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Foreword
                                                                                                                           

We are proud to present the proceedings of this year's ISPRS Symposium of Commission III 
„Photogrammetric Computer Vision and Image Analysis“. It takes place 20 – 22 September 2006 in Bonn 
and is sponsored by the German Society for Photogrammetry and Remote Sensing (DGPF). 

This second symposium entitled „Photogrammetric Computer Vision“ reflects the ongoing and increasing 
interaction between photogrammetry and computer vision.  

We decided to select the papers in a double blind review process. This is new for ISPRS Symposia, but 
follows the trend of many ISPRS workshops in the last years and of course closes the gap in the reviewing 
procedure with conferences in the computer vision community. 

From 70 submitted papers the program committee carefully selected 44 papers, 24 being presented orally 
and 20 being presented as posters. We thank the program committee and all reviewers for their excellent 
work, guaranteeing a high standard for this conference. 

We are indebted to the organizing committee for their efficient handling of the reviewing process and the 
publication of these proceeding.

Wolfgang Förstner
Helmut Mayer
Richard Steffen
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ABSTRACT: 
 
A new methodology for the segmentation of imagery using network snakes is presented in this paper. Snakes are a well known 
technique, but usually are limited to closed object boundaries. Enhancing traditional snakes the focus is on objects forming a network 
respectively being adjacent with only one boundary in between. In addition, the focus is on linear objects with open non-fixed 
endings. The internal energy controlling the shape of the object contours during the energy minimization process is defined for nodes 
with different degrees to enable the exploitation of the object topology. Exemplary results of two different applications demonstrate 
the functionality and transferability of the proposed methodology: First, field boundaries are extracted from high resolution satellite 
imagery. The second example from the medical sector deals with the delineation of adjacent cells in microscopic cell imagery. 
Concluding remarks are given at the end to point out further investigations. 
 
 

1. INTRODUCTION 

The segmentation of imagery is a well known problem in image 
processing and computer vision. One important methodology to 
delineate objects precisely are active contours, first introduced 
by (Kass et al., 1988). Active contours are a sophisticated image 
processing technique combining image features with shape 
constraints in an energy minimization process. Parametric active 
contours, often called snakes (Kass et al., 1988; Blake and Isard, 
1998), have a rigid topology, in contrary to geometric active 
contours (Malladi et al., 1995; Caselles et al., 1997), which are 
able to change their topology due to flexible level sets and thus 
allow for extracting foreground objects without prior knowledge 
about their shape. Numerous approaches using snakes have 
been presented to detect different objects in many kinds of 
imagery, for example refer to medical image segmentation 
(McInerney and Terzopoulos, 1996; Suri et al., 2002), 3D 
deformable surface models (Cohen and Cohen, 1993), the 
extraction of roads using scale space and snakes (Laptev et al., 
2000) or the displacement of lines in cartographic generalization 
tasks (Burghardt and Meier, 1997). 
 
Most of these approaches require closed contours, which 
describe the boundary of an object separately – a limitation 
concerning linear objects with open non-fixed endings and a 
limitation regarding objects, which form a network and thus 
interact with each other during the optimization process. A new 
methodology of parametric active contours to overcome these 
restrictions is presented in this paper, called network snakes. In 
the literature, only a limited amount of work can be found 
regarding active contours beyond explicitly or implicitly 
represented closed object boundaries. Trihedral corners 
imposing constraints of 90 degree angles between the three 
edges ending at the corner are used to extract buildings in (Fua 
et al., 2000). An extension of parametric active contours, which 
combines the ability to handle transiently touching objects and 
exerts topological control is given in (Zimmer and Olivio-
Marin, 2005). An adaptive adjacency graph consisting of a 
network of active contours was firstly introduced in 
(Jasiobedzki, 1993) and afterwards utilized in (Dickinson et al., 
1994) to track 3D objects. The authors introduce constraints in 

the form of springs to connect the contour ends, but the 
approach does not enable the definition of a unique nodal point 
including a geometrical control of the contours up to the nodal 
point. 
 
In contrary, the methodology presented in this paper is able to 
handle objects with a given network topology, but without the 
necessity of introducing any particular constraints. Possible 
applications using network snakes are, for example, the 
extraction of road networks, field boundaries as well as adjacent 
cells. For these purposes parametric active contours are more 
applicable than level set techniques, since the image-dependent 
energy terms of parametric active contours are defined 
specifically to individual objects. Multiple level sets as well as 
multiple parametric active contours are not suitable, because 
they can intersect or overlay each other losing the correct 
topology. However, parametric active contours need an 
initialization to start the energy minimization process. The 
required information can be taken from an initial segmentation 
or from a GIS, as long as a correct topology can be assumed. 
 
The next section outlines traditional snakes, while Section 3 
focuses on the enhancements concerning network snakes. In 
Section 4 exemplary results of two different applications are 
presented to demonstrate the potential and the transferability of 
the proposed methodology: At first, the extraction of field 
boundaries from high resolution satellite imagery is depicted. 
Field boundaries have become objects of increasing interest 
during the last few years. Application areas are geo-scientific 
questions such as the derivation of potential wind erosion risk 
fields and applications in the agricultural sector, for instance 
precision farming or the monitoring of subsidies. Work on the 
extraction of field boundaries exists but is limited, for example 
refer to (Torre and Radeva, 2000; Aplin and Atkinson, 2004), 
but neither a fully automatic solution nor the exploitation of the 
topology is used. The second exemplary result highlighted in 
Section 4 is the extraction of adjacent cells in microscopic cell 
imagery. Medical image segmentation has received a large 
attention, in particular the delineation of cells for high-
throughout biological research and drug discovery (Suri et al., 
2002; Jones et al., 2005). However, the focus is mostly on 
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single cells not taking into account the neighborhood. Finally, 
concluding remarks are given and further investigations are 
discussed in Section 5. 
 
 

2. TRADITIONAL SNAKES 

In this section, parametric active contours are summarized in 
order to provide a basis for a discussion of their pros and cons 
concerning the enhancements contained in Section 3. 
Traditional snakes (Kass et al., 1988) are defined as a 
parametric curve 
 

( ) ( ) ( )( )sy,sxsv =  , (1)

 
where s is the arc length and x and y are the image coordinates 
of the 2D-curve. In the simplest way, the image energy can be 
written as the image intensity itself with 
 

( )( ) ( )( )svIsvEimg =  , (2)

 
where I represents the image. In the literature, the image energy 
is often defined as 
 

( )( ) ( )( ) 2svIsvEimg ∇−=  . (3)

 
| ∇I(v(s))| is the norm or magnitude of the gradient image at the 
coordinates x(s) and y(s). In practice, the image energy 
Eimg(v(s)) is computed by integrating the values |∇I(v(s))|, taken 
from precomputed gradient magnitude images along the line 
segments, that connect the vertices of the contour. The internal 
energy is defined as 
 

( )( ) ( ) ( ) ( ) ( ) ⎟
⎠
⎞⎜

⎝
⎛ ⋅+⋅= 22

2
1 svssvssvE sssint βα  , (4)

 
where vs and vss are the first and second derivative of v with 
respect to s. The function α(s) controls the first-order term of 
the internal energy: the elasticity. When the aim is to minimize 
Eint(v(s)) and v(s) is allowed to move, large values of α(s) let the 
contour become very straight between two points. The function 
β(s) controls the second-order term: the rigidity. Large values of 
β(s) let the contour become smooth, small values allow the 
generation of corners. α(s) and β(s) need to be predefined based 
on the modeled shape characteristics of the object of interest.  
 
The total energy of the snake *

snakeE , to be minimized, is 
defined as  
 

( )( )dssvEE snake
*
snake ∫=

1

0

 

           ( )( ) ( )( ) ( )( )[ ]dssvEsvEsvE conintimg∫ ++=
1

0

. 

(5)

 
The additional external energy Econ(v(s)) is introduced in (Kass 
et al., 1988) as an external constrained force, which provides the 

opportunity for individual forces at particular parts or points of 
the contour. With constant weight parameters α(s) = α and 
β(s) = β a minimum of the total energy in Equation 5 can be 
derived by solving the Euler equation: 
 

( )( )
( ) ( ) ( ) 0=+−

∂

∂
svsv

sv
svE

ssssss
img βα  . (6)

 
The derivatives are approximated with finite differences since 
they can not be computed analytically. Converted to vector 
notation with vi = (xi, yi) and with ∂ Eimg(v(s)) / ∂ v(s) = fv(v) the 
Euler equations read 
 

   ( ) ( )iiiiii vvvv −−− ++− 111 αα  
( ) ( )11121 222 +−−−− +−−+−+ iiiiiiii vvvvvv ββ  
( )211 2 +++ +−+ iiii vvvβ  

( ) 0=+ vfv  

(7)

 
and can be rewritten in matrix form as 
 

( ) 0=+ vfAv v  . (8)

 
A is a pentadiagonal matrix, which depends only on the 
functions α and β. Equation 8 can be solved iteratively by 
introducing a step size γ multiplied with the negative time 
derivatives ∂ v / ∂ t, which are discretized by vt – vt–1. It is 
assumed that fv(v) is constant during a time step, i.e. 
fv(vt) ≈ fv(vt-1), yielding an explicit Euler step regarding the 
image energy. In contrast, the internal energy is an implicit 
Euler step due to their specification by the banded matrix A. The 
resulting equation is 
 

( ) ( )11 −− −−=+ tttvt vvvfAv γ  . (9)

 
The time derivatives vanish at the equilibrium ending up in 
Equation 8. Finally, a solution can be derived by matrix 
inversion: 
 

( ) ( )( )11
1I −−

− −+= tvtt vfvAv κγγ  , (10)

 
where I is the identity matrix and κ  is an additional parameter 
in order to control the weight between internal and image 
energy. 
 
A requirement of traditional snakes is the necessity to have an 
initialization close to the true object boundary. Additional terms 
to increase the capture range of the image forces and thus bridge 
larger gaps between initialization and true object boundary, for 
example the balloon model (Cohen, 1991), are only applicable, 
when the background is relatively homogeneous and no 
disturbing structures hinder the movement of the snake. Since 
these conditions can not be guaranteed in general, a solution 
without such additional terms is preferred in this work. Instead, 
strong internal energies are used containing the modeled shape 
characteristics of the object of interest to be relatively 
independent of the initialization and those parts of the image 
energies, which represent disturbing structures. 
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3. NETWORK SNAKES 

In order to enhance traditional snakes to be able to deal with 
network topologies and open endings of contours, a closer look 
to the internal energy Eint(v(s)) controlling the shape part of the 
curve is required. The minimization of the internal energy 
during the optimization process is only defined for closed object 
boundaries, i.e. v0 = vn (Kass et al., 1988), because the 
derivatives are approximated with finite differences (cf. 
Equation 7). Most of the approaches to be found in the literature 
use closed contours or define fixed end points when using open 
contours. This process requires correct end points before 
starting the snake optimization, which often can not be 
guaranteed. Similarly, network topologies represented by single 
contours ending in common nodal points require predefined 
correct nodal points. In this work a new definition of snakes is 
given, achieving a solution using image features and shape 
constraints without fixed end or nodal points. 
 
At first, the topology of the initial contour has to be derived. In 
addition to the nodes with a degree ρ(v) = 2 of the preliminary 
contour v(s) each node with a degree ρ(v) ≠ 2 has to be set up. 
Nodes with a degree ρ(v) = 1 define the end points and nodes 
with a degree ρ(v) ≥ 3 define the nodal points of the contour (cf. 
Fig. 1 for an example).  
 

 
 

Figure 1. Topology of a network snake 
 
Imposing the network topology in the energy minimization 
process causes a problem when solving Equations 7 and 8: the 
derivatives approximated by finite differences are not defined 
for nodes with a degree ρ(v) = 1 or ρ(v) ≥ 3, because the 
required neighboring nodes are either not available (ρ(v) = 1) or 
existing multiple times (ρ(v) ≥ 3). Thus, the shape control can 
not be accomplished at these parts of the contour in a traditional 
way. 
 
Let va , vb  and vc represent three contours, each ending in a 
common nodal point vn with a degree ρ(v) = 3. Regarding 
Equation 7, the first term, weighted by the parameter α, can not 
support the control of the internal energy during the energy 
minimization process in the vicinity of vn when using network 
snakes: the finite differences of the first term approximating the 
derivatives are only available for the two nodes vn-1 and vn, but 
not for vn+1. Thus, no shape control is possible and the first term 
is not considered. The second term of the internal energy, 
weighted by the parameter β, is rewritten using the available 
finite differences controlling the curvature of the contour. 

Consequently, the control of the total energy at the common 
nodal point vn = 

nav = 
nbv = 

ncv  is defined for network snakes 

as follows: 
 

( ) ( ) ( ) 0
211

=+−−−
−−− avaaaa vfvvvv

annnn
ββ  

( ) ( ) ( ) 0
211

=+−−−
−−− bvbbbb vfvvvv

bnnnn
ββ  

( ) ( ) ( ) 0
211

=+−−−
−−− cvcccc vfvvvv

cnnnn
ββ  

(11)

 
All three contours intersect in the common nodal point without 
interacting concerning their particular shape. The energy 
definition of Equation 11 allows for a minimization process 
controlling the shape of each contour separately, though ending 
in one common point exploiting the network topology. The 
matrix A of Equation 8 is adapted accordingly at the nodal 
points and their neighbors to fulfill the new definition of the 
internal energy, i.e. omitting some parts of the banded structure 
and/or filling up some additional parts to build further 
connections between different parts of the contour. 
 
The definition of the internal energy for nodes with a degree 
ρ(v) > 3 is straightforward to the proposed method above, i.e. 
adding further parts to Equation 11. Similarly, the new internal 
energy is defined at the end points of a contour: only one part of 
Equation 11 is needed, because only one contour without 
connection to other parts of the contour is available. The 
adaptation of the matrix A is analogous compared to nodal 
points. Thus, the control of the shape is feasible by the end of 
the contour without fixing the end points. 
 
Snakes have the tendency to shorten during the energy 
minimization due to the first term (α-term) of Equation 4. A 
shortening of contours with an open ending can be avoided by 
chaining the end points at the image border allowing for 
movement only along the image borders (cf. Fig. 1). 
Alternatively, the contour can be chained at a topologically 
neighbored object allowing for movement only along the object 
border. When there are no neighbored objects to allow for 
chaining the open endings of the contour, a possible idea could 
be the introduction of an external constraint force regarding a 
constant length of the contour. 
 
 

4. EXEMPLARY RESULTS 

Results concerning the functionality and capability of network 
snakes are presented in this section. Two different applications 
are shown to point out the transferability of the methodology: 
the extraction of field boundaries from high resolution satellite 
imagery and the extraction of cells from microscopic cell 
imagery. 
 
4.1 Extraction of Field Boundaries 

The delineation of field boundaries within the complex 
environment of vegetation is accomplished with color satellite 
images having a resolution of two meters. The strategy for 
extracting the objects of interest is divided into two parts: First, 
a segmentation is carried out in a coarse scale to derive the 
topology taking into account a somewhat inaccurate geometrical 
position. The topology of the segmentation, however, is 
assumed to be correct. In a second step, network snakes are 
used to improve the preliminary results exploiting the local 
image features and the object topology. 
 

3



 

The initial segmentation of the imagery is briefly outlined 
below, for details refer to (Butenuth and Heipke, 2005). The use 
of prior knowledge from a GIS enables a partition of the image 
scene: Field boundaries are only located within the open 
landscape and, in addition, the road network describes already 
fixed field boundaries, because fields naturally end at these 
objects. Within these regions of interest a multi-channel region 
growing is performed using the RGB- and IR-channels of the 
image resulting in an initial segmentation of the image (cf. Fig. 
2a, black lines). Note, that the geometrical correctness of the 
segmentation has been artificially degraded to emphasize the 
following steps in a better way. 

The result of the segmentation is used to derive the topology (cf. 
Fig. 2b) and to initialize the network snake. Since the objects to 
be extracted are rather straight, the parameter β is set to a large 
value compared to α. Thus, image noise and small disturbances 
have relatively small effects and, in addition, relatively coarse 
initial values of the contour can be used. The open endings of 
the contour are chained to the image borders, and are allowed 
for movement only along the borderline. In Figure 2c the 
capability of the network snake is highlighted: the contours and 
in particular the nodal points with a degree ρ(v) ≥ 3 and the end 
points move to the correct result, although the initialization is 
rather poor. The underlying image consists of the standard 

 

  

a) b) 

    
c) d) 

Figure 2. Extraction of field boundaries from high resolution satellite imagery (400 H 400 pixels): a) initialization of the network 
snake (black); b) topology; c) initialization (black), movement (thin black) and result of the snake (white); d) result superimposed on
the intensity channel of the CIR-image 
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a) b) c) 

   
d) e) f) 

Figure 3. Extraction of cells from microscopic cell imagery (135 H 135 pixels): a) cell image; b) cell nuclei and derived initialization 
(gray); c) initialization of the network snake (black); d) topology; e) initialization (black), movement (thin black) and result of the 
snake (white ); f) result superimposed on cell image [imagery provided by Evotec Technologies] 

 
deviation of the image intensities of the CIR-image within a 
quadratic mask, because high values typically belong to field 
boundaries. Regarding the area around the nodal points, in 
particular the point with a degree ρ(v) = 4, the internal energy 
and the exploitation of the topology specify the movement of 
the contour during the first iteration steps, because the values of 
the image energy are without effect. Step by step, the inverted 
image energy helps with small values pushing the contour 
respectively the nodal points to the correct solution during the 
minimization process. The final result is depicted in Figure 2d 
superimposed on the satellite image. The geometrical 
correctness is in most parts convincing, only the tree rows on 
the left side prevent a clearly defined field boundary and, thus, 
the image energy can not support the energy minimization 
process in an optimal manner. However, the example 
demonstrates, network snakes are a powerful methodology to 
delineate objects precisely exploiting their topology. 
 
