracking
cannot be continued.

To prevent this problem, we introduce an adaptive outlier
threshold. Instead of considering each point independently,
the group of points is evaluated. Assuming there are not
more than 50% outliers in the data, we replace the constant
threshold σmax above by σ′max with

σ′max = max
(
σmax,median(

√
δ1, . . . ,

√
δM

)
. (4)

This formulation guarantees that at least half of all points
survive the outlier test.

C. Shape Model Update
Since the exact position of a given object point in the

shape model is typically not known at initialization, it has
to be estimated from the noisy measurements. For real-time
applicability, the problem of motion estimation is separated
from the problem of shape reconstruction. Thus, instead of
estimating shape and motion simultaneously by integrating
Θ into x, the point positions are refined outside the Kalman
filter in two steps.

First, each point is updated independently of all other
points based on its measured position, yielding an estimate
oP̂
∗
m(k). Then, all updated point positions are corrected by

a common rigid transformation to the posterior estimated
position oP̂m(k), ensuring that the centroid and the principal
axis of the point cloud are not changed by the individual
updates as will be motivated in more detail below.

Step 1: Assuming uncorrelated measurements over time,
a maximum likelihood estimate for oPm(k) is given by

oP̂
∗
m(k) =

[
k∑

κ=km

C−1m (κ)

]−1 k∑
κ=km

C−1m (κ) oP̃m(κ) (5)

where Cm(k) denotes the 3 × 3 covariance matrix of the
measured point oP̃m(k), and km the discrete time step the
m-th point has been added to the model.

Step 2: Let Q denote an index set of points that have
been observed at two consecutive time steps and not detected
as outlier, with Q ⊆ {1 . . .M}. Then, each updated point
oP̂
∗
q(k) is corrected as follows:

oP̂ q(k) =R−1y (∆θ)
(
oP̂
∗
q(k)− oP̄ (k)

)
+ oP̄ (k − 1), ∀q ∈ Q. (6)
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Fig. 5. Object points from bird’s eye view at four time steps. (a) If all
object points are updated independently by weighted averaging, they drift in
the moving direction as the vehicle accelerates. (b) The gauge consistency
correction successfully prevents a point drift.

with oP̄ (k) = 1
|Q|
∑
q∈Q

oP̂
∗
q(k) the mean of the points

in Q at time step k and Ry(∆θ) ∈ IR3×3 a rotation about
the height axis by angle ∆θ. This angle is defined as the
difference between the orientation of the main principal
component of the points in Q at time k and k − 1. At
this step it is assumed that the rotation between both point
clouds does not change more than π/2 rad. This global
correction ensures that the sum of all point updates is
zero (centroid consistency) and that the orientation of the
principal component of the adapted point cloud is equal to
the orientation of the previous point cloud in object coor-
dinates (principal component consistency). It prevents that
points can systematically drift within the object coordinate
system in situations where the predicted object pose differs
considerably from the actual pose, without changing the pose
and motion parameters.

The effect is demonstrated in Fig. 5. In this example, the
tracked vehicle is accelerating. As can be seen in (a), updat-
ing the point positions within the local object coordinate sys-
tem by weighted averaging, leads to a drift in the movement



direction (z-axis). This indicates that the estimated velocity
is too low. The gauge correction in (6) prevents the drift,
i.e., systematic errors between the predicted and measured
point positions must be mainly compensated by altering the
motion parameters in the filter, instead of changing a point’s
relative position with respect to the local object coordinate
system.

The cuboid dimension is also updated outside the Kalman
filter by lowpass filtering of the estimated dimensions from
the stixel silhouette analysis.

III. MULTI-FILTER DESIGN
A. Interacting Multiple Models (IMM)

The IMM framework fuses a set of r filters, where each
filter represents a certain mode, e.g., non-maneuvering or ma-
neuvering. One IMM filter cycle consists of three parts: First,
the r a posteriori state estimates and covariance matrices of
the previous discrete time step are probabilistically mixed by
weighted averaging (interaction step). Then, the filters are
updated based on a common measurement vector (filtering
step). The mixing prevents a combinatorial explosion, since
there are rk possible filter configurations at time k if all
r filters are run with all filter outputs from previous time
steps. Finally, a mode probability is computed for each filter
based on the normalized residual between prediction and
measurements (mode probability update step). Details on the
IMM framework can be found in [17].

The linear mixing of states and covariance matrices, as
proposed in the original approach, cannot be applied to our
model, since the state vector contains Euler angles. Thus, we
use an alternative nonlinear formulation that handles ψ and
β separately.

B. Motion Model Selection

At intersections, vehicles show a variety of different
movement patterns that a tracking system must be able to
deal with, e.g., starting, stopping, passing, or turning. During
these movements there are stationary (constant) phases and
maneuvering phases, indicated by significant changes in the
dynamics.

The driver has mainly two options to influence the trajec-
tory: Altering the velocity via the gas pedal (or brake) and
controlling the yaw rate by turning the steering wheel. To
cover all possible driving states by a small number of discrete
motion models, we summarize all continuous configurations
of the gas pedal and steering wheel into the discrete states
constant and (constantly) accelerated. The permutations of
these states yield four classes of movements:
• constant velocity / constant yaw rate (CVCY)
• accelerated velocity / constant yaw rate (AVCY)
• constant velocity / accelerated yaw rate (CVAY)
• accelerated velocity / accelerated yaw rate (AVAY)
The first two models (and further simplifications such as

constant velocity / constant yaw angle) are commonly used
in the literature for vehicle tracking [18]. The yaw acceler-
ation is typically modeled as a Gaussian noise process. At
turn maneuvers, however, the yaw acceleration becomes a

σpos σψ , σβ σψ̇ σv σv̇ σψ̈

C(stat)
ωω 0.01 0.01 0.01 0.01 0.1 -

C(mnv)
ωω 0.01 0.01 0.1 0.1 2 0.5

TABLE I
FILTER PARAMETER ( Cωω = diag(σ2

POS, σ
2
pos, σ

2
ψ , σ

2
v , . . . ) )

significant issue. In [10], we have shown that incorporating
the yaw acceleration into the state vector of a single filter
approach significantly improves the tracking performance
at turn maneuvers. However, the system becomes more
sensitive to non-detected outliers in the data, leading to
instabilities at straight-line motion.

In this approach, we overcome this problem by combining
the AVAY model with an AVCY model via the IMM frame-
work to a two filter approach. The AVCY model ignores the
estimated yaw acceleration and, thus, is insensitive to errors
in this parameter. The CVCY and the CVAY model are not
considered in our approach to reduce the complexity of the
filter with respect to real-time applicability. Most trajectories
involve at least some amount of acceleration/deceleration,
i.e., constant velocity models are unlikely at intersections.

Combining filters with different motion models is superior
to approaches where each filter uses the same motion model
and the filter behavior is controlled via the system noise
matrices (one filter with small variances, one with large
variances) [17]. The advantage is that different models are
able to generate more distinctive, competing hypotheses at
the prediction step.

C. Filter Configuration

The AVCY model (mode 1) is parametrized in a way
that it covers mainly stationary processes, while the AVAY
model (mode 2) is designed for more dynamic maneuvers,
especially turn maneuvers. The system noise matrix of the
AVCY model, C(stat)

ωω , allows for slow changes in accelera-
tions (σv̇ = 0.1 m/s2) and minor changes of the yaw rate
(σψ̇ = 0.01 rad/s).

Upon starting, vehicles accelerate with approximately 1.5
to 3 m/s2, and stop with −1.5 to −5 m/s2. We thus
allow changes of the acceleration by 2 m/s2 via the AVAY
system noise matrix C(mnv)

ωω . This is a compromise between
the maximum expected acceleration and the objective to
yield smooth velocity estimates (constant acceleration). The
allowed changes of the yaw rate are increased to 0.1 rad/s in
the dynamic model. In addition, the yaw rate depends on the
estimated yaw acceleration, which is able to change by 0.5
rad/s2 in our configuration. The exact filter parameterization
is given in Table I (here σpos covers both the reference and
the rotation point entries of the state vector).