4.2 Extraction of Cells 

The delineation of adjacent cells in microscopic cell imagery is 
the second example presented in this section. Figure 3a shows a 
microscopic image of stained cytoplasm, which fluoresced 
during the data capture. The depicted image has a size of about 
20 H 20 micrometers. Again, the strategy for extracting the 
objects of interest is divided into two parts: At first, a coarse 
object contour is needed to initialize the processing and to 
derive the topology. In a subsequent step the geometrical 

correctness of the initial object contour is optimized using 
network snakes. 
 
The cell nuclei are much easier to detect than the boundaries of 
the cytoplasm (cell membrane), because they are well defined 
against the background (cf. Fig. 3b). The background of the cell 
nuclei image is segmented followed by a calculation of the 
skeleton (cf. Fig. 3b, gray line). Due to the fact, that each cell 
nucleus is located within the associated cell membrane, the 
skeleton can be used to initialize the network snake having a 
correct topology even though the geometrical correctness is not 
very high. Before starting the optimization process, the object 
contour is thinned out taking into account an equal distance 
between each node (cf. Fig. 3c, black line). 
 
The topology of the object contour is derived to set up the 
network snake (cf. Fig 3d). Since the objects to be extracted 
have a specific curvature, the parameter β controlling the 
internal energy of the energy minimization process is not set to 
such a large value compared to the extraction of mostly straight 
field boundaries (cf. Section 4.1), yet is set again larger than α. 
A histogram linearization of the original image is accomplished 
to ease the optimization, because the enhanced contrast of the 
image helps to push the contour to the correct solution. In 
Figure 3e the optimization process is highlighted: Starting from 
the initialization (black line) the movement of the network 
snake (thin black line) is depicted resulting in extracted cell 
boundaries (white line). In Figure 3f the final result is 
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superimposed on the cell image. The optimization process 
works well, although there is strong image noise and in parts the 
image intensities can not help yielding the correct result. In the 
lower right part of the image one cell is not delineated 
completely, because the initialization is too far away and the 
image energy is not able to push the contour to the true object 
boundary. 
 
 

5. CONCLUSIONS 

A new segmentation methodology to delineate objects precisely 
from imagery using network snakes is presented in this paper. 
Using traditional snakes, adjacent objects, which influence each 
other and objects forming a network or having open endings are 
not defined due to the representation of the internal energy. In 
contrary, network snakes exploit the topology of the objects of 
interest during the energy minimization process comprising a 
complete shape control of the contours. The exploitation of the 
topology turns out to be a powerful method to deal with noise 
and disturbances in the imagery. The obtained object contours 
represent a superior geometrical solution when interacting with 
each other compared to traditional snakes. 
 
Different results concerning the extraction of field boundaries 
from high resolution satellite imagery and the extraction of cells 
from microscopic cell imagery demonstrate the potential and the 
transferability of the proposed methodology. In addition, the 
two examples emphasize, the requirement of a given correct 
topology can be achieved in particular applications. However, 
when the assumption of a given correct topology can not be 
guaranteed, an additional intervention comprising the global 
view of the optimized network has to be considered to insert or 
delete parts of the contour. Possible further applications are the 
delineation of other objects such as road networks, and other 
topics such as the update of GIS-data with an already given 
topology. 
 
In addition, the control of the internal energy can be improved 
choosing varying values of the parameters α and β, if the 
modeled object shape has these characteristics. A further 
interesting question is the behavior of the iteration process: are 
there dependencies of the initialization, internal energy and 
image characteristics and can they be exploited? For example, if 
the object of interest has other shape characteristics than the 
image disturbances or noise, the control of the internal energy 
and the exploitation of the topology can allow for a relatively 
coarse initialization. Investigations regarding this problem can 
give specific answers about the required quality of the image 
data and the initialization. 
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DETECTABILITY OF BUILDINGS IN AERIAL IMAGES OVER SCALE SPACE
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ABSTRACT:

Automatic scene interpretation of aerial images is a major purpose of photogrammetry. Therefore, we want to improve building
detection by exploring the "life-time" of stable and relevant image features in scale space. We use watersheds for feature extraction
to gain a topologically consistent map. We will show that characteristic features for building detection can be found in all considered
scales, so that no optimal scale can be selected for building recognition. Nevertheless, many of these features "live" in a wide scale
interval, so that a combination of a small number of scales can be used for automatic building detection.

1 INTRODUCTION

Building detection from aerial images is a very active research
area in photogrammetry, cf. the review in (Mayer, 1999). Early
attempts go back into the eighties (Nevatia and Price, 1982, Her-
man and Kanade, 1987, Huertas and Nevatia, 1988). In most
cases roof edges or roof parts have been used to identify com-
plex buildings, as facades usually are more difficult to extract.
Though some approaches concentrate on simple building types,
such as gabled or hipped roof type buildings, they are not generic
enough to deal with the great variety of building structures.

Interestingly, all approaches use image features extracted at a sin-
gle scale, which however, is either given by the resolution of the
images, or in some reasonable way selected by a human interpre-
tor. Of course, in general at resolutions of 5 to 30 cm pixel size
at ground level building easily can be detected by humans. They
obviously exploit the rich context on top of a building and around
it. When building an automatic interpretation system, modeling
context is one of the most difficult tasks. We want to reduce the
demands for modeling context by automatically selecting the op-
timal scale for image feature extraction.

Technically, detection is inferring existence from observable im-
age features using some classification procedure; localization is
only a side effect, precise boundaries are not of primary concern
at this stage, cf. the approach of (Brunn and Weidner, 1998) us-
ing an image pyramid. Detection may be based on Bayes’ rule
P (B|f(R)) ∝ P (f(R)|B)P (B), where the posterior probabil-
ity P (B|f(R)) for detecting a building or building part given
some features f(R) of a region R requires the likelihood
P (f(R)|B) and some a priori information about the occurrence
of a building. Training a classifier essentially consists of deter-
mining parameters p of an adequate likelihood function l(p) =
P (f(R)|B, p). This approach assumes the type of features f(R)
to be known.

We want to explore the observability of image features, which
may be relevant for building detection. Especially, we want to
investigate the suitability of regions extracted over scale space.
Small changes of scale often do not affect most of the regions
however, may lead to extinction of certain regions by merging
with neighbored regions, cf. fig. 1.

Such investigations are important for evaluation the mapping po-
tential in the context of human image interpretation, cf. (Jacob-
sen, 1997) or for evaluating the observability of objects in images
in the context of automatic interpretation, e. g. for road mapping

Figure 1: Effect of a scale change onto segmentation. Left: image
section of roof part with dormer, chimney, windows and antenna.
Middle: segmentation with scale σ = 1. Right: segmentation
with scale σ = 4. The regions belonging to minor roof parts,
e. g. small parts of the dormer’s roof or smaller shadows, do not
live over a larger range of scales. Most of them merge with other
regions with increasing scale.

procedures (Mayer et al., 1998, Baumgartner et al., 1999, Pakzad
and Heller, 2004).

In our context we need to consider the complexity of roof struc-
tures when deciding on the type of image features. Whereas
reconstruction implicitly aims at a geometric description, and
therefore uses features based on edges, cf. e. g. (Nevatia and
Price, 1982), or edge-aggregates such as corners, cf. e. g. (Lang
and Förstner, 1996), detection appears to better rely on features
based on regions, especially their form.

Scale space for region extraction has already been investigated,
cf. the review (Harvey et al., 1997). In contrast to the blob detec-
tion approach of (Lindeberg, 1993), we are interested in a com-
plete partitioning of color images, not restricting to local maxima
of intensity or a certain color. Therefore, we propose to use the
watersheds of the gradient image, cf. also (Olsen and Nielsen,
1997). Additionally, we adopt the idea of finding maximally sta-
ble regions over scale, which are regions whose area does not
change over scale, similar to the approach of MSER (Matas et al.,
2002) which searches for region which are stable over intensity
level sets. At the moment we do not exploit the hierarchical struc-
ture of the regions, as e. g. (Bangham et al., 1999) and (Kuiper et
al., 2003).

The goal of this paper is to investigate the suitability of such re-
gions for building detection. We will derive a statistics about the
scale occurrence of certain roof parts, such as triangular or rectan-
gular roof planes, which is a first attempt to derive the likelihood
function for building part detection. Using only a single scale
will turn out not to be sufficient for capturing the region infor-
mation contained in an image, as we will show in our empirical
investigations.
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The paper is organized as follows: Section 2 describes the seg-
mentation procedure. Sect. 3 presents our approach to measure
the stability of regions. Sect. 4 investigates the suitability of the
regions over scale space. Sect. 5 discusses the results and gives
an outlook on future research.

2 SEGMENTATION

Our segmentation is based on the watershed boundaries derived
from a sequence of images in the Gaussian scale space of the
gradient magnitude.

The Gaussian scale space is built with logarithmicly ranged scales
2i/nσ0, i = −N1, ..., 0, ..., N2 starting at σ−N1 = 2−N1/nσ0

and leading to σN2 = 2N2/nσ0. In our experiments we use σ0 =
1, n = 10, and N2 = 30, thus scales between 1 and 8 with steps
of a ten’th octave. The N1 = 17 scales between 0 and 1 continue
the arrangement of the larger scales into the scale between 0.3 and
1. Smaller scales are useless to compute, because the smoothing
has nearly no effect.

For each scale σ = σi the three band image f = [fc], c = 1, 2, 3
is convolved with a Gaussian filter G(x, y, σ):

f(x, y, σ) = f(x, y) ∗Gσ(x, y). (1)

As input function for the watershed algorithm we use the total
gradient of the color images f(x, y, σ) as homogeneity measure:
For each channel fc(x, y, σ) we compute the squared gradients
‖∇fc(x, y, σ)‖2. In order to compensate for the different noise
characteristics in the three color channels the homogeneity then
is the sum of the squared gradients over all channels c weighted
with the inverse of the variance σnc of the noise

g(x, y, σ) =

vuut 3X
c=1

‖∇fc(x, y, σ)‖2

σ2
nc

(2)

in each channel. (Brügelmann and Förstner, 1992) have shown
that the median of the squared gradients, except for a factor, is a
good estimation for the noise variance. Therefore, we apply this
approach and get the channel specific noise variance by

σ2
nc

= medx,y(||∇f(x, y, σ)||2). (3)

In order to eliminate noise effects we use as input function for the
watershed algorithm

h(x, y, σ) = max(g(x, y, σ), mg) (4)

where

mg = medx,y(g(x, y, σ)). (5)

The watershed algorithm takes the local minima of the input func-
tion as seed points and performs a region growing. This gives us
a complete partitioning of the image. The result is a label image

l(x, y, σ) = WS [h(x, y, σ)] (6)

that has the same labels at the catchment region of the local min-
ima. It can be thought as flooding the basins, if the input function
is seen as height values of a virtual landscape. All border pixels
of watershed regions are labeled 0.

3 STABILITY OF REGIONS OVER SCALE SPACE

Regions which show only little variation over a certain scale range
can be termed stable. There are various metric and topological
criterions for measuring stability of regions, but nevertheless the
area is the most important one: The region size changes dramat-
ically when regions merge or split. Other region’s properties do
not change that much over scale.

For obtaining the stability of the Lσ regions R(l, σ), l = 1, ..., Lσ

at scale σ , we compute the area |R(l, σ)| of each region from the
histogram of l(x, y, σ) in (6). We build a set of images where
each region is labeled with its area

a(x, y, σ) = |R(l(x, y, σ), σ)| (7)

We then analyse the area function

a(σ|x, y) (8)

for manually selected points (x, y) over the scales. Taking points
in regions with a selected content allows to investigate the stabil-
ity of these regions, thus their usefulness for detection.

In order to evaluate the stability of the area from the area func-
tion a(σ|x, y), we have to consider the uncertainty of the area of
regions. Areas can be categorized as stable in case their area lies
in the error band over a large enough range of scales. We require
stability over at least 10 scale space layers, i. e. over at least one
octave.

The uncertainty of the area A of a polygon [pj ] with J chord
lengths dj between the two neigboring points pj−1 and pj can
be shown to be

σ2
A =

1

4

JX
j

d2
j σ2

p (9)

if all points have the same standard deviation σp and taking the
indices j cyclically, cf. (Förstner, 1999). In case of dense points
and a smooth boundary the standard deviation of the area

σA =
U√
J

σp (10)

reveals to be only dependent on the length U of the boundary,
the number of border points J and the standard deviation σp of
the points. We use a 3 σA-error bands assuming a positional er-
ror of σp = 0.5 [pixel] to estimate the accuracy of the region’s
boundary.

4 EMPIRICAL INVESTIGATION

The empirical investigation aims at exploring the usefulness of re-
gions over scale space for building detection. A region is useful,
if we can expect that features, which are distinctive for separating
building parts from non-building parts, can be derived automat-
ically. Therefore we select roof regions in a supervise mode by
picking a point in the region, identify the scale range for stable re-
gions from the area function a(σ|x, y) and evaluate these regions
visually with respect to their usefulness. Though this is subjec-
tive, it gives a clear indication whether there is a chance at all, that
stable and relevant regions may be found. We also want to find
out whether there are characteristic scales for different classes of
roof regions.
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4.1 Basic categories of roof planes

Since roofs are the most distinctive parts of a building seen in an
aerial image, there seems to be no limit for the complexity of ur-
ban roof structures. We model our roof prototypes by examining
their roof planes.

Although there exist various catalogs of basic roof styles due to
roof construction, we define roof prototypes in a different way.
This is due to the high complexity of roof structures, which can
be only partially categorized by classical roof styles. Therefore
our detection scheme does not aim at such a categorization of
complete roofs, but only on categories of roof planes.

Fig. 2 shows some basic roof styles of suburban buildings. Each
of these roofs can be modeled by triangles and tetragons. Some
planes of half-hipped roofs are hexagons. Of course, more com-
plex buildings, e. g. L-shaped buildings, show other shapes, e. g.
parallelograms or skew trapezoids. However, taking roof regions
as key-features for triggering building detection does not require
distinguishing between planes of major roof and those of dormers
(see fig. 3).

pent roof gabled roof

hipped roof half-hipped roof

Figure 2: Common types of Middle European roofs

Figure 3: Example for building with a dormer

We therefore represent each roof by the roof planes together with
their geometric traits and by their adjacency graph, possibly in-
cluding attributes of the type of neighborhood.

Besides dormers the roof planes can get disturbed by other ob-
jects fixed on the roof. Examples of these objects are chimneys,
windows and solar cells (see fig. 1, left). Furthermore, roofs can
be occluded by trees or other buildings and their shadows. These
disturbances may affect the region detection. Whereas some of
these, e. g. antennas and their shadows, will not be visible at
lower resolution, thus at other scales, others such as occlusions
will change the form of the extractable regions, however, be visi-
ble over a larger range of scales.

At this stage of our investigation we are only interested in the
observability of stable regions, which show roof-type structures.

4.2 Test Data

Our experiments are based on aerial image data, showing subur-
ban buildings in the cities of Bonn (Germany), Graz (Austria),
and Toyonaka (Japan).

Bonn: We consider 13 aerial images taken over Bonn, having
a ground resolution of 10 cm, cf. figs. 4 and 5. The first ex-
ample image shows a scene of a shopping area with bigger flat

and gabled roofs. In the other example image, there is a sub-
urban scene with gabled roofs often having additional roof parts
as dormers or windows. Due to the time of image acquisition
in winter, the vegetation around the buildings does not show a
strong contrast. Additionally, as the position of the sun is quite
low, the shadows often reach to the neighboring building.

Figure 4: Image section from Bonn, shopping area, 10 cm ground
resolution

Figure 5: Image section from Bonn, residential area, 10 cm
ground resolution

Graz: Our 14 test images of Graz have a ground resolution of
8 cm (cf. fig. 6). Most of the roofs are covered with red tiles,
the buildings are surrounded by fresh vegetation. There are only
small shadows in the picture, the roof planes are only disturbed
by other objects, such as chimneys or solar cells. The images
show many gabled and cross gabled roofs.

Figure 6: Image section Graz, residential area, 8 cm ground res-
olution, kindly provided by Vexcel Imaging GmbH in Graz

Toyonaka: Our 9 test images of Toyonaka have a ground resolu-
tion of 7 cm (cf. fig. 7). The concentration of buildings differs
strongly from the other test images. Roofs with colorful tiles
are detectable by eye very well. Due to the low position of the
sun, shadows make it difficult to distinguish between dark cov-
ered roofs. There are no other objects on the roofs, but most of
the houses are extended by additional building parts. Our test im-
age does not show any vegetation and is weak in contrast. Most
of buildings have hipped or pyramid roofs.



Figure 7: Image section Toyonaka, dense residential area, 7 cm
ground resolution, kindly provided by Vexcel Imaging GmbH in
Graz

4.3 Experimental Results

We selected roof planes manually to observe the stability of their
area in scale space. Tab. 1 shows the number of stable regions we
found in all images. We distinguished the regions by their shape.
The row of more complex shaped regions refers to those regions,
which have melted together with other regions of the roof still
forming characteristic roof shapes. Less than 20% of the selected
regions were not stable at all, these regions are not taken into
account any further.

Shape Bonn Graz Toyonaka Σ
triangle 20 71 151 242
square 55 95 16 166

rectangle 205 373 152 730
trapezoid 39 60 115 214

more complex 56 60 176 292
Σ 375 659 610 1644

Table 1: Statistics of selected regions which turned out to be sta-
ble.

Fig. 9, an extract of fig. 5, demonstrates that at various scales
relevant roof areas can be detected. We obtain a thin recangu-
lar shaped roof plane, which merges with another one at σ ≈ 3
[pixel]. As long as the balconies form bays at the bottom of the
region, it is not considered to be stable. In contrast to the bal-
cony bays, the hole of the region belonging to the window is very
stable.

Fig. 10, an extract of fig. 4, demonstrates that even smaller roof
parts as dormer roofs can be stable, too. From scale σ = 4 [pixel]
on, the region merges with a vegetation area in front of the build-
ing.

Fig. 11, an extract of fig. 5, shows the smoothing deforms roof
part with increasing scale. The region is stable over various scale
space layers, but the shape of the original region changes from
a triangle to a circle within the last 10 layers, resp. starting at
σ ≈ 4 [pixel].

Fig. 12, an extract of fig. 7, shows a problem of our manual re-
gion selection: The Japanese roofs are often strong textured in op-
posite to the most European roofs. In this case, one almost always
selects a border point of region at at least one scale space layer
between σ = 0 and 1 [pixel]. So, the area function a(σ|x, y)
is not determined from a region but from all border pixels in the
image (which have the same label: 0). From σ = 1 [pixel] on,
the roof planes are well observable.

The results of our investigation are shown in fig. 8. It is orga-
nized in a max-min-diagram that shows the maximal versus the
minimal level of scale for the rectangular roof parts, measuring

the scales in dm at ground level. The other roof parts show sim-
ilar results, the graphics would present nearly the same range of
positions, the density of the drawn dots would only be less.

Figure 8: The results of the investigation on rectangular regions
are drawn in a max-min-interval diagram. The results of the dif-
ferent shaped regions are similar to those as tab. 2 shows.

Obviously, we have very stable regions, where the minimum scale
is small and the maximum scale is large, namely those in the
upper left of the diagram. We also find regions which only live
in large scales as those few in the upper right of the diagram. We
finally find regions which only exist at small scales, i. e. those in
the lower left.

There is no certain scale where uniquely formed regions can be
found. Also, choosing a certain scale for finding regions, say 3
dm, would only allow to detect those regions which are in the
upper left rectangular having its lower right corner at (3,3), thus
missing quite some relevant regions, in the lower left and the up-
per right of the diagram.

The relevance of the extracted regions has only been evaluated in
general: over appr. 80% of all regions are stable over at least an
octave in the investigated scale range.

Tab. 2 also contains the range of the minimal and maximal scales
in [dm]. The different forms appear in all scale ranges. As the
minimum and maximum ranges of the scales almost totally over-
lap, selecting a single scale in this overlap would lead to a loss in
region detection, e. g. when choosing σ = 3 dm and searching
for rectangular roof regions.

Type σmin [dm] σmin σmax [dm] σmax

min – max [dm] min – max [dm]
triangle 0.21 – 3.56 0.58 0.64 – 8.00 3.13
square 0.21 – 4.00 0.61 0.56 – 8.00 3.37
rectangle 0.21 – 4.15 0.74 0.56 – 8.00 3.95
trapezoid 0.21 – 4.15 0.59 0.56 – 8.00 3.48
others 0.21 – 4.25 0.86 0.72 – 8.00 3.64

Table 2: Range of minimal and maximal scales over all stable
regions, additionally their means, distinguishing the shapes of re-
gions.

5 CONCLUSION

This paper is a first investigation into the detectability of building
roofs via regions which are stable in scale space. The stability of
a region can be measured by the scale range where the region’s
area does not change significantly.

We used the watershed algorithm on the averaged and weighted
gradient magnitude image for image partitioning. The weights
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are the inverse of the noise variance in the different channels.
These regions turned out to be quite stable over scale.

We have shown, that regions that represent roofs and roof parts in
aerial images can only be extracted in certain intervals of scale.
However, there is no optimal scale for the extraction of roof parts
in aerial images. It is necessary to automatically choose the scale
for each region.

The usefulness of stable regions was explored. Over appr. 80%
of the roof regions, which were selected manually, lead to im-
age regions which were stable and promised to have attributes for
reliable detection.

We are currently investigating the automatic extraction of regions
which are stable over scale space. We are setting up an annotated
image database, which makes it possible to train our building de-
tectors.

The approach should be easily transferred to other types of im-
ages, as such region detectors exploiting scale space can be ex-
pected to play at least a prominent role as point type detectors.
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original σ = 3.03
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Figure 9: Example 1 of the development of a region:
log(a(σ|x, y)). Starting with a thin rectangular roof plane, the
region merges at higher levels with other roof planes and roof ob-
jects. Graph: Relation between smoothing scale and region sizes
together with the error bands. Stable Regions allude to concrete
scales.
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ABSTRACT: 
 
This paper describes a model for the consistent estimation of building parameters that is a part of a method for automatic building 
reconstruction from airborne laser scanner (ALS) data. The adjustment model considers the building topology by GESTALT 
observations, i.e. observations of points being situated in planes. Geometric regularities are considered by “soft constraints” linking 
neighbouring vertices or planes. Robust estimation can be used to eliminate false hypotheses about such geometric regularities. 
Sensor data provide the observations to determine the parameters of the building planes. The adjustment model can handle a variety 
of sensor data and is shown to be also applicable for semi-automatic building reconstruction from image and/or ALS data. A test 
project is presented in order to evaluate the accuracy that can be achieved using our technique for building reconstruction from ALS 
data, along with the improvement caused by adjustment and regularisation. The planimetric accuracy of the building walls is in the 
range of or better than the ALS point distance, whereas the height accuracy is in the range of a few centimetres. Regularisation was 
found to improve the planimetric accuracy by 5- 45%.  
 
 

1. INTRODUCTION 

The shapes of buildings and other man-made objects, despite 
being very complex in realistic scenes, are often characterised 
by certain geometrical regularities. At a level of detail typical 
for topographic mapping (mapping scales 1:500 to 1:1000) most 
buildings can be modelled by polyhedrons. This implies that all 
vertices belonging to a face must be situated on a plane in 
object space. Apart from that, other geometrical regularities 
include perpendicular walls, horizontal roof edges, or symmetry 
between roof faces.  
 
It is the goal of automatic building reconstruction to generate 
3D building models from sensor data in previously detected 
regions of interest. In this context, model regularisation by 
considering geometric constraints is essential for achieving high 
quality building models. Besides resulting in a more regular 
visual appearance, considering geometric regularities helps to 
improve the geometric accuracy of the models, especially if the 
sensor geometry is weak. There are two general strategies for 
building reconstruction, differing in the way buildings are 
represented in the reconstruction process and thus also in the 
way geometric regularities are considered. The first strategy is 
based on a bottom-up process. The sensor data are segmented in 
order to obtain 3D features such as edges and planes. These 
features are combined to obtain a polyhedral model, e.g. 
(Rottensteiner et al., 2005). Alternatively, buildings can be 
reconstructed by parametric primitives in a top-down process, 
e.g. (Brenner, 2000). In the first case, assumptions on geometric 
regularities may or may not be used in order to select the 3D 
features and group them; they can and should be considered as 
additional information in a final parameter estimation process 
yielding consistent and regularised building models. In the 

second case, assumptions about regularities, e.g. rectangular 
footprints, are an implicit part of the description of the 
primitives. Using parametric primitives reduces the level of 
detail that can be achieved as the number of primitives is 
usually small and most have a rectangular footprint. This can be 
avoided by using “adaptive primitives” (Rottensteiner & 
Schulze, 2003), i.e. primitives having an adaptive 
parameterisation. However, the bottom-up strategy seems to be 
more flexible with respect to handling geometric regularities. 
They are not an implicit part of the building model, but rather 
are added as additional information to the estimation of the 
building parameters and thus only have to be considered where 
enough evidence is found in the data. From the point of view of 
parameter estimation, this can be handled in two ways. First, 
geometric regularities can be considered in the adjustment by 
constraint equations. This strategy will result in models 
precisely fulfilling these “hard” constraints. Brenner (2005) has 
given an overview about the ways such constraints can be 
handled in object modelling. The alternative is to add “soft 
constraints”, i.e. direct observations for entities describing a 
geometric regularity, to the adjustment of the sensor-based 
observations. In this case, the constraints will not be fulfilled 
exactly, but there will be residuals to the observations. The 
degree to which the constraints are fulfilled depends on the 
stochastic model. Using the second strategy, robust estimation 
techniques can be applied to the soft constraints to determine 
whether a hypothesis about a geometric regularity fits to the 
sensor data or not.  
 
Vosselman (1999) proposed an algorithm for building 
reconstruction from airborne laser scanner (ALS) data that 
determined building outlines under the assumption of all 
neighbouring walls intersecting at right angles. He addressed 
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the necessity of adding constraints to the estimation of the 
model parameters without doing so himself. Vögtle and Steinle 
(2000) reconstruct buildings from ALS and spectral data. The 
coordinates of their building vertices are estimated by local 
adjustment only, and no geometric regularities are considered. 
Alharty and Bethel (2004) describe two methods for roof 
outline detection. The first method relies on the existence of a 
dominant roof direction and the neighbouring walls being 
orthogonal. The second does not require such assumptions, but 
no overall adjustment is carried out, and no geometric 
regularities are considered. Ameri (2000) describes a general 
adjustment model for building reconstruction from image data. 
Geometric constraints are considered. For instance, for two 
orthogonal building edges a direct observation of the inner 
product of the directional vectors is introduced. The weighting 
of such an algebraic observation seems to be somewhat critical. 
A method for fitting building models to multiple aerial images 
using “hard” constraints was presented in (Vallet & Taillandier, 
2005). McGlone (1996) describes the mathematical basis for 
handling geometrical constraints both as (“hard”) condition 
equations and as “soft” constraints, using this basis for 
improving the results of multiple-image point matching under 
the assumption of certain object regularities.  
 
In (Rottensteiner et al., 2005) we have presented a method for 
automatic building reconstruction from ALS data that is based 
on the detection and combination of roof planes. The final step 
of building reconstruction is an overall adjustment of all 
observations to determine the model parameters consistently. 
The adjustment model was originally presented in 
(Rottensteiner, 2003), but implemented only recently. It is the 
first goal of this paper to present this adjustment model in its 
improved and revised form and to show how it can be used as a 
tool for consistent estimation of building parameters for 
different types of available sensor data. Special emphasis is laid 
on the way geometric regularities can be considered. The 
second goal of this paper is to evaluate the results of building 
reconstruction from ALS data by comparing automatically 
derived building models to reference data. This comparison 
should also show how effective the overall adjustment is in 
improving the geometric quality of building models.  
 
 
2. WORKFLOW FOR BUILDING RECONSTRUCTION 

Our algorithm for building reconstruction requires ALS points 
and a coarse approximation of the building outlines. The ALS 
data are sampled into a Digital Surface Model (DSM) in the 
form of a regular grid of width Δ by linear prediction. The work 
flow consists of three steps (Rottensteiner et al., 2005):  
 

1. Detection of roof planes based on a segmentation of the 
DSM. These planes are expanded by region growing.  

2. Grouping of roof planes and roof plane delineation: Co-
planar roof planes are merged, and hypotheses for 
intersection lines and/or step edges are created based on an 
analysis of the neighbourhood relations of the roof planes.  

3. Consistent estimation of the building parameters to 
improve these parameters using all available sensor data 
and considering geometric constraints.  

 

In step 2, the boundary polygons of the roof planes are 
determined as a combination of roof plane intersections and 
step edges, the step edges being located in the DSM by an edge 
extraction technique taking into account specific information 
about buildings. Decisions in the determination of the shapes of 
the roof polygons are based on hypotheses tests and robust 

estimation. We use the concept of uncertain projective 
geometry (Heuel, 2004) for consistent modelling of the 
stochastic properties of all geometric entities. In this paper, we 
will focus on the final step of the reconstruction process.  
 
 

3. THE ADJUSTMENT MODEL 

The adjustment problem we want to solve can be described as 
follows. We assume to have given a polyhedral building model 
in boundary representation (B-rep). The model consists of 
planar faces, loops, edges, and vertices. Each edge is the 
intersection of two neighbouring faces, and each vertex is the 
intersection of at least three planes of the model. All vertices 
belonging to the boundary of a face have to lie in the face’s 
plane. The faces of the model are labelled as being a roof face, 
a wall, or the floor. Walls are modelled to be strictly vertical. 
The topology of the model and some meaningful initial values 
for its parameters are assumed to be known. The initial model 
can be the outcome of the bottom-up strategy for building 
reconstruction (cf. section 2). In this case it is an approximate 
version of the final model, and its initial parameters are already 
derived in some way from the sensor data. The coarse model 
has to be analysed for geometric regularities, which can be done 
automatically or based on the interaction of a human operator, 
and the model parameters have to be estimated. For that 
purpose, we use five categories of observations: 
 
1. Observations representing the topology of the model  
2. Observations corresponding to geometric regularities  
3. Sensor and sensor-derived observations  
4. Observations linking the sensor observations to the model 
5. Direct observations for unknowns to avoid singularities. 
 
They are used to determine four categories of unknowns:  
 
1. The co-ordinates of the model vertices 
2. The parameters of the model planes 
3. Transformation parameters, e.g. the unknown angle for each 

pair of perpendicular walls (cf. section 3.2) 
4. Additional unknowns, e.g. unknown object co-ordinates for 

each ALS point (cf. section 3.3.2). 
 
Our method for handling the model topology and geometric 
regularities is independent not only from the types of sensor 
data that are used, but also from the way in which the original 
model was created. The adjustment model is based on the 
program ORIENT for hybrid photogrammetric adjustment, 
especially on its concept of handling object space constraints by 
“GESTALT” observations (Kager, 2000).  
 
3.1 Observations Representing Model Topology  

It is the idea of our method to find a mapping between the B-rep 
of the polyhedral model and a system of GESTALT 
observations representing the model topology in adjustment. 
GESTALT observations are observations of a point P being 
situated on a polynomial surface (Kager, 2000). The polynomial 
is parameterised in an observation co-ordinate system (u, v, w) 
related to the object co-ordinate system by a shift P0 and three 
rotations Θ = (ϖ, φ, κ)T. The actual observation is P‘s distance 
from the surface which has to be 0. Using (uR, vR, wR)T = 
 RT (Θ) · (P − P0), with RT (Θ) being a transposed rotational 
matrix parameterised by Θ, and restricting ourselves to vertical 
planes for walls and tilted planes for roofs, there are three 
possible formulations of GESTALT observation equations: 

14



 

         

( ) ( )
2
01

2
10

011000

2
10

1000

2
01

0100

1

1

1

cc

vmcumccwm
r

b

umbbvm
r

a

vmaaum
r

RvRuRw
w

RuRv
v

RvRu
u

++

⋅⋅+⋅⋅++⋅
=

+

⋅⋅++⋅
=

+

⋅⋅++⋅
=

  (1) 

 
In equation 1, ri are the corrections of the fictitious observations 
of co-ordinate i and mi ∈ {−1, 1} are mirror coefficients. An 
application is free to decide which of the parameters (P, P0, Θ, 
ajk, bik, cij) are to be determined in adjustment and how to 
parameterise a surface. In addition, different GESTALTs can 
refer to identical transformation or surface parameters, which 
will be used to handle geometric regularities (cf. section 3.2). 
Here, we declare the rotations to be 0 and constant. P0 is a point 
situated inside the building and constant. For each face of the 
B-rep of the building model, we define a set of GESTALT 
observations, taking one of the first two equations 1 for walls 
and the third one for roofs. The unknowns to be determined are 
the object co-ordinates of each vertex P and the plane 
parameters (ajk, bik, cij). As each vertex is neighboured by at 
least three faces, the co-ordinates of the vertices are determined 
from these GESTALT observations and thus need not be 
observed directly in the sensor data. Further, these observations 
link the vertex co-ordinates to the surface parameters and thus 
represent the building topology in the adjustment. They do 
already enforce geometric constraints by modelling walls as 
being strictly vertical and by declaring all vertices of a face to 
lie in the same plane. The stochastic model of these GESTALT 
observations is described by the a priori standard deviation σT 
of the fictitious distance between a point and the plane.  
 
3.2 Observations Representing Geometric Regularities 

Geometric regularities are considered by additional GESTALT 
equations, taking advantage of specific definitions of the 
observation co-ordinate system and specific parameterisations 
of the planes. Geometric regularities can occur between two 
planes or between two vertices of the model. In the current 
implementation, we restrict ourselves to regularities involving 
planes or vertices being neighbours of one edge. In all cases, 
the observation co-ordinate system is centred in one vertex P1 
of that edge and the w-axis is vertical, thus ϖ = φ = 0 = const. 
Four types of geometric regularities are considered (Figure 1). 
The first type, a horizontal roof edge, involves the edge’s end 
points: Its two vertices P1 and P2 must have identical heights. 
The two points are declared to be in a horizontal plane εh that is 
identical to the (u,v) – plane of the observation co-ordinate 
system. One observation is inserted for P2: rw = wR = Z2-Z1.  
 
The other cases involve the two neighbouring planes of an edge. 
One of the axes of the observation coordinate system is defined 
to be the intersection of these two planes ε1 and ε2. There is one 
additional unknown rotational angle κ describing the direction 
of the u-axis. For each vertex Pi of the planes, GESTALT 
observations are added for ε1 or ε2. For the edge’s second vertex 
P2 two observations (one per plane) are added. The GESTALT 
observations for ε1 and ε2 are parameterised in a specific way: 
 
• The edge is the intersection of two horizontal and symmetric 

roof planes ε1 and ε2. There is only one tilt parameter c1
01. 

Symmetry is enforced by selecting mv = −1 for ε2:  
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• The edge is the intersection of two perpendicular walls:  
ε1: ru = uR, ε2: rv = vR. There is no additional surface 
parameter to be determined.  

• Two walls are identical and the edge does not really exist in 
the object: ε1: rv = vR, ε2: rv = vR. There is no additional 
surface parameter. P1 and/or P2 might become undetermined, 
so that direct observations for one of the co-ordinates of these 
vertices have to be generated.  

 

 
 

Figure 1. (a) Horizontal edge; (b) horizontal and symmetric 
edge; (c) perpendicular walls; (d) Identical walls.  

 
The stochastic model of these GESTALT observations is 
described by their a priori standard deviations σC. The “soft 
constraints” thus modelled will only be fulfilled up to a degree 
depending on σC. The GESTALT observations corresponding to 
the geometrical constraints can be subject to robust estimation 
for gross error detection. If the sensor observations contradict 
the constraints, the respective GESTALT observations should 
receive large residuals, which can be used to modulate the 
weights in an iterative robust estimation procedure (Kager, 
2000). Thus, if the GESTALT observations describing a 
geometric constraint are eliminated in adjustment, this means 
that the hypothesis about a constraint was wrong.  
 