The IMM framework further requires the specification of
mode transition probabilities, i.e., how likely does the filter
switch from one mode to another. We use the following state
transition matrix:
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Fig. 6. IMM tracking results of synthetic intersection scene. The estimated
motion state allows for accurate prediction of the object’s driving path. The
estimated trajectory (red solid line) precisely fits the ground truth (dashed
black line) as shown from bird’s eye view on the bottom right.

Π =

[
0.98 0.02
0.10 0.90

]
(7)

The entry at the i th row and j th column indicates the
transition probability from mode i to j. For better robustness,
this configuration slightly prefers the stationary mode, since
it is less sensitive to the (noisy) measurements.

IV. EXPERIMENTAL RESULTS

In the following experiments, a stereo vision system with
0.3 m baseline and approximately 40 degrees viewing angle
is used. The capture rate is 25 fps (VGA images).

A. Simulation Results

The proposed system is tested on a realistic synthetic
stereo image sequence with ground truth information on the
pose and motion parameters available. The scenario contains
an oncoming vehicle approaching from 60 m distance and
quickly turning to the left at approximately 15 m distance in
front of the stationary ego vehicle. The velocity (≈ 10 m/s)
is slightly decreased during the turn maneuver.

Fig. 6 shows selected frames of the sequence with the esti-
mation results superimposed. The object pose and dimension
is indicated by the bounding box, the motion parameters are
encoded in the predicted driving path for the next second,
visualized as a carpet on the ground. The tracked feature
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Fig. 7. Estimation results of IMM filter for (a) yaw rate and (b) velocity
compared to ground truth (dashed black lines) and a single filter approach
(dotted blue line). The pose accuracy is evaluated based on the root mean
squared corner error in (c). The IMM approach clearly outperforms the
single filter approach. The mode probabilities are shown in (d).

points, building the object shape model, are visualized by
yellow crosses (outliers are marked by red crosses).

The object is detected at about 40 m distance in frame
29. The maneuver starts at frame 50. The predicted driving
path already starts to bend at this time step, although the
vehicle has not significantly changed its orientation. Ten
frames (=400 ms) ahead, the predicted driving path clearly
indicates the vehicle is turning to the left. Its destination is
accurately predicted at frame 70 as shown in frame 90.

As can be seen in Fig. 7(a) and (b), the estimated motion
parameters approximate the ground truth very well. The
estimation result of a single filter approach with AVCY
motion model and manually optimized filter parameters is
also shown for comparison. During the straight motion phase
the single filter performs equally well as the IMM filter,
however, it cannot follow the sudden increase of the yaw rate
as the maneuver starts. The root-mean-squared-error (RMSE)
of the yaw rate is 0.0443 for the IMM and 0.1073 for
the single filter approach. The RMSE in velocity is 1.0724
(0.3985) for the IMM and 1.1273 (0.5802) for the single
EKF respectively. The values in brackets indicate the RMSE



if the first 10 frames are ignored. This reduces the influence
of the significantly underestimated velocity at initialization.

The tracking accuracy is evaluated based on the distance
of the four corners of the estimated object bounding box
compared to the ground truth corner positions in ego coor-
dinates. The corners contain information on the object pose
and dimension. Fig. 7(c) shows the root mean squared corner
error (RMSCE), which decreases over time to below 0.15 m
(average 0.49 m) for the IMM. The single filter approach
results in a significantly larger error during the whole turn
maneuver (average 0.72 m).