Whether or not a hypothesis about a constraint is introduced can 
be decided in several ways. For instance, the coarse model can 
be analysed whether the angles between neighbouring walls 
differ from 90° by less than a threshold εα, and a constraint 
about perpendicular walls can be inserted if this is the case. 
More sophisticated methods can take into account the stochastic 
properties of the coarse model. In a semi-automatic working 
environment, geometric constraints can be inserted (and 
enforced) by the user. The principle can be expanded to the 
definition of parametric primitives by generating more complex 
systems of constraints between the planes of a building 
(Rottensteiner & Schulze, 2003).  
 
3.3 Sensor Observations and Observations Linking the 
Sensor Data to the Model 

The observations described so far link the plane parameters to 
the vertices or to the parameters of other planes. In order to 
determine the surface parameters, observations derived from the 
sensor data are necessary. ORIENT can handle a large variety 
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of sensor models. Any of these sensors or any combination of 
them can be used in adjustment. Here we will restrict ourselves 
to image and ALS data.  
 
3.3.1 Image co-ordinates: Points measured in images are 
related to object space by the perspective equations. We assume 
the orientation parameters of the images to be known and 
constant. An observed image point has to be assigned to an 
entity of the object model to contribute to the determination of 
the model parameters. Two cases can be distinguished. First, an 
image point can be assigned to a building vertex, which yields 
two perspective observation equations for that vertex. Second, 
the image point can be assigned to a model edge. As such a 
point is not a part of the model, its object co-ordinates have to 
be determined as additional unknowns; however, each point 
assigned to an object edge yields four additional observations: 
its two image co-ordinates and two GESTALT observations 
(one for each object plane intersecting at the object edge). The 
stochastic model of an image co-ordinate is described by its 
standard deviation σI. Depending on the way the image points 
were determined, σI can describe the accuracy of manual 
measurement, or it can be the result of a feature extraction 
process.    
 
3.3.2 ALS data: ALS points give support to the 
determination of the roof plane parameters. As an ALS point is 
not a part of the model, its object co-ordinates have to be 
determined as unknowns. Each ALS point gives four 
observations, namely its three co-ordinates and one GESTALT 
observation for the roof plane the point is assigned to. As the 
walls only receive few laser hits, their parameters have to be 
determined from other observations. Walls correspond to 
sections of step edges in the DSM (Rottensteiner et al., 2005). 
Each step edge section is derived from “edge points” in the 
DSM (e.g. points of maximum height gradient). In order to 
determine the walls, these edge points have to be used as 
observations in a way similar to the original ALS points: Each 
edge point gives three observations (its X and Y co-ordinates 
and 1 GESTALT), but two additional unknowns (again X and 
Y). The ALS observations can be modelled in two different 
ways: They can be introduced as “control point” observations, 
i.e. as direct observations for the object co-ordinates, or they 
can be introduced as “model points”. In the latter case, the ALS 
points are linked to the object co-ordinate system by a rigid 
motion, and the six parameters of that rigid motion are 
estimated in the adjustment. Using this variant, local shifts and 
rotations of the ALS co-ordinate system with respect to the 
object co-ordinate system that might be the result of systematic 
GPS and INS errors of the ALS system can be compensated. 
This only makes sense if additional data, e.g. aerial images, are 
available. Otherwise, the ALS and the object co-ordinate 
systems are assumed to be identical. The stochastic model of an 
ALS point is described by two standard deviations: σXY for its 
planimetric co-ordinates and σZ for its height. The edge point 
co-ordinates are introduced with a standard deviation σE.  
 
3.4 

4.1 

4.2 

Overall Adjustment 

All observations are used in an overall adjustment process. The 
weights of the observations are determined from their a priori 
standard deviations. Correlations between the observations (e.g. 
between the x and y image co-ordinates of an image point) are 
not considered. Robust estimation is carried out by iteratively 
re-weighting the observations depending on their normalised 
residuals in the previous adjustment (Kager, 2000). The re-

weighting scheme is only applied to the sensor observations and 
to the observations modelling geometric constraints, in order to 
eliminate gross observation errors and wrong hypotheses about 
geometric regularities. The surface parameters and the vertex 
co-ordinates determined in the adjustment are used to derive the 
final building model. 
 
 

4. EVALUATION 

The Test Data 

For our test, we selected 8 buildings of different size and 
complexity out of a larger test area in Fairfield (NSW). They 
were chosen to highlight the method’s potential to handle 
buildings of both regular and irregular shapes. Both ALS and 
image data were available for that test site. The ALS data were 
captured using an Optech ALTM 3025 laser scanner with a 
nominal average point distance of 1.25 m. As our test buildings 
were at the edge of a swath, there was a relatively irregular 
point density, with point distances of about 0.5 m in flight 
direction and 1.5 - 2 m across flight direction.  The aerial 
images were a stereo pair taken at a scale of 1:11000 (focal 
length f = 30 cm). They were scanned at a resolution 15 μm, 
which corresponds to a ground sampling distance of 0.17 m.  
 

Generating Reference Data 

The aerial images were used to determine the reference data for 
the test. In a semi-automatic working environment, the roof 
polygons were digitised in the images and hypotheses about 
geometric regularities were introduced by the human operator. 
The adjustment model described in section 3 was used to 
determine the parameters of the reference buildings, taking into 
account the GESTALT observations, the image co-ordinates of 
the building vertices, and ALS points to improve the height 
accuracy of the reference models. The ALS points were 
necessary because of the weak configuration of the images. 
Figure 2 shows an upright projection of a reference building 
resembling a hip roof and the ALS points. Three variants are 
shown: the results of photogrammetric plotting with and 
without geometric constraints and the results achieved by 
combining photogrammetric plotting with geometric constraints 
and ALS data. For the variant without geometric constraints the 
RMS values of the height differences of the horizontal eaves is 
±0.25 m. In the constrained version, the eaves are horizontal, 
but the figure reveals that the heights of the eaves derived from 
the ALS data are about 50 cm lower. The ALS points were 
introduced as model co-ordinates; the shift was about 15 cm in 
X and Y and about 5 cm in Z. The precision of the building 
vertices was about ±17 cm in X and Y, and about ±5 cm in Z.  

0.1 m

 

Figure 2. Upright projection of a hip roof (heights enlarged by 
a factor 2) generated from images without 
constraints (dotted lines); images with constraints 
(broken lines); images with constraints and ALS 
points (full lines).  Circles: ALS points.  
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4.3 Results and Discussion 

From the ALS data, a DSM with a grid width of Δ = 0.5 m was 
generated. From the DSM, roof planes were extracted, and the 
roof boundary polygons were determined as a combination of 
intersection lines and step edges in the way described in 
(Rottensteiner et al., 2005). These initial roof boundary 
polygons are shown super-imposed to the DSM in Figure 3.  
 

 
 

Figure 3. Initial roof boundary polygons for the eight 
buildings superimposed to the DSM. The buildings 
are shown in different scales, according to the 
extents shown in the figure.  

 
In general the models look quite good except for building 8, 
which is partly occluded by trees. There is some noise in the 
outlines of buildings 1 and 2. Buildings 4, 6, 7, and 8 and the 
main part of building 3 should have a rectangular footprint, 
which is not entirely preserved in the initial models; geometric 
constraint should help to overcome this situation. The initial 
models, the original ALS points, and the step edge points 
provide the input for the overall adjustment. Soft constraints 
were introduced just on the basis of a comparison of 
angles/height differences to thresholds. Table 1 gives an 
overview about the stochastic model for the individual groups 
of observations in adjustment. Robust estimation was applied to 
the soft constraints and to the ALS and step edge points. In the 
current implementation this had to be done in a supervised way. 
It turned out that with some larger buildings the stochastic 
model had to be changed to make false hypotheses on 
geometric constraints detectable. Using σC = ±0.05 m and σE = 
±0.25 m turned out to be a good choice. However, the final 
adjustment without the eliminated observations was carried out 
using the values given in Table 1. They were confirmed by a 
variance component analysis. 

Topology
σT [m] 

Constraints
σC [m] 

ALS XY 
σXY [m] 

ALS Z
σZ [m] 

Step Edge
σE [m] 

±0.01 ±0.015 ±0.25 ±0.075 ±0.5 
 

Table 1. A priori standard deviations of the observations.  
 

 
 

Figure 4. Final roof boundary polygons (red) and reference 
data (blue). A part of building 2 is missing in the 
reference data since it only occurs in the ALS data. 

 
Figure 4 gives the final results of building reconstruction and a 
comparison to the reference data. Compared to figure 3, the 
building models appear to be more regular. For buildings 1-6 
the number of extracted roof planes was correct. The 
intersection lines are very accurate, and step edges are in 
general determined quite well, too. Some small roof structures 
are generalised, e.g. the outline of the smallest roof plane of 
building 1 or of roof plane a of building 2. The step edge 
between that plane and its neighbouring plane b was also not 
very precisely determined. The problem was that roof plane a 
was horizontal, its western vertex being higher and its eastern 
vertex lower than the corresponding vertices of roof plane b; the 
maximum height difference was only 0.3 m, so that the step 
edge was poorly defined. Building 7 was reconstructed as being 
flat. The intersection of the two roof planes is only 0.15 m 
lower than the eaves, which is the reason why the two planes 
were merged. Building 8 was also reconstructed as a flat roof. It 
was the smallest building in the sample with only a few ALS 
points on the roof planes, and both ends occluded by trees. The 
outlines at the occluded ends are not very well detected either. 
Apart from the visual inspection of the building models, a 
numerical evaluation of these results was carried out. RMS 
values of the co-ordinate differences of corresponding vertices 
in the reconstruction results and the reference data were 
computed for each roof plane: 
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In Equation 3, N is the number of corresponding points in the 
respective roof plane. If no matching vertex was found, the 
closest point on the corresponding roof boundary polygon was 
used instead. For buildings 7 and 8 only the outlines were 
evaluated. Figure 5 shows a graph of RMSXY and RMSZ 
depending on the roof area. RMSXY is smaller than 3.1 m for all 
roof planes. For most roofs it is in the range between ±0.5 m 
and ±1.5 m, which is better than the point density across the 
flight direction. The largest values occur for roof planes smaller 
than 100 m2, with the exception of roof planes a and b of 
building 2, for reasons discussed above. RMSZ is much smaller 
than RMSXY because heights are better defined in ALS data than 
step edges. RMSZ becomes smaller with increasing area roof 
planes because more ALS points give support to large planes. 
Intersections are more accurately determined than step edges. 
RMS values computed for intersection lines are only ±0.35 m in 
planimetry and ±0.07 m in height.  
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Figure 5. Left: RMSXY [m], right: RMSZ [m], both depending 

on the roof area [m2].  
 

B P RMSXY [m] RMSZ [m] ΔXY [m] ΔZ [m] 
1 5 0.76 0.12 0.24 0.01 
2 5 2.27 0.20 0.00 -0.02 
3 3 0.82 0.10 0.07 0.16 
4 2 0.60 0.02 0.13 0.03 
5 2 1.31 0.08 -0.08 -0.02 
6 4 0.48 0.09 0.36 0.17 
7 2 1.43 0.14 0.44 0.03 
8 O 2.74 - -0.02 - 

 

Table 2. B: Building; P: Number of planes; RMSXY, RMSZ: 
Combined RMS values in planimetry / height;  
ΔXY, ΔZ: improvement of RMSXY / RMSZ.  

 
Table 2 gives combined RMS values for all the test buildings. 
The large value for RMSXY for building 2 of ±2.27 m is caused 
by the erroneous step edge; the combined value without that 
edge would be ±1.43 m. For most buildings, RMSXY is better 
than the average point distance across flight direction. Apart 
from problems with low step edges, errors occurred at the 
outlines of some of the larger building due to occlusions: as the 
test area was at the edge of the swath, the positions of the step 
edges were very uncertain there. The height accuracy is good, 
with the largest value of ±0.20 m occurring at building 2, again 
at the problematic step edge. Table 2 also gives the impact of 
the overall adjustment to the RMS values. With building 5, the 
RMS values get worse by a small value after adjustment, but in 
most cases the RMS values are improved by the overall 
adjustment. The improvement can be up to 45% (building 6).  
 
 

5. CONCLUSION 

In this paper we have described a model for the consistent 
estimation of building parameters that is part of a method for 
the automatic reconstruction of buildings from ALS data. The 

adjustment model can consider geometric regularities by “soft 
constraints”, and it can handle different sensor data. It was used 
not only in the reconstruction process, but also for the 
generation of reference data for a test project. In the test project, 
the roof boundary polygons extracted from the ALS data were 
compared to the reference data. The accuracy was determined 
to be in the range of or better than the average point distance in 
planimetry, and about ±0.1 - ±0.2 m in height. The 
improvement of the model co-ordinates caused by the 
geometric constraints can be up to 45 %.  
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ABSTRACT: 
  
Existing tools for 3D building reconstruction usually apply approaches, which are either based on constructive solid geometry (CSG) 
or boundary representation (B-Rep). After a brief discussion of their respective advantages and disadvantages, the paper will present 
an alternative approach based on cell decomposition. This type of representation is also well known in solid modelling, and can be 
used efficiently for building reconstruction. Firstly, topological correct representations of building polyhedrons can be constructed 
easily from planar surface patches as they can for example be extracted from airborne LIDAR data. Furthermore, constraints between 
different object parts like co-planarity or right angles can be integrated relatively easy. The approach will be demonstrated 
exemplarily by a building reconstruction based on airborne LIDAR data and given outlines of the respective buildings. In principle, 
different levels of generalisation can be defined during reconstruction. This also allows a refinement of an already given building 
model based on terrestrial LIDAR data as it will be demonstrated in the final part of the paper. 

 

1. INTRODUCTION 

Since the acquisition of 3D urban data has become a topic of 
major interest, a number of algorithms have been made 
available both for the automatic and semiautomatic collection 
of building models. Usually, these tools for the generation of 
polyhedral building models are either based on a constructive 
solid geometry (CSG) or a boundary representation (B-Rep) 
approach. In the following, the pros and cons of both 
approaches will be discussed briefly. This will motivate our 
new approach for building reconstruction, which is based on 
cell decomposition as an alternative form of solid modelling. 

Within B-Rep approaches, the planar surface boundaries of the 
reconstructed building are directly generated from measured 
vertices, edges or faces. If the reconstruction is for example 
based on 3D point clouds from airborne laser scanning, a 
triangulation can in principle be directly applied to generate an 
appropriate surface model. For this purpose, a number of 
algorithms are available from computer graphics, which 
automatically compute geometric surface representations from 
polygonal or triangular meshes. These algorithms include 
surface simplification processes for reduction or smoothing of 
the originally measured dense 3D point clouds. By these means, 
discrete and continuous representations can be generated at 
different levels of detail, while optimization criteria are used to 
preserve the original shape. However, while these approaches 
are suitable for free-form objects, they are usually not adequate 
for modelling man-made objects such as buildings. Building 
architecture features special characteristics like right angles or 
parallel lines. If these constraints are not maintained during 
surface simplification, the visual impression of the resulting 
building model will be limited significantly. The human eye is 
very sensitive to deviations between piecewise flat building 
objects and their approximation by the meshed surface. Thus, 
an adequate visualisation will not be feasible for a number of 
scenarios even when the great computational load of dense 

meshes from directly triangulated original LIDAR points is 
accepted.  

These deviations are inevitable at least to a certain degree due 
to limitations in point sampling distance and accuracy of 
LIDAR sensors. In order to reduce their influence to the final 
result, a number of B-Rep based approaches first extract planar 
regions of appropriate size from the LIDAR data. Based on this 
segmentation, polyhedral building models are then generated 
from these regions by intersection and step edge generation. 
However, while numerous approaches are available for the 
extraction of such building fragments, the combination of these 
segments to generate topological correct boundary 
representations is difficult to implement (Rottensteiner 2001). 
This task is additionally aggravated if geometric constraints, 
such as meeting surfaces, parallelism and rectangularity have to 
be guaranteed for respective segments, which have been 
extracted from measured and thus error-prone data.  

Such regularization conditions can be met easier, if object 
representations based on CSG are used (Brenner 2004). Within 
CSG based modelling, simple primitives are combined by 
means of regularized Boolean set operators. An object is then 
stored as a tree with simple primitives as the leaves and 
operators at internal nodes. Some nodes represent Boolean 
operators like union or intersection, or set difference, whereas 
others perform translation, rotation and scaling. Since 
modelling using primitives and Boolean operations is much 
more intuitive than specifying B-rep surfaces directly, CSG is 
used widely in computer aided design (Mäntylä 1988). CSG 
representations are also always valid since the simple primitives 
are topologically correct and this correctness is preserved 
during their combination by the Boolean operations. 
Additionally, the implicit geometrical constraints of these 
primitives like parallel or normal faces of a box type object 
allows for the quite robust parameter estimation. This is 
especially important for reconstructions based on error prone 
measurements. However, semi-automatic reconstruction 
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requires the availability of an appropriate set of primitives. This 
can be difficult for complex buildings. Additionally, the 
derivation of a boundary representation from the collected CSG 
model is required for most visualization and simulation 
applications. While this so-called boundary evaluation is not 
difficult conceptually, its correct and efficient implementation 
can be difficult. Error-prone measurements, problems of 
numerical precision and unstable calculation of intersections 
can considerably hinder the robust generation of a valid object 
topology. These difficulties to provide robust implementations 
in this context seem to be rooted in the interaction of 
approximate numerical and exact symbolic data (Hoffmann 
1989). 

As it will be demonstrated in the paper, the application of cell 
decomposition can help to facilitate these problems of CSG and 
B-Rep based 3D building reconstruction. Cell decomposition is 
a special type of decomposition models, which subdivides the 
3D space into relatively simple solids. Similar to CSG, these 
spatial-partitioning representations describe complex solids by a 
combination of simple, basic objects in a bottom up fashion. In 
contrast to CSG, decomposition models are limited to adjoining 
primitives, which must not intersect. The basic primitives are 
thus ‘glued’ together, which can be interpreted as a restricted 
form of a spatial union operation. The simplest type of spatial-
partitioning representations is exhaustive enumeration. There 
the object space is subdivided by non overlapping cubes of 
uniform size and orientation, which allows for very simple 
algorithms. However, due to large memory consumption and 
the restricted accuracy of the object representation the 
applicability of exhaustive enumeration is usually limited. 
These problems can be alleviated while preserving these nice 
properties of spatial-occupancy enumeration, if other basic 
elements than just cubes are used. Cell decompositions are 
therefore based on a variety of basic cells, which may be any 
objects that are topologically equivalent to a sphere i.e. do not 
contain holes.  

In solid modelling, cell decomposition is mainly used as 
auxiliary representation for specific computations (Mäntylä 
1988). As it will be demonstrated, by a reconstruction algorithm 
using LIDAR data and given ground plans, cell decomposition 
can be applied efficiently for the automatic reconstruction of 
topological correct building models at different levels of detail. 
In the following section, the basic idea of cell decomposition is 
introduced by the decomposition of 2D building outlines. As it 
is demonstrated in section 3, this process can be extended to a 
3D building reconstruction by the additional integration of a 
point cloud from airborne LIDAR. Section 4 will present the 
refinement of the building models using terrestrial LIDAR, 
while a concluding discussion will be given in section 5. 

2. CELL DECOMPOSITION 
FOR BUILDING BLOCK APPROXIMATION 

Within our cell decomposition approach, the reconstruction of 
polyhedral 3D building models is based on a subdivision of 
space into 3D primitives. As input data a 2D building ground 
plan and a triangulated 2.5D point cloud from airborne laser 
scanning are used. As first step, a set of space dividing planes is 
derived from the input data. This subdivision generates a set of 
primitives that organize the infinite space into building and 
non-building parts. After these building primitives are glued 
together, the resulting 3D building model is a good 
approximation of the real world object. This process is similar 
to a generalisation approach presented in (Kada 2006) that 
simplifies the 3D geometry of existing polygonal building 

blocks. In contrast, now the 3D shape of the building is 
generated from scratch by a combination of a 2D ground plan 
and 2.5D airborne LIDAR data as previously mentioned. 
Afterwards, we use this approximation as the basic building 
block for further refinement of the façade structure by an 
additional integration of terrestrial laser scanning data. 

2.1 2.5D reconstruction based on ground plans 

A first approximation of the 3D building can be generated by an 
extrusion of the 2D ground plan. The vertical extension 
conforms to the minimum height value of all LIDAR points 
within that region. Within the extrusion process each segment 
of the ground plan generates a polygonal face perpendicular to 
the horizontal ground plane. However, for easier understanding 
within the following figures, only the horizontal footprints of 
these 3D objects are depicted. Thus, within Figure 1 to Figure 3 
the planes perpendicular to the horizontal ground plan are 
depicted as straight lines. However, in addition to these 2D 
sketches, the reconstruction process will be demonstrated by a 
sequence of 3D visualisations at the end of this section in 
Figure 4 and Figure 5. 

In order to generate the cell decomposition from the extruded 
ground plan, a set of subdivision planes is computed in an 
iterative approach. Since an approximating 3D model is aspired, 
planar buffers are used to minimize the required number of 
planes. In doing so, protrusions and other small structural 
elements that are included in the buffer can be optionally 
eliminated before any further reconstruction. This process is 
depicted exemplarily in Figure 1. 

 
Figure 1: Buffer operation for the generation of approximating 

planes. 

At the beginning of an iteration step, a buffer is created for each 
polygonal face, which is depicted exemplarily by the 
highlighted area in Figure 1. Buffers are delimited by two 
parallel planes, which initially coincide with the plane equation 
of its defining polygon. As it is shown in the middle and right 
image of Figure 1 within an iterative process the size of the 
buffer is adapted to keep track of a set of polygons that are 
completely inside this buffer region. For new buffers, this set 
consists solely of their single defining polygon. As a buffer 
grows, more polygons are inserted. 

The total area of the polygons inside this set also denotes the 
importance of the buffer. The buffers are then tested pair wise 
against each other. If the orientations of their delimiting planes 
are approximately the same, the pair is a candidate for a merge. 
Though, the distance between the delimiting planes of the 
merged buffers might be higher then a maximum threshold. 
Therefore, a new buffer is created that contains both sets of 
polygons and the delimiting planes are adjusted to this set 
accordingly. A candidate pair is valid if the distance of the 
delimiting planes of this merge is under the aforementioned 
threshold. Only valid candidate pairs that create new buffer of 
high importance are created. The algorithm stops when no more 
buffers can be merged and the buffer of highest importance is 
returned for that iteration step. From the set of polygons, an 
averaged plane equation is calculated in order to create a 
subdivision plane. The set of polygons inside the buffer is 
discarded from further processing. By this iterative process, a 
set of subdivision planes is detected in descending order of 
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importance. In order to preserve right angles and parallelism in 
the final building model, the orientation of the subdivision 
planes can further be analyzed and adjusted accordingly. Figure 
2 (top) exemplarily shows a given ground plan, while the six 
vertical subdivision planes are represented by the red lines in 
Figure 2 (bottom). Additionally, a buffer area for one 
subdivision plane is depicted by the grey area.  

 
 

 
Figure 2: Approximation of 2D building ground plan by six 

subdivision planes represented by red lines. 

2.2 Construction of decomposition cells 

Once the subdivision planes have been determined, they are 
used to create a decomposition of the infinite space. In practice 
an infinite space is unsuitable, so a solid two times the size of 
the building’s bounding box is used as a substitute. The result is 
a set of solid blocks. Until now, there is no information 
available, what subset needs to be glued together to form the 
final shape. Therefore, the solids are differentiated in building 

and non-building primitives in a subsequent step. For this 
purpose, a percentage value is calculated for each primitive that 
denotes the volume of the original building model inside the 
respective block (see Figure 3 top). All solids with a percentage 
value under a given threshold value are then denoted as non-
building primitives and are discarded from further processing. 
Because the primitives are rather coarse, a threshold value of 
around 50% is suitable in most cases. 

100% 

97% 96% 

3% 

 

 
Figure 3: Building fragments with computed overlap to the 

original ground plan (top) and combination of 
building cells (bottom). 

When glued together as depicted in Figure 3 (bottom) the 
building blocks form a flat-top approximation that is shaped 
after the original ground plan. However, the cell decomposition 
simplifies the reconstruction of the roof structure from airborne 
laser scanning data. This comes from the fact that the roof can 
be reconstructed per cell and not per building 

a)  

 

b)   

d)  e)   

Figure 4:  3D building reconstruction by cell decomposition a) extruded 2D ground plan and meshed LIDAR points, b) subdivision 
planes and 3D cells from ground plan analysis, c) selected 3D cell and extruded ground plan, d) additional 3D cells for 
roof approximation from meshed LIDAR points e) selected 3D building cells overlaid to extruded ground plan and 
meshed LIDAR points, f) final 3D model after gluing. 

c) 

f) 
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2.3 Roof reconstruction from airborne LIDAR 

The sequence in Figure 4 exemplarily shows the reconstruction 
of a building including the roof structure. For this process only 
the triangulated points from laser scanning, which are 
completely inside the extruded ground plan are used (Figure 
4a). Due to the buffer operation discussed in section 2.1, the 
ground plan analysis results in four perpendicular planes, which 
subdivide the 3D space (Figure 4b). By intersection of these 
planes, the 3D cell shown in Figure 4c is generated. In addition 
to the selected 3D cell, the extruded ground plan is depicted 
again in red. 

In principle, the iterative generation of subdivision planes for 
roof reconstruction, which is demonstrated in the bottom row of 
Figure 4, is similar to the process already described in sections 
2.1 and 2.2. There, the initial planes were provided from the 
ground plan segments, while now the meshed triangles of the 
LIDAR points are used. Similar to a process described in (Gorte 
2002), each TIN mesh defines a planar surface at the start of a 
merging process. Within this process, coplanar surfaces are 
iteratively merged and the plane equation is updated until there 
no more similar surfaces can be found. Although the first 
subdivision process based on the extruded ground plan will 
generate individual building blocks, the planes for roof 
reconstruction are determined globally from the triangulated 
2.5D point cloud. This ensures that the resulting roof polygons 
still fit against each other at neighbouring blocks. Subsequent to 
the decomposition (Figure 4d), the building cells have to be 
identified. For this purpose, the coverage of potential roof cells 
by the meshed surface from LIDAR measurement is computed. 
In Figure 4e, this surface is depicted in red, while the selected 
3D cells are shown in grey. As a final step, these cells are glued 
together to shape the 3D building model (Figure 4f). 

 

 
Figure 5: 3D building reconstruction from 2D ground plan and 

triangulated LIDAR points. 

An additional result of the algorithm is given in Figure 5. The 
top image again shows the extruded ground plan and the 
meshed LIDAR points while the bottom image contains the 
selected 3D cells, which were generated from ground plan 
analysis and mesh merging. These cells are then glued together 
in a final step. The airborne LIDAR data used in the examples 
given in Figure 4 and Figure 5 were collected at a mean point 

distance of 1,5m, which prevents a very detailed reconstruction 
of the respective roof. However, the general structure of the 
building is captured successfully.  

3. FAÇADE REFINEMENT BY TERRESTRIAL LIDAR 

Urban models extracted from airborne data are sufficient for a 
number of applications. However, some tasks like the 
generation of realistic visualisations from pedestrian viewpoints 
require an increased quality and amount of detail for the 
respective 3D building models. This can be achieved by 
terrestrial images mapped against the facades of the buildings. 
However, this substitution of geometric modelling by real world 
imagery is only feasible to a certain degree. Thus, for a number 
of applications a geometric refinement of the building facades 
will be necessary. As an example, protrusions at balconies and 
ledges, or indentations at windows will disturb the visual 
impression if oblique views are generated. As it will be 
demonstrated by the integration of window objects, our 
approach based on cell decomposition is also well suited for 
such a geometric refinement of an existing 3D model.  

3.1 Data pre-processing 

In contrast to an image based detection of windows (Mayer & 
S. Reznik 2005), we use densely sampled point clouds from 
terrestrial laserscanning, which contain a considerable amount 
of geometric detail. Usually, such data are collected from 
multiple viewpoints to allow a complete coverage of the scene 
while avoiding occlusions. This requires a co-registration and 
geocoding of the different scans as a first processing step. 
Traditionally, control point information from specially designed 
targets is used for this purpose. Alternatively, an approximate 
direct georeferencing can be combined with an automatic 
alignment to existing 3D building models (Böhm & Haala 
2005). After this step, the 3D point cloud and the building 
models are available in a common reference system. Thus, 
relevant 3D point measurements can be selected for each façade 
by a simple buffer operation.  

 
Figure 6:  3D point cloud as used for the geometric refinement 

of the corresponding building façade. 

As an example, for the 3D building in Figure 5, terrestrial 
LIDAR data was selected by such a buffer operation. For data 
collection, LIDAR points were measured by a HDS 3000 
scanner at an approximate spacing of 4cm. Figure 6 shows this 
point cloud after transformation to a local coordinate system as 
defined by the façade plane. Since the LIDAR measurements 
are more accurate than the available 3D building model, this 
plane is determined from the 3D points by a robust estimation 
process. After mapping of the 3D points to this reference plane, 
further processing can be simplified to a 2.5D problem. Thus 
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algorithms originally developed for filtering of airborne LIDAR 
(Sithole & Vosselman 2004) can be applied.  

3.2 Generation of façade cells  

For the refinement of the façade geometry, 3D cells are 
generated from LIDAR points which have been measured at the 
window borders. These cells either represent a homogenous part 
of the façade or an empty space in case of a window. Therefore, 
they have to be differentiated based on the availability of 
measured LIDAR points. After this classification step empty 
cells are eliminated, while the remaining façade cells are glued 
together to generate the refined 3D building model. 

3.2.1 Point cloud segmentation  
As it is visible for the façade in Figure 6, usually no 3D points 
are measured at window areas. Either no measurement is 
feasible at all due to specular reflections of LIDAR pulses at the 
glass, or the available points refer to the inner parts of the 
building and are eliminated due to their large distance to the 
façade. Thus, in our point cloud segmentation algorithm, 
window edges are given by no data areas. In principle, such 
holes can also result from occlusions. However, this is avoided 
by using point clouds from different viewpoints. In that case, 
occluding objects only reduce the number of LIDAR points 
since a number of measurements are still available from the 
other viewpoints.  

 
Figure 7:  Detected edge points at horizontal and vertical 

window structures. 

 
Figure 8: Detected horizontal and vertical window lines. 

During segmentation of edge points, four different types of 
window borders are distinguished: horizontal structures at the 
top and the bottom of the window, and two vertical structures 
that define the left and the right side. As an example, to extract 
edge points at the left border of a window, points with no 
neighbour measurements to the right have to be detected. In this 
way, four different types of structures are detected in the 

LIDAR points of Figure 6. These extracted points are shown in 
Figure 7. Figure 8 then depicts horizontal and vertical lines, 
which can be estimated from non-isolated edge points in Figure 
7. Each line depicted in Figure 8 can be used to define a plane, 
which is perpendicular to the building façade. Thus, similar to 
the ground plan fragmentation in section 2.1, these planes 
provide the basic structure of the 3D cells to be generated. For 
this purpose, these planes are intersected with the façade plane 
and an additional plane behind the façade at window depth. 
This depth is available from LIDAR measurements at window 
cross bars. The points are detected by searching a plane parallel 
to the façade, which is shifted in its normal direction.  

3.2.2 Classification of 3D cells 
According to the general outline of our algorithm, all the 
generated 3D cells have to be separated into building and non-
building fragments. For this purpose, a binary ‘point-
availability-map’ is generated.  

 
Figure 9:  Point-availability-map. 

Within this image, which is depicted in Figure 9, black pixels 
are grid elements where LIDAR points are available. In 
contrast, white pixels define raster elements with no 3D point 
measurements. Of course, the already extracted edge points in 
Figure 7 and the resulting structures in Figure 8 are more 
accurate than this rasterized image. However, this limited 
accuracy is acceptable since the binary image is only used for 
classification of the 3D cells as they are already created from 
the detected horizontal and vertical window lines. This is 
realised by computing the ratio of façade to non-façade pixels 
for each generated 3D cell. This process corresponds to the 
separation of building and non building cells by ground plan 
analysis as shown in Figure 3.  

  
Figure 10: Classification of 3D cells before (left) and after 

enhancement (right). 

As a consequence of the relative coarse rasterization and the 
limited accuracy of the edge detection, the 3D cells usually do 
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not comprise of facade pixels or window pixels, exclusively. 
Within the classification, 3D cells including more than 70% 
façade pixels are defined as façade solids, whereas 3D cells 
with less than 10% façade pixels are assumed to be window 
cells. These segments are depicted in Figure 10 as grey and 
white cells, respectively. 

While most of the 3D cells can be classified reliably, the result 
is uncertain especially at window borders or in areas with little 
point coverage. Such cells with a relative coverage between 
10% and 70% are represented by the black segments in the left 
image of Figure 10. For the final classification of these cells 
depicted in the right image of Figure 10, neighbourhood 
relationships as well as constraints concerning the simplicity of 
the resulting window objects are used. As an example, elements 
between two window cells are assumed to belong to the façade, 
so two small windows are reconstructed instead of one large 
window. This is justified by the fact that façade points have 
actually been measured in this area. Additionally, the alignment 
as well as the size of proximate windows is ensured. For this 
purpose the classification of uncertain cells is defined 
depending on their neighbours in horizontal and vertical 
direction. Within this process it is also guaranteed that the 
merge of window cells will result in convex window objects.  

 
a) 

 
b) 

 
c) 

Figure 11: Integration of additional façade cell.  

As it is depicted in Figure 11, additional façade cells can be 
integrated easily if necessary. Figure 11a shows the LIDAR 
measurement for two closely neighboured windows. Since in 
this situation only one vertical line was detected, a single 
window is reconstructed (Figure 11b). To overcome this 
problem, a window objects is separated into two smaller cells 
by an additional façade cell. This configuration is kept, if it can 
be verified as a valid assumption if façade points were actually 
measured at this position (Figure 11c). 

 
Figure 12: Refined facade of the reconstructed building. 

The final result of the building façade reconstruction from 
terrestrial LIDAR is depicted in Figure 12. For this example 
window areas were cut out from the coarse model depicted in 
Figure 5. While the windows are represented by polyhedral 
cells, also curved primitives can be integrated in the 
reconstruction process. This is demonstrated exemplarily by the 
round-headed door of the building. 

4. CONCLUSION 

Within the paper, an approach for 3D building reconstruction 
based on cell decomposition was presented. As input data, 2D 
ground plans and 3D point clouds from airborne and terrestrial 
LIDAR were used. During the generation of intersecting planes 
by the combination of ground plan segments, buffer operations 
are used. By these means the aspired level of generation is 
defined. Thus, the extruded ground plan can be simplified 
according to the point density available from airborne LIDAR, 
which is used for roof reconstruction. Additionally, symmetry 
relations like coplanarity can be detected during the generation 
of the planes also for larger distances between different building 
parts since the extension of these planes is only limited by the 
subsequent intersection step. The cell decomposition also 
showed to be very flexible if additional detail has to be 
integrated. While in our approach windows are represented by 
indentations, a reconstruction based on cell decomposition can 
also be used to efficiently subtract such rooms from an existing 
3D model if measurements in the interior of the building are 
available.  

Still there is enough room for further algorithmic improvement. 
However, in our opinion the concept of generating 3D cells by 
the mutual intersection of planes already proved to be very 
promising and has a great potential for processes aiming at the 
reconstruction of building models at different scales. 

5. REFERENCES 

Brenner, C. [2004]. Modelling 3D Objects Using Weak CSG 
Primitives. IAPRS Vol. 35. 

Böhm, J. & Haala, N. [2005]. Efficient Integration of Aerial 
and Terrestrial Laser Data for Virtual City Modeling Using 
LASERMAPS. IAPRS Vol. 36 Part 3/W19 ISPRS Workshop 
Laser scanning 2005 , pp.192-197. 

Gorte, B. [2002]. Segmentation of TIN-Structured Surface 
Models. Proceedings Joint International Symposium on 
Geospatial Theory, Processing and Applications, on CDROM, 
5p. 

Hoffmann, C.M. [1989]. Geometric & Solid Modelling. Morgan 
Kaufmann Punblishers, Inc., San Mateo, CA. 