The IMM mode probabilities in Fig. 7(d) indicate the
interaction of the two modi. Instead of switching once from
stationary to maneuvering mode at the beginning of the
turn maneuver, the system toggles between the two motion
models to yield a combined motion model that allows for
sudden changes in the motion parameters without loosing
smoothness. A good example for this is the yaw rate estimate.
Climbing the ramp in a few stairs, induced by short phases
of yaw acceleration followed by a constant yaw rate, is much
faster compared to the single filter approach assuming a
constant yaw rate for all frames.

The proposed IMM filter switches to maneuvering mode
only shortly to adapt the motion parameters, and then quickly
falls back to the less reactive stationary mode. This property
prevents the system becoming too reactive to the noisy
measurements for a longer period, i.e., it increases the
robustness of the approach and ensures smooth trajectory
estimates.

B. Real-World Results

The tracking results of the intersection scene in Fig. 1 are
shown in Fig. 8. It contains an oncoming vehicle stopping
at the intersection before it turns to the left. The scene
is particularly challenging, since the vehicle turns through
a small radius and there is both an acceleration in the
longitudinal direction as well as a sudden increase of the
yaw rate. As in the simulation, there are also self occlusions
during the turn maneuver.

As can be seen, the system is able to accurately track
the object during the whole maneuver. The estimated pose
parameters are shown by the bounding boxes, the estimated
motion parameters are shown in Fig. 9.

At the beginning, the filter is in stationary mode (constant
negative acceleration) and toggles to maneuvering mode
only shortly at frame 60 to reduce the acceleration as the
vehicle stops. At the onset of the turn maneuver, the filter
switches again to maneuvering mode at about frame 75 to be
able to quickly develop an acceleration in the longitudinal
direction as well as with the yaw rate. At about frame 105,
the constant yaw rate model outperforms the constant yaw
acceleration model, leading to another mode change. This
is typically the point where the driver shifts up into the
next gear, interrupting the acceleration for a short period
(about one second). The stationary filter only allows for
slow changes in acceleration, thus, the velocity is slightly
underestimated for a couple of frames. At frame 160, the
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Fig. 8. Tracking results of a vehicle turning through a small radius after
stopping.

probability for maneuvering mode increases again, on the one
hand to increase the velocity by increasing the acceleration,
on the other hand to reduce the yaw rate to zero as the vehicle
is going back to straight motion while it leaves the viewing
field of the camera.

Further tracking results, including straight-line move-
ments, are shown in Fig. 10.

The processing time on a recent Intel Quad Core processor
is 80 ms per frame (640 × 480 images), including 40 ms
for the stixel computation, 25 ms for feature tracking and
ego-motion computation, as well as 4− 8 ms for tracking a
single object with a two filter configuration.

V. CONCLUSION

We have presented a real-time system for vehicle tracking
at urban intersections. The results have shown the system
is able to accurately estimate the pose and motion state of
oncoming vehicles, including the yaw rate, yielding valuable
information for trajectory prediction and future collision
avoidance systems.

Two filters with different motion models are combined
via the IMM framework, allowing for adequate modeling
of movements with low and high dynamics. The system
switches between the two models to automatically adapt the
dynamics of the filter to the dynamics in the scene with no
manual parameter tuning required. During a maneuvering
phase both motion models interact, i.e., there are several



0 20 40 60 80 100 120 140 160 180

0

0.2

0.4

frame number

ra
d/

s

(a)

0 20 40 60 80 100 120 140 160 180
0

1

2

3

4

frame number

m
/s

(b)

20 40 60 80 100 120 140 160
0

0.5

1

frame number

m
od

e 
pr

ob
ab

ili
ty

 

 

stationary maneuvering

(c)

Fig. 9. Estimated motion parameters and IMM mode probabilities of the
scene shown in Fig. 8. (a) yaw rate, (b) velocity, (c) IMM mode probabilities.

changes between the stationary and maneuvering mode. On
the other hand, at straight-line motion the system remains in
stationary mode for a longer time period.

In combination with the yaw rate and velocity estimate,
this information provides useful information for turn maneu-
ver detection. Classification of different movement patterns
into straight-line motion and turn maneuvers is part of future
work.
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