Mäntylä, M. [1988]. An Introduction to Solid Modeling. 
Computer Science Press, Maryland, U.S.A.  

Mayer, H. & S. Reznik [2005]. Building Façade Interpretation 
from Image Sequences. IAPRS Vol. 36-3/W24. 

Rottensteiner, F. [2001] Semi-automatic extraction of buildings 
based on hybrid adjustment using 3D surface models and 
management of building data in a TIS. PhD. thesis TU Wien .  

Sithole, G. & Vosselman, G. [2004]. Experimental comparison 
of filter algorithms for bare-earth extraction from airborne laser 
point clouds. ISPRS Journal of Photogrammetry and Remote 
Sensing 59(1-2), pp.85-101. 

24



NEW APPROACH FOR AUTOMATIC DETECTION OF BUILDINGS IN AIRBORNE 
LASER SCANNER DATA USING FIRST ECHO ONLY 

 
F. Tarsha-Kurdi, T. Landes*, P. Grussenmeyer, E. Smigiel 

 
Photogrammetry and Geomatics Group, MAP-PAGE UMR 694 - INSA de Strasbourg, 67000 Strasbourg, France  

(fayez.tarshakurdi|tania.landes|pierre.grussenmeyer|eddie.smigiel@insa-strasbourg.fr) 
 

Commission III, WG III/3 
 
 
KEY WORDS: LIDAR, Urban, Processing, Detection, Building, Segmentation, Classification 

 

 
ABSTRACT:  
 
Airborne laser scanning has become a significant 3D data acquisition technique in the field of surveying. By measuring point clouds 
defined in three-dimensional coordinates, this technique provides almost automatically Digital Surface Models (DSMs). But for 3D 
city modelling, the discrimination between terrain and elevated objects based on this surface model is still a challenging task, since 
fully automatic extractions are not operational. Moreover, some of the available methods combine several echoes although echo 
separation is not always obvious and sometimes last echo is not reliable. In this context, the aim of this study is to develop a general 
automatic segmentation method of Lidar point clouds focussing exclusively on the first echo and without any external data. The 
result of the proposed methodology is the automatic discrimination of the buildings and the terrain, by excluding vegetated areas. In 
the first step, terrain and off-terrain clouds are discriminated, based mainly on threshold features as proposed in the literature, but 
improved and generalized to the case of brutal terrain discontinuities. In the second step, buildings and vegetation are categorized as 
subclasses of the off-terrain class. The innovation of the exposed approach lies in the exploitation of the whole analysis levels 
combining points, pixel, segment and spatial information. Thus, the processing chain fully benefits from the planimetric and 
altimetric information of a point cloud. The complete workflow is presented, as well as its limitations. At last, the satisfying results 
obtained for three different test sites covered by two cloud densities validate our processing chain. 
 
 

1. INTRODUCTION 

1.1. Motivation and goals 

Most GIS applications need digital terrain models (DTMs) or 
digital 3D building models as reference layers for subsequent 
processes. Automatic extraction of man-made objects, 
particularly 3D building models is a coveted topic (Baltsavias et 
al., 2001). Currently available DTMs or DEMs covering wide 
areas come rather from the processing of stereo pairs acquired 
by optical or radar satellite sensors. Nevertheless, the resolution 
and accuracy of derived products do not yet match the 
requirement standards in urban surveying. This is why, before 
the Lidar technology, photogrammetric techniques applied to 
aerial photos were the best issue.  
The suitability of airborne laser scanning techniques for 3D 
object reconstruction has been proved over the last decade 
(Maas, 2005). Nevertheless, although DTM as well as building 
models are inherent to DSMs, their extraction was never 
completely or automatically carried out. When using multiple 
and reliable echoes, results are often very satisfying (Wotruba et 
al., 2005), since the second echo helps to distinguish points 
captured on the top of the canopy from those captured on the 
ground. But in most cases, either the second echo is less 
accurate than the first one (Yu et al., 2005) or it is not always 
separable from the first one (Pfeifer et al., 1999; Wotruba et al., 
2005).  
In this context, the goal of present project is to develop a 
general segmentation method for the automatic extraction of 
buildings using the first echo only. 
 
1.2. Related work  

The first goal in the processing of laser scanning data is the 
segmentation of acquired points into terrain and off-terrain 

classes. In this paper, segmentation means an extraction of point 
clusters describing a specific class. As summarized in (Maas 
and Vosselman, 1999), such segmentation may be obtained 
using additional sources of data, such as 2D GIS information or 
reflectance information; other processes analyse the local 
histograms or use filtering techniques considering exclusively 
Lidar data. Despite the difficulty to categorize complex 
processes, the latter family could be subdivided into: (a) 
approaches where the support is mainly an image produced by 
interpolation and/or segmentation. In this case, segmentation 
means mainly generation of objects composed of similar pixels; 
(b) approaches trying to concentrate processing on point level 
and where segmentation means the discrimination of several 
clusters in a point cloud. In the category (a), digital image 
processing techniques are employed, e.g. remote sensing 
classification methods (Maas, 1999; Tóvári and Vögtle, 2004; 
Lohmann and Jacobsen, 2004); digital filters related to 
morphological filtering methods (Lohmann et al., 2000; 
Vosselman, 2000; Sithole, 2001) or to Fast Fourier 
Transformations (Marmol and Jachimski, 2004); theory of 
active shape models (Elmqvist, 2001; Weinacker et al., 2004). 
In the category (b), the procedures try to stay or return at the 
Lidar point cloud level, sometimes in an iterative way. One can 
cite the use of interpolation methods such as the linear 
prediction method (Kraus and Pfeifer, 1998; Rottensteiner and 
Briese, 2002), the 3D surface detection (Lee and Schenk, 2002) 
or the octree structure based segmentation (Whang and Tseng, 
2004).  
 
1.3. Position of proposed approach  

For the first segmentation of terrain an off-terrain points, the 
algorithm developed in this paper finds its place in the category 
(a), because a raster DSM and image processing procedures are 
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used. Reasons explaining this choice are on the one hand the 
high computing time required when processing the cloud on a 
point level with adaptative methods, and on the other hand, the 
availability of well-known digital image processing functions. 
Thus, based on the analysis of height features on a previously 
interpolated DSM, successive operations such as thresholding, 
gradient and morphological filtering on height features are 
achieved. Results are improved in order to make the proposed 
procedure reliable even in steep and discontinuous terrains. 
 
The second segmentation chain performs a discrimination of the 
off-terrain points into two classes: buildings and vegetation. Our 
solution joins the category (b) in the sense that it uses the 
relevant information provided by the original Lidar 3D points. 
Using jointly the DSM and the initial point cloud, the presented 
algorithm exploits the fact that one cell or pixel in a DSM may 
contain one or more points of the cloud. Considering building 
characteristics, this observation leads to the generation of 
features, which are specific to buildings and based on 3D 
topological information. Thus, a large part of vegetation can be 
removed and buildings can be isolated properly. In this way, 
proposed approach combines three levels of analysis usually 
used separately: processing based on a pixel level (Maas, 1999; 
Rottensteiner and Briese, 2002), processing based on a segment 
level (Lohmann and Jacobsen, 2004; Tóvári and Vögtle, 2004) 
and that based on a spatial level (Wang and Tseng, 2004).  
 
 

2. DATA 

In order to test our approach on different point densities, two 
types of data covering three areas are used (Table 1).  

 
Table 1. Characteristics of the three datasets used in this study 

 
The first test site “Hermanni” is a residential area in periphery 
of Helsinki, where large and spaced storey houses are 
surrounded by vegetation. This point cloud belongs to the 
building extraction project of EuroSDR (www.eurosdr.org). The 
second test site called “Victoire boulevard” is located in the 
campus district of Strasbourg, along a road where trees are near 
to large buildings. Finally, the third cloud “Strasbourg centre” 
covers the centre of Strasbourg city, known for its tangled up 
houses. TopScan has acquired the last two clouds during the 
same campaign. Unfortunately, only the first echo is reliable. 
 
 

3. WORK FLOW FOR OFF-TERRAIN DETECTION 

The first segmentation step consists in separating the off-terrain 
points (building, vegetation, trees) from the ground. The 
workflow is presented in the following paragraphs. 
 

3.1 Interpolation of a DSM  

A Lidar point cloud is represented by 3D points, not always 
regularly spaced. The use of digital filters requires transforming 
this dataset into a uniform 2D grid. In order to preserve the real 
measured altitudes (the fitting surface should follow the Lidar 
points), a nearest neighbour interpolation technique is used. The 
well-known advantages of this technique are the low 
interpolation calculation time and the conservation of the 
original altitude values. This means, that the topological original 
relationships between points -in the sense of relative height 
variations between neighbouring points- can also be preserved 
by this interpolation. Of course, a determining criterion is the 
definition of the sampling value (resolution) of the DSM. Under 
the assumption that the distribution of points is regular and that 
one pixel must contain at least one point, the average cloud 
density can be calculated. Thus the sampling interval SI can be 
deduced (1). 

density
SI 1

=    (1) 

 
Obviously, the detectable object is directly dependent on the 
available density, whatever the method of interpolation.  
 
3.2 Detection of the off-terrain segment edges  

To detect the off-terrain segment edges, as suggested by (Maas, 
1999), directional gradient filters are applied on the DSM with 
3x3 kernels under eight different rotations (k.π/4; k=1…8). The 
first matrix contains value 1 in the upper left cell and value -1 in 
the lower right cell. Thus, eight bands are generated in which 
the grey values represent height differences. Then, the 
maximum gradient for each pixel is searched over the k bands 
and assigned to a matrix ∆Z (equation 2).  
 

∆Zi,j = max (Gi,j)k  (2) 
 
where  i, j : pixel position in line and column 

 (Gi,j)k : kth band of filtered image 
 k : gradient band number (k=1,…,8) 

 
Comparing the pixel values of the ∆Z matrix to a defined 
threshold S1, the detection of the edge pixels is possible. The 
maximum absolute gradient shows behaviour similar to that of 
the slope around each pixel. Thus if ∆Zi,j> S1 the pixel describes 
an off-terrain edge (buildings or vegetated area) and takes the 
value 1 in a binary matrix A. The threshold S1 is defined 
according to the smallest detectable building. Generally, in the 
countries we are concerned with, the smallest foreseeable height 
for a building is 5 to 6 meters. Figure 2a presents the binary 
matrix A obtained for the Hermanni test site. 
 
At this stage, two operations occur: the first one consists in 
filling the body of the off-terrain segment borders already 
detected. The second one consists, in parallel, in assigning a 
neighbouring ground value to the off-terrain pixels that 
facilitates the generation of a DTM.
 
3.3. Detection of the whole off-terrain pixels 

In order to fill the body of the segment borders created 
previously, the neighbourhood of each pixel has to be 
considered. For this purpose, the matrix A and the DSM are 
analyzed. Firstly, if the central pixel in a 3x3 moving window 
(moving over A) belongs to an edge, the lowest neighbouring 
altitude is assigned to it (Fig. 3 [1]). Then, the height difference 

Test sites “Hermanni”  “Victoire boulevard”/
”Strasbourg centre” 

Acquisition  End of June 2002 Begin September 2004 

Sensor TopoEye TopScan (Optech 
ALTM 1225) 

Points density 7-9 points / m²  1.3 points / m²  
Flight height 200 m  1440 m 

Pulse frequency 7 kHz 25 kHz  
Field of view ± 20 degrees ±26 degrees 
Points/dataset 410 497 450 000 and 400 000 

 2

26



between the pixel and its neighbours is calculated in matrix 
∆Z(i,j),(k,l)   as expressed in equation 3.  
 

∆Z(i,j),(k,l)  = (Zk,l - Zi,j ground)    (3) 
 
were i, j : central pixel coordinates 
  k, l : coordinates of the 8 neighbours; (k,l)≠(i, j) 
 
The moving window takes into account the results obtained by 
the last position before continuing its progression. This leads to 
the distinction between the neighbouring pixels in which the 
altitude has been changed by this step, i.e. projected on the 
ground Zk,l ground and the neighbouring pixels in which the 
altitude remains the same, i.e. Zk,l  orig (Fig. 3 [2]). 
 
Pixels describing off-terrain objects will present high values for 
equation 3. Thus, if  ∆Z(i,j),(k,l) > S1 and simultaneously the 
neighbouring pixel (k,l) does not describe an edge in matrix A, 
the pixel (i,j) is assigned to the off-terrain class (Fig. 3 [3]) and 
its altitude becomes Zi,j ground. The threshold S1 is the same as 
previously, since maximum height differences are also 
compared here. Figure 2b presents the resulting binary image. 
  

   
                  a)           b)             c) 
Figure 2. a) Off-terrain segment edges (matrix A). b) Off-terrain 

class. c) Off-terrain after morphological filtering  
 
3.4. Assigning ground altitudes to the off-terrain pixels in a 
later building extraction purpose 

As already mentioned, while off-terrain pixels are assigned to 
their class, their altitude is replaced, in parallel, by a ground 
level altitude Zi,j ground. This modification is directly dependent 
on the surrounding altitude values and on their history (Zk,l ground 
or Zk,l orig). So, each off-terrain pixel gets a ground level altitude.  
Thus, three matrices are output from the workflow summarized 
in Figure 3: matrix A, the normalized DSM (nDSM) and a 
matrix called Test_ground. Matrix A is a binary mask where the 
off-terrain pixels are non-zero. The nDSM contains the whole 
pixels belonging to the off-terrain class. The matrix 
Test_ground contains three values: 1, 2 and 0. A pixel with a 
value of 1 means that its altitude in nDSM has been taken from 
the original dataset; a pixel with value 2 means that its altitude 
comes from previously modified altitudes, whereas pixels with 
value 0 belong to the “ground” class (Figure 4). The value 2 
occurs generally for pixels located inside the body of the 
buildings. This is due to the fact, that inside a vegetated area, 
the laser beam may reach the ground. Whereas this situation is 
rare in a building segment, except in the case of interior courts. 
This characteristic (although insufficient) is of crucial 
importance for the next segmentation step, i.e. for the 
distinction between buildings and vegetation. 
 
3.5. Classification generalization  

As suggested by (Vosselman and Maas, 2004), mathematical 
morphology operations may help to clean the classification from 

remaining segment residuals. Two successive operations are 
applied here. Firstly, a morphological opening allows erasing 
the punctual segments remaining on the ground. Then, a 
morphological closing enables filling last gaps occurring in the 
off-terrain segments (Figure 2c).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Workflow for the detection of off-terrain pixels 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4. Off-terrain class detection. a) DSM. b) Matrix A. c) 

Test_ground matrix. 
 
3.6. Improvement of the processing chain to the case of 
terrain discontinuities 

By analysing the results, it becomes clear that the present 
segmentation based on a sequence of thresholds and 

Building 

Vegetation 

a) 

b) c) 

3x3 moving 
window   

Yes

No 

Matrix A and DSM  

if Ai,j =1  

Yes 

No 

 

 

Zi,j ground=min(Zk,l orig)

Zi,j ground = min (Z*k,l) 
with Z*k,l = Zk,l orig  or  Z*k,l = Zk,l ground

Test_ground=1 

if ∆Z(i,j),(k,l) >S1  
and Ak,l ≠ 1  

Yes 

No 

Test_ground=2 

∆Z(i,j),(k,l)   = (Zk,l – Zi,j ground) 

Ak,l = 1 
 « off-terrain pixel » 

if (Zi,j-min(Zk,l orig)) >S1 
 

[1] 

[2] 

 

 

 

[3] 
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morphological filtering needs improvement in the case of large 
local terrain discontinuities caused by holes, ditches, noise, etc. 
Indeed, the cutting surface passes over the terrain surface with a 
height threshold S1. Therefore, in the case of brutal 
discontinuities, the algorithm misclassifies the pixels behind the 
ditch as “off-terrain” pixels (Figure 5). 
 

 
 
 
 
 
 
 
 
 

Figure 5. Processing error in the case of terrain discontinuities. 
 

In the case of discontinuities, (Sithole and Vosselman, 2003) 
showed deficits of all main filtering methods even when the 
algorithm has some special rules to avoid misclassification next 
to breaklines. To cope with this problem, we analyzed the 
reaction of the algorithm on different test sites and in several 
discontinuities conditions. It becomes clear that the error 
generated and illustrated in Figure 5 is directly dependent on the 
direction passage of the moving window. The solution consists 
simply in achieving the filtering along different directions over 
the image. The intersection of the intermediate products 
therefore solves the problem.  
 
Figure 6 gives an example. In step (a), the moving window 
detecting the off-terrain pixels moves over the DSM following 
the usual and then the opposite direction. It provides detection 
of the shaded segments in (b) and in (c) respectively, where the 
lower right part of (b) and the upper left area of (c) are 
misclassified. The intersection of (b) and (c) cancels the 
misclassified areas in the step (d). The detected ditch is 
automatically assigned to the ground class. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 6. Misclassification correction in the case of terrain 
discontinuities. a) Moving window movements. b), 

c) Respective results. d) Ditch cancelling. 
 
By this mean, two classes of points are efficiently generated, i.e. 
the terrain class (ground) and the off-terrain class (buildings, 
vegetation, noise, etc.), even in the case of abrupt terrain. The 
next part will analyse the off-terrain class in order to extract the 
buildings from it. 
 
 

4. DETECTION OF BUILDINGS  

Various algorithms have been suggested and applied to laser 
scanning data with the aim of separating buildings from other 
elevated objects. As mentioned in the introduction, these 
procedures are mainly based on previously interpolated grids, 
while often neglecting invaluable information contained in the 
initial irregular cloud of acquired points. 

Classified as off-
terrain 

Threshold 
S1  

Terrain Ditch depth 

Misclassified as off-
terrain  

4.1. Contribution of 3D points contained in one cell 

The approach proposed in this paper exploits the fact that one 
pixel in the nDSM may contain one or more points of the cloud. 
The 3D position of these cell-points will play an important role 
in the discrimination procedure of the subclasses vegetation and 
buildings. Thus, the nDSM and the initial point cloud are used 
jointly in a pixel level, segment level and spatial analysis level.  

 
Considering one cell, three types of altitude values Z may occur 
as illustrated in Figure 7: 

1. Z_build : the real topographic altitudes (terrain or off-
terrain points); 

2. Z_DSM: the raw DSM values obtained by 
interpolation of the cloud points; 

3. Z_points: the point altitudes as acquired by the sensor. 
Other interesting features are the extreme values of Z 
among the points of a cell (min_Z_points or 
max_Z_points), etc. 

 
 

 
 

 
 
 
 
 
 

Point cloud 

DSM 

Figure 7. Different types of altitude values occurring in one cell.  
 
4.2. Segmentation methodology developed  

The approach for detecting buildings among trees or other 
objects is based on the assumption that the building roofs are 
normally composed of flat planes or more generally of surfaces. 
So, the methodology developed here is based on the search for 
planes composing the roofs of the buildings, as suggested by 
(Elaksher and Bethel, 2002). The main advantages lie in the fact 
that it is possible to adapt the concept to relatively low point 
densities. Moreover, only the first echo is used and, at last, the 
segments representing a mixture of buildings and vegetation can 
be removed.  
 
For the moment, the off-terrain class contains mainly trees and 
buildings. If we succeed in adjusting a group of points by a 
plane using the least square method (regarding small residues) a 
large quantity of points representing vegetation can be 
eliminated. The implementation of this principle emphasizes 
limits and constraints. The mathematical detection of the points 
composing a plane requires a great deal of processing time. 
Moreover, because of low point density and/or details on the 
roofs (e.g. chimneys), the distribution of the points on a roof 
cannot always be adjusted by a plane. Finally, it occurs that 
vegetation points can be adjusted by an average plane while 
presenting negligible residues! 
 

 

Real aspect  

cell 

a) b) 

c) d) 

gap 

Buildings

terrain
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To avoid these disadvantages, our approach replaces the 
mathematical test by topological relationships. As mentioned 
above, it will benefit from a paramount element in the 
interpretation of the cloud: the points inside a cell of the DSM. 
Because of the irregular distribution of Lidar points and the 
existence of vertical elements, the number of points per pixel in 
X,Y as well as in Z dimension is variable. So the three 
topological features we can derive for every cell are: 

- The number of points per cell 
- The maximum vertical distance between points  
- The maximum slope angle of the best fitting plane  

These three criterions allow the elaboration of classification 
rules with the specific aim of building detection. No assumption 
can easily be made based on the first criterion (number of pixels 
per cell), since this criterion is very dependant on the point 
cloud density and regularity. If a cell covers entirely a portion of 
a roof, then one can put forth the following assumptions: 
 
- Assumption relating to second criterion: the maximum height 
difference between points in a cell will be lower than a 
certain threshold. The value of the threshold will depend on 3 
factors: the sampling of the DSM grid, the roofs geometry 
(horizontal plane, tilted plan or spherical surface) and the 
altimetric measurement accuracy.  

maxhΔ

So and if we consider 12max hhh −=Δ hhh σσσ ==
12

, the 

transmission of errors delivers: cmhh 21.2max ±==Δ σσ , 

since Lidar data relative accuracy in Z is about ±15cm. 
 
- Assumption relating to third criterion: the maximum slope of a 
plan adjusting locally a roof is equal to 60 degrees. That allows 
expressing as a function of the sampling interval p and 
maximum slope angle, so: 

maxhΔ
( ) ph /60tan Δ=° .  

 
Thus, from the last two assumptions we find the threshold of 
maximum height difference (equation (4)). Under this threshold, 
the corresponding pixel is assigned to the building class. 

hph σ.2).60tan(max +°≤Δ  (4) 
In addition to the last test, the classification rule also takes into 
account the values 2 representing the body of building segments 
in the matrix Test_ground (Figures 3 and 4). 
 
The detected segments represent at first the kernel of building 
roof planes. In order to complete this kernel with the 
surrounding pixels, a specific region-growing algorithm has 
been developed, working on the 8 neighbouring height 
differences. A last filter erases the remaining segments by 
regarding the smallest foreseeable building segment. Results 
obtained through this workflow are very satisfying, since the 
major part of buildings is well classified. Only a few pixels of 
vegetation are misclassified and easily rejected by mathematical 
morphology. Indeed, it happens that a group of points, within 
the vegetation class, accepts an average plane with negligible 
residues and respects the whole topological assumptions. 

 
5. RESULTS AND DISCUSSION  

We applied the proposed algorithm on the three datasets 
available. The computing time required for extracting buildings 
is negligible. Figure 9 presents the buildings extracted from the 
DSM (Figure 8) of the “Victoire boulevard” test site.  
In order to evaluate the precision of the building classification, 
an estimation method suggested by (Sithole and Vosselman, 
2003) and based on a confusion matrix has been applied. The 
classes of interest are “buildings” and “not-buildings”. The 

reference images have been conceived by digitizing the 
buildings in the DSM with the help of aerial images. Three 
errors characterize the precision of the obtained segmentations 
and are reported in Table 10. Error I shows the proportion of 
building-pixels misclassified; Error II the proportion of not-
building pixels misclassified and Total Error the proportion of 
misclassified pixels. The last column presents the mention of 
the influence of neighbouring points filtering. The different 
mentions obtained are explained by the different urban typology 
of the city centre compared to that of areas located in periphery. 
However, the proposed algorithm provides very good results, 
for both point densities.  
 

 
 
 
 
 
 
 
 
 
 

 
        a)                  b) 

Figure 8. “ Victoire boulevard” site. a) Aerial image. b) 
Pseudocolor coded DSM. 

 

 
Figure 9. Building detection for “Victoire boulevard” site. 

 
 
Test site 

Error I  
(%) 

Error II  
(%) 

Total Error 
(TE) in % Mention  

Hermanni 0.22 0.01 0.01 Excellent (TE<1%)
Victoire 
boulevard 1.57 0.34 0.55 Excellent (TE<1%)

Strasbourg 
centre 1.46 0.97 1.12 Very good 

(1<TE<5%) 
Table 10: Precision of building/not-building segmentation  

 
At last, more independent quantitative evaluation consists in 
counting the detected buildings among the existing buildings. 
Table 11 proves that the detection rate is very satisfying and 
validates definitely our method.  
 

 
 

Test site 

Number of 
detected 
buildings 

Number of 
non detected 
buildings 

Total 
number of 
buildings 

Detection 
rate (%) 

Hermanni 15 0 15 100 
Victoire 

boulevard 60 4 64 94 

Strasbourg 
center 64 3 67 95 

Table 11: Rate of correctly detected buildings.  
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Nevertheless, this approach shows limitations in three main 
aspects. On the one hand, the classification precision is function 
of the point density and decreases with it. On the other hand, 
when trees and buildings are simultaneously close to each other 
and of the same height, the distinction becomes difficult. 
Furthermore, if a bloc of buildings is composed of several 
buildings with similar heights (falling under the threshold S1) 
the algorithm will misclassify the “off-terrain” pixels as 
“terrain”. So, the use of shape or geometric criterions has to be 
considered. At last, a methodology leading to deduce the most 
appropriate threshold according to the urban typology has to be 
developed.  
 

6. CONCLUSION 

This paper presents a new approach for detecting buildings in a 
Lidar point cloud, using exclusively the first echo. The most 
relevant idea is to benefit from the original point locations at 
strategic moments of the segmentation. While eliminating 
automatically the misclassifications caused by terrain 
discontinuities, the developed algorithm takes advantage of the 
topology of points belonging to one cell and produces a 
building segmentation image with high accuracy. Thus, the 
Lidar data are considered on a point level, pixel level, segment 
level and global level during the processing chain. Nevertheless, 
this methodology needs to be improved since in particular cases, 
some small vegetation segments may remain at the end of the 
process. Further investigations should also allow to predefine 
the optimal threshold referring to the urban typology. At this 
stage, the reconstruction of the building geometry in the 
forthcoming modelling phase can be considered. 
 

REFERENCES 

Baltsavias, E., Gruen, A., Van Gool, L., 2001. (Editors): 
Automatic Extraction of Man-Made Objects from Aerial and 
Space Images (III), A.A. Balkema Publishers, ISBN 
9058092526, 415p.  

Elaksher, A. F., and Bethel., J. S., 2002. Reconstructing 3D 
buildings from Lidar data. Int. Archives of Photogrammetry and 
Remote Sensing, Vol. XXXIV, part 3A/B, ISSN 1682-1750, 
pp102-107. 

Elmqvist, M., 2001. Ground Estimation of Laser Radar Data 
using active shape Models. OEEPE workshop on Airborne 
Laserscanning and Interferometric SAR for Detailed Digital 
Elevation Models, Stockholm, Sweden. 

Kraus, K., and Pfeifer, N., 1998. Determination of terrain 
models in wooded areas with airborne laser scanner data. ISPRS 
Journal of Photogrammetry and Remote Sensing, 53, pp. 193–
203. 

Lee., I, Schenk., T, 2002. Perceptual organization of 3d surface 
points. Photogrammetric computer vision. ISPRS Commission 
III, Graz, Austria. Vol. XXXIV, part 3A/B, ISSN 1682-1750.  

Lohmann, P., Koch, A., Schaeffer, M., 2000. Approaches to the 
filtering of laser scanner data. Vol. 33, Int. Archives of 
Photogrammetry and Remote Sensing, Amsterdam, pp. 540–547 

Lohmann, P., and Jacobsen, K., 2004. Filterung segmentierter 
Oberflächenmodelle aus Laserscannerdaten. In: PFG (2004), 
Nr. 4, S. 279-287. 

Maas, H.-G., 1999. The potential of height texture measures for 
the segmentation of airborne laserscanner data. Proceedings of 

the 4th International Airborne Remote Sensing Conference, 
Ottawa, Vol. I, pp. 154-161. 
Maas, H.-G., 2005. Akquisition von 3D-GIS Daten durch 
Flugzeuglaserscanning. Kartographische Nachrichten, Vol. 55, 
Heft 1, S. 3-11.  

Maas, H.-G., Vosselman, G., 1999. Two algorithms for 
extracting building models from raw laser altimetry data. ISPRS 
Journal of Photogrammetry & Remote Sensing Vol. 54, No. 2/3,  

Marmol, U., Jachimski, J., 2004. A FFT based method of 
filtering airborne laser scanner data. Int. Archives of 
Photogrammetry and Remote Sensing, ISSN 1682-1750, Vol. 
XXXV, part B3. 

Pfeifer, N., Reiter, T., Briese, C., Rieger, W., 1999. 
Interpolation of high quality ground models from laser scanner 
data in forested areas. Joint Workshop of the ISPRS working 
groups III/5 and III/2 , La Jolla, CA, USA, Nov. 9 – 11 1999. 

Rottensteiner, F., Briese, Ch., 2002. A new method for bulding 
extraction urban areas from high-resolution LIDAR data. Int. 
Archives of Photogrammetry and Remote Sensing, Vol XXXIV 
/ 3A (2002), ISSN 1682-1750; 295 - 301. 

Sithole, G., Vosselmann, G., 2003. Automatic Structure 
Detection in a Point-Cloud of an Urban Landscape, 2nd Joint 
Workshop on Remote Sensing and Data Fusion over Urban 
Areas (URBAN2003), May 22-23, Berlin, Germany. 

Sithole, G., 2001 . Filtering of laser altimetry data using a slope 
adaptative filter. Int. Archives of Photogrammetry and Remote 
Sensing, Annapolts, Vol. XXXIV – 3/W4  

Tóvári, D., Vögtle, T., 2004. Classification methods for 3D 
objects in laserscanning data. Int. Archives of Photogrammetry 
and Remote Sensing, ISSN 1682-1750, Vol. XXXV, part B3. 

Vosselman, G., 2000. Slope based filtering of laser altimetry 
data. Vol. XXXIII, Int. Archives of Photogrammetry and 
Remote Sensing, Amsterdam, pp. 935–942, Part B3. 

Vosselman, G. and Maas, H., 2004. Airborne Laser Altimetry: 
DEM production and Automatic Feature Extraction. Tutorial 
TU6 held at the XXth ISPRS Congress in Istanbul, July 14, 2004. 

Wang, M., Tseng, Y.-H., 2004. Lidar data segmentation and 
classification based on octree structure. Int. Archives of 
Photogrammetry and Remote Sensing, ISSN 1682-1750, Vol. 
XXXV, part B3. 

Weinacker, H., Koch, B., Heyder, U., Weinacker, R., 2004. 
Development of filtering, segmentation and modelling modules 
for LIDAR and multispectral data as a fundament of an 
automatic forest inventory system. Int. Archives of 
Photogrammetry and Remote Sensing. Freiburg, Germany, 
Volume XXXVI, Part 8/W2. ISSN 1682-1750.  

Wotruba, L., Morsdorf, F., Meier, E., Nüesch, N., 2005. 
Assessment of sensor characteristics of an airborne laser 
scanning using geometric reference targets. Proceedings of the 
ISPRS Workshop Laser scanning 2005. Enschede, The 
Netherlands, ISSN 1682-1777. 

Yu., X,  Hyyppä., H, Kaartinen., H, Hyyppä., J, Ahokas., E, 
Kaasalainen., S. 2005. Applicability of first pulse derived digital 
terrain models for boreal forest studies factors affecting the 
quality of DTM generation in forested areas. Proceedings of the 
ISPRS Workshop Laser scanning 2005. Enschede, The 
Netherlands, ISSN 1682-1777. 

 6

30

http://www.tu-dresden.de/ipf/photo/publikationen/2005/Maas_KN2005.pdf
http://www.tu-dresden.de/ipf/photo/publikationen/2005/Maas_KN2005.pdf


FACADE RECONSTRUCTION FROM AERIAL IMAGES BY MULTI-VIEW PLANE
SWEEPING

Lukas Zebedin, Andreas Klaus, Barbara Gruber and Konrad Karner

VRVis Research Center
Inffeldgasse 16/2, Graz, AUSTRIA

{zebedin, klaus, gruber, karner}@vrvis.at

KEY WORDS: Building Reconstruction, Aerial Images, Plane Sweeping, Information Fusion, Multi-View Matching

ABSTRACT:

This papers describes an algorithm to estimate the precise position of facade planes in digital surface models (DSM) reconstructed
from aerial images using an image-based optimization method which exploits the redundancy of the data set (along and across track
overlap). This approach assumes that a facade is a vertical plane and that the heightfield is precise enough to generate hypotheses for the
initialization of the optimization algorithm. The initialization is first roughly oriented using the principal line directions of its texture,
afterwards a hierarchical algorithm performs a finer optimization to maximize the correlation across different views. The proposed
method is applied to real world imagery and its results are shown.

1 INTRODUCTION AND MOTIVATION

Reconstruction of buildings in urban areas from aerial images is
a challenging task. Many applications like virtual tourism, ur-
ban planning and cultural documentation benefit from a realis-
tic, high-quality city model. There already exist methods to cre-
ate a dense point cloud of urban scenes using LIDAR scans or
dense image matching ((Berthod et al., 1995), (Cord et al., 1998))
which can be used to create a polygonal roof model ((Samadzade-
gan et al., 2005)), (Vosselman and Dijkman, 2001)), however the
estimation of facades poses a separate problem because of the
oblique angle at which they are viewed during aerial data acquis-
tion. The optimization employed by the proposed algorithm is
image-based.

One critical aspect of building reconstruction is the estimation
of the contours of buildings. Many workflows on urban scene
reconstruction rely on additional information like a ground-plan
((Brenner, 2000) and (Haala et al., 1998) for example) to delin-
eate the contours of buildings. However, this information is not
always available or has to be manually created which is a major
drawback if a fully automatic workflow is desirable.

The other possibility is to infer the outlines of buildings by seg-
menting the DSM into building blocks. This has been done by
(Weidner, 1996) and (Vosselman, 1999). The drawback of this
approach is obviously the flawed, jaggy nature of the obtained
contours. (H. Gross, 2005) tried to alleviate this by fitting rectan-
gles to the outline. Such improvements however can only guess
the position of the facades. If the resulting model is afterwards
textured, any error in the placement results in skewed and mis-
aligned textures.

This drawback of automatic deduction of outlines can be allevi-
ated by optimizing the position of the outlines as proposed in this
paper.

(Coorg and Teller, 1999) presented a similar algorithm which op-
erated on close-range imagery. They, however, relied strongly on
horizontal lines in building facades to even initialize their esti-
mates.

The basic idea of plane sweeping was also used in (T. Werner,
2002), but there only a translational plane sweep is considered

in terrestial imagery. Also the initialization of the plane sweep
is quite different from our approach where vanishing points are
being exploited.

(C. Vestri, 2000) discusses a very similar algorithm to the one
proposed in this paper, but is based on pointwise reconstruction
of a facade. The main difference however is that they use vertical
planes which are rotated in 20 degree intervals around the verti-
cal axis to obtain the facade points whereas our algorithm opti-
mizes the rotational and translational component of each facade
independently therefore increasing the estimation accuracy. Ad-
ditionally the pointwise reconstruction performed by them does
not exploit the knowledge that the facade is a plane.

This contribution is based on images from the UltraCamD camera
from Vexcel Corporation with its multispectral capability. The
UltraCamD camera features a multi-head design. It delivers large
format panchromatic images composed from nine CCD sensors
(11500 pixels across-track and 7500 pixels along-track) and si-
multaneously recorded four additional channels (red, green, blue
and NIR) at a frame size of 3680 by 2400 pixels. The image data
used comprise the panchromatic high resolution images as well
as the low resolution multispectral images.

The data set used in this paper to compute the depicted results was
acquired in Summer 2005 over the inner city of Graz, Austria. It
consists of 155 images flown in 5 strips. The along-track-overlap
of this data set is 80%, the across-track overlap is approximately
60%. The ground sampling distance is around 8cm.

2 FACADE OPTIMIZATION

The algorithm for obtaining optimized facades can be decom-
posed into three distinct steps: first some hypotheses have to be
found. Those estimated facades are then refined in such a way,
that they are parallel to the true facade. In the last step the fine-
grained optimization using multi-view correlation is performed.

2.1 Input Data

The optimization algorithm is image-based, therefore a precise
orientation of the imagery is of utmost importance. The average
back projection error is of utmost importance to enable conver-
gence of the optimization. Theoretically two views of a plane are

31



enough to calculate the correlation score, however in case of oc-
clusions and in order to increase stability more views can be used.
Therefore the data acquisition is also critical to the success of the
optimization because only views are usable where the facade lies
near the border of the image. The reason for this is the fact that
aerial images have a very limited visibility of vertical planes as in
the center of each image the perspective projection is comparable
to a orthographic projection which hides all vertical planes . This
assumption requires that flight altitude, velocity, focal length and
along/across-track overlap are carefully chosen to provide also
data redundancy for facades.

Another prerequisite is the DSM which is used to initialize the
hypothesis for facades. For the experiments conducted for this
paper, a plane sweeping approach was chosen which is improved
and densified by applying an iterative and hierarchical multi-view
matching algorithm based on homographies. A more detailed de-
scription of this algorithm implemented on graphics hardware can
be found in (Zach et al., 2003).

The building block layer is based on a land use classification and
describes the position of buildings within the scene. The land use
classification used for this data set is a supervised classification
that includes a training phase and that runs automatically after-
wards. The classification results comprise classes like buildings,
streets or other solid objects with low height, water, grass, tree
or wood, as well as soil or bare earth. The classification is based
on support vector machines and is described in detail in (Gruber-
Geymayer et al., 2005).

2.2 Initialization

The initial estimates of the position of facades is obtained by ap-
plying a Canny edge detector to the heightfield. Those edgels are
afterwards chained together to form lines. One important param-
eter of this line extraction is the minimum length of each line, as
longer lines tend to be more stable in the optimization performed
in a later phase.

The line extraction is aided by the land use classification which
assigns a label to each pixel in the heightfield. These labels are
used to restrict line extraction to regions near buildings.

The result of this procedure is illustrated in Figure 1. Note that
only lines near the building are extracted whereas there are no
lines near the tree in the inner courtyard of the building.

These lines in 2D are then extended to 3D planes by estimating
the minimum and maximum height from the surrounding area in
the heightfield. A small margin is subtracted from the top and
bottom of the plane to account for possible occlusions near the
roof (protrusion of the eave line) and the ground.

2.3 Line Direction Optimization

The first optimization applied to the facade planes tries to align
the orientation of real facades and their hypothesis. As a result
the plane will be almost parallel to the real facade. The algorithm
relies on the fact that facades mainly contain structures which are
horizontally or vertically aligned with the facade itself (windows,
balconies, signs and alike).

For each facade plane the algorithm first makes a ranking of all
available cameras and assigns each one a score. This score is
calculated with the following equation:

score = normal · (origin − anchor)

(a) (b)

(c) (d)

Figure 1: This figure illustrates the line extraction process in the
heightfield. (a) shows the original heightfield, (b) depicts the gra-
dient image (Sobel), (c) is the building-layer of the classification
for the test area and (d) overlays the extracted lines (green) with
the heightfield.

wherenormal is the normal vector of the facade plane,origin is
the position of the camera andanchor is the center of the facade
plane.

Once the optimal camera has been determined, the correspond-
ing image is perspectively correctly resampled. A Gaussian filter
is then applied to remove small artifacts. For each pixel in the
smoothed image the x and y derivative is calculated and stored in
a (φ, magnitude) vector, whereφ gives the angle of the deriva-
tive vector andmagnitude its Euclidean length. Subsequently
all pairs with a smallmagnitude are removed. The remaining
members of the vector are used to construct an orientation his-
togram. Each peak in that histogram corresponds to one strong
line direction in the texture. This peak estimation is more stable
if the histogram is smoothed beforehand. Because of our assump-
tion that a facade contains horizontally and vertically aligned
structures, we conclude that the peak closest to zero should in
fact be exactly at zero to make the facade plane parallel to the
real facade. Figure 2 shows an orientation histogram and the cor-
responding warped texture. The green line is the estimated prin-
cipal horizontal line. There are four peaks clearly visible, each
accounts for the principal directions (up, down, left, right) of the
gradients. To have a parallel facade those four peaks should be
at exactly 0, 90, 180 and 270 degrees respectively. The angle
histogram enables us to calculate an orientation change which
compensates this deviation of the peaks. Figure 3 illustrates this
intersection procedure. The detected line direction is used to cre-
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ate a plane which contains the camera center and a line on the
facade with this direction. This plane is intersected with a hori-
zontal plane to give the new orientation of the facade estimation.

(a)

(b)

Figure 2: (a) A smoothed orientation histogram with its four dis-
tinct peaks in horizontal and vertical direction. (b) shows a part
of the corresponding texture with the principal horizontal line di-
rection marked with green.

Camera

Horizontal Plane

Facade Plane

Figure 3: The lines from camera center to the endpoints of the
detected line are intersected with the horizontal plane. The new
plane defined by this horizontal line is parallel to the real facade.

2.4 Correlation Optimization

In the third and last step the facade plane is further refined to
increase the correlation of warped textures from different views.
At the beginning the facade plane can not be used to correlate
the views at the full resolution level because even an offset of
a few pixels may cause a very bad correlation value. Therefore
a hierarchical approach is used to overcome this problem. Each
warped texture is turned into an image pyramid and starting with
the coarsest level the correlation optimization is performed until
the highest resolution level is reached. The algorithm is detailed

in Algorithm 1. Figure 4 illustrates the process of generating new
hypotheses starting with an initial facade plane. The illustration
is a top view because it is assumed that facades are always verti-
cal. Figure 6 shows how the optimization on different resolution
levels converges to the final position.

The correlation score is calculated using the normalized cross
correlation with an adaptive window size depending on the res-
olution level - on the highest level a smaller window is used as
on lower resolution levels. Because of the different resolution
the correlation window always covers approximately the same
region. Also a correlation truncation (lower boundary) at 0.8 is
used to improve the stability of the correlation as explained in
(Scharstein and Szeliski, 2002).

p

−p

p

−p

Figure 4: For a given facade plane a translation vectorp is cal-
culated which shifts each end of the facade plane and generates
therefore eight new hypotheses. New hypotheses are marked with
dashed lines.

Algorithm 1 Correlation Optimization
Require: At least two views for a facade

1: repeat
2: calculate a translation vectorp normal to the facade plane

such that the length of the projection at the current resolu-
tion level is approximately one pixel.

3: create new hypotheses by moving each end of the facade
plane independently back and forth along the translation
vector.

4: if no higher correlation can be obtained by any hypothesis,
switch to a higher resolution level.

5: until highest resolution level is reached

The quality of the optimization can be judged by the correlation
factor. Values of above approximately 0.8 indicate that the esti-
mate snapped to the real facade, whereas lower values may either
be due to the fact, that there are occlusions (trees are very disturb-
ing especially in inner courtyards) in the images or that the facade
can not be satisfyingly be approximated with one plane because
of balconies or depth jumps in the real facade. Figure 5 illustrates
an optimization of one facade. Looking at the warped patches one
can observe the improvement in positioning the facade.

3 RESULTS AND DISCUSSION

Figure 7 illustrates the result of the optimization on one corner of
the building. One can see that the initialization of the facade is in
fact the eave line of the roof, whereas the optimization results in
the correct position which is slightly translated inwards.

A rendering of the complete building block is depicted in Figure
8. It consists of 21 facades planes and 46 roof planes. The 3D
model creation is subject of current research and therefore does
not exploit all of the information available. As mentioned in the
paragraph above the gap between facade and eave line can be
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(a) 1st view, before optimization (b) 2nd view, before optimization

(c) 1st view, after optimization (d) 2nd view, after optimization

(e) correlation before optimization (f) correlation after optimization

Figure 5: Facade estimation before and after optimization. Two out of three views are shown (left and right). The top two rows represent
the initial estimate, the regions marked with the green quadrangle are rectified and shown in the next row. It is clearly visible that the
initial estimate deviates from the real facade. After the optimization (third and fourth row) the correct placement can be observed in the
rectified images which are nearly identical. This is confirmed by the correlation images (bottom row): the left correlation image shows
the correlation for the initial estimate, the right image is calculated after the optimization. The final correlation score is about 0.87.
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(a)

(b)

(c)

(d)

Figure 6: Four steps in the correlation optimization process: the
green lines delineate the estimation after (a) initialization, (b) op-
timization on the lowest level, (c) medium resolution level and
(d) highest resolution level.

Figure 7: A zoom onto a corner of the building: the gray line
denotes the initialization, whereas the green line indicates the po-
sition with the optimized correlation. The difference of these po-
sitions accounts for the offset between eave line and real facade.

reconstructed (either by comparing the initial estimate and opti-
mized facade or by looking at the correlation image because the
correlation will drop where the facade is occluded by the roof)
and included in the 3D model. The depicted model lacks this im-
provement and therefore the roof gets projected onto the facade
at the top where in fact the eave line should extend.

4 CONCLUSIONS AND FUTURE WORK

This paper presents a novel approach to improve the location of
facade planes using two image-based optimization techniques.
The success of such optimizations can easily be judged using the
correlation score. The algorithms are outlined and their results
are demonstrated using a real world example.

The preliminary results are visually appealing, but further re-
search is required. Especially the exact reconstruction of the off-
set between eave line and real facade is very promising. The fu-
sion of optimized facade planes, roof planes and offset of the eave
lines into a three dimensional model is subject of future research
and presents a major step towards fully automated city modelling.
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ABSTRACT:

Coplanarity of points can be exploited in many ways for 3D reconstruction. Automatic detection of coplanarity is not a simple task
however. We present methods to detect physically present 3D planes in scenes imaged with a handheld camera. Such planes induce
homographies, which provides a necessary, but not a sufficient criterion to detect them. Especially in handheld image sequences degen-
erate cases are abundant, where the whole image underlies the same homography. We provide methods to verify, that a homography
does carry information about coplanarity and the 3D scene structure. This allows deciding, whether planes can be detected from the
images or not. Different methods for both known and unknown intrinsic camera parameters are compared experimentally.

1 INTRODUCTION

The detection and tracking of features is one of the preliminar-
ies for many applications, ranging from motion analysis to 3D
reconstruction. Depending on the complexity of features, more
or less knowledge can be gained directly from them. The typical
approach is to match corresponding point features over an image
sequence, which is solved for many applications (Shi and Tomasi,
1994). Inferring information about the 3D structure of the scene
can benefit however from additional constraints, e.g. coplanarity
of points (Bartoli and Sturm, 2003). In fact planes are relatively
easy to handle as features and do have many useful geometric
properties.

Planes have caught the interest of research before. Linear sub-
space constraints on the motion of planes have been elaborated
and used for separating independently moving objects (Zelnik-
Manor and Irani, 1999). For the representation of video there
are many applications related to planes or so called layers, either
for efficient coding exploiting the 2D object motion (Baker et al.,
1998, Odone et al., 2002), or aimed towards an interpretation of
the 3D scene structure (Gorges et al., 2004). The benefits of in-
corporating coplanarity constraints (Bartoli and Sturm, 2003) or
of explicitly using planes for 3D reconstruction (Rother, 2003)
have been investigated, too. Also efficient auto-calibration algo-
rithms in planar scenes are possible (Triggs, 1998). More recently
many of the above results have been combined to allow explicit
tracking of 3D camera motion from image intensities (Cobzas
and Sturm, 2005).

Despite many applications, the automatic extraction of planar re-
gions is still a difficult task. The work of Baker (Baker et al.,
1998) was one of the first setting the trend to use homographies
for finding planes. Later algorithms made use of random sam-
pling to automatically detect points mapped under a common ho-
mography (Schindler, 2003). Using a sparse set of tracked point
features, random sampling was also applied for a Least Median
of Squares regression to detect a dominant homography in the
scene (Odone et al., 2002). The dominant homography is de-
fined as the one transferring all known points with the least me-
dian transfer error. The extraction of dominant homographies is
iterated to find smaller and smaller planar patches. A very sim-
ilar algorithm was given in (Gorges et al., 2004). The dominant
homography in that case is defined as the one transferring most
points correctly.

The mentioned works concentrate on finding point features or im-
age regions underlying a common homography. This is a neces-
sary condition for the points to reside on the same 3D plane, it is
not a sufficient one however. A very simple case is a camera not
moving at all between two frames. All points are then transferred
with the same homography, the identity matrix. Yet the points
may reside in many different 3D scene planes. A similar well
known situation occurs, if the camera undergoes a pure rotation.
Especially when processing image sequences from handheld or
head-mounted cameras, both of these cases are abundant and ig-
noring them leads to erroneous planes being detected. Detection
of planar patches in a scene should therefore not only find image
regions under a homography, but also decide, whether coplanarity
can be inferred from the detected homographies.

The detection of related degenerate cases is an important issue
in many different computer vision tasks, yet rarely addressed in
research. A seminal work on the topic (Torr et al., 1999) is con-
sidering the case of degeneracy for the estimation of the funda-
mental matrix. The basic task in that work is to find a guidance
for feature matching, either the epipolar geometry or a homog-
raphy warp on the whole image. This is highly related to our
problem and we will develop similar methods in our work.

The rest of the paper is organized as follows. In section 2 we
will shortly introduce the notation and present a useful decom-
position of homography matrices. Finding homographies from
known point correspondences is reviewed in section 3. The task
of deciding on coplanarity from given homographies is elabo-
rated in section 4. In section 5 an experimental evaluation of the
developed methods is given. Some final remarks on further work
and conclusions will sum up the results in the end.

2 PRELIMINARIES

Throughout the work we will use the standard projective cam-
era model projecting world points X onto image points x with
x = αK(RX + t). The matrix K is an upper triangular ma-
trix containing intrinsic parameters, R is a rotation matrix and t
the translation vector. We typically need two camera frames and
two sets of camera parameters, which are then denoted with a in-
dex, e.g. K1 and K2. Restricting to two frames it is sufficient to
know the relative motion, and hence we setR1 = Id, t1 = 0 and
R2 = R, t2 = t.
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A world plane is defined by the inner product nTX = d, with
inhomogeneous 3D vectorsn andX , and a scalar d. Every world
plane projected into two images induces a homography between
the two images, a 2D-2D projective transformation H . This H
maps the projections x1 of world points on the plane onto corre-
sponding points x2 in the second projection. This is easily shown
using the relative motions:

x2 =α2K2(R2X + t2) = α2K2(R+
1

d
tnT )X

X =
1

α1
R−1

1 K−1
1 x1 −R−1

1 t1 =
1

α1
K−1

1 x1

x2 =αK2(R +
1

d
tnT )K−1

1

| {z }
=H

x1 (1)

The homography matrix H therefore is only defined up to an un-
known scale.

3 FROM POINTS TO HOMOGRAPHIES

To detect planar patches we first establish point correspondences
between consecutive image frames in the sequence using KLT-
tracking (Shi and Tomasi, 1994). As points on planar regions un-
derlie a homography, the first step in finding these planar regions
is to establish groups of point features correctly transformed by a
common 2D-2D projective transformation. Different approaches
to do this mainly use the two concepts of random sampling and it-
erative dominant homography estimation. Before going into their
details in sections 3.2 and 3.3, we will shortly review the compu-
tation of homographies.

3.1 Computation of Homographies

In an usual approach the 2D homography can be estimated from
4 point correspondences by solving the following linear equation
system for the entries of H:

x2 = αHx1 (2)

With equality up to scale, each pair of corresponding points leads
to 2 independent equations in the entries of H. As the matrix H
can only be computed up to scale, it has 8 degrees of freedom.
Hence four points determine the entries of the matrix H .

With known epipolar geometry however, even three points are a
sufficient minimum parameterization of planes. There are several
ways of exploiting this (Hartley and Zisserman, 2003). This will
basically enforce the computation of homographies compatible
with the epipolar geometry, in the sense that the single globally
rigid scene motion stored in the epipolar geometry is enforced to
be also valid for all points of the homographies. This will fail
however, if there are multiple independent motions. In general
also the computation of epipolar geometry frequently gives rise
to numerical problems.

For our work we do not use the epipolar constraints, but compute
homographies directly from equation 2. We typically use more
than 4 points and solve the overdetermined system using SVD
techniques.

3.2 Random Sampling

The RANSAC approach was used e.g. in (Schindler, 2003) to de-
tect points underlying the same homography. Basically the idea
of model fitting with random sampling is very intuitive. Starting
with a minimal set of random samples, which define an instance

of the model, the support for this instance among the other avali-
able samples is measured. In the end we keep the hypotheses with
highest support.

For our homography problem, the algorithm has to randomly se-
lect points from all known correspondences, so that the param-
eters of the homography can be determined. This means three
random points with known epipolar geometry or four points in
the more general case. The errors for transferring the remaining
point correspondences with this homography can be computed.
Each point correctly transferred up to e.g. 2 pixels difference can
be counted as supporting the hypothesis that the points are copla-
nar. If only the initially selected points support the hypothesis,
these points are most likely not coplanar and the computed ho-
mography does not have any physical meaning.

This idea of extending an initial homography Hi to more point
correspondences can be applied iteratively. After an extension
step, a new homography Hi+1 can be computed with the addi-
tional points included. The new homography matrix Hi+1 can
again be extended to all other points correctly transferred. The
iteration ends, if no more points are added to the computations.
With this approach the result is more robust against small match-
ing inaccuracies in the initially selected points.

3.3 Iterative Dominant Homography Estimation

In various works (Odone et al., 2002, Gorges et al., 2004) the
homography explaining most point correspondences is called the
dominant homography. To find this dominant homography, first
the RANSAC algorithm is applied as above. From all sampled
candidates only the single best one is kept however. This is de-
fined to be either the one with Least Median overall transfer er-
ror (Odone et al., 2002), or the one transferring the largest number
of points correctly (Gorges et al., 2004). This dominant homog-
raphy of the scene is accepted as a planar region, the covered
points are removed and another iteration step is started to find the
dominant homography of the remaining points.

For the least median error method, the breakdown point is at 50%
outliers. If there are many small planes in the scene each covering
only a small portion of the image, the homographies found will
thus explain only a small portion of all point correspondences.
The homography with least median transfer error is then almost
arbitrary, and will not necessarily be exactly valid for any but the
initially sampled points used to construct it. We therefore decided
not to use the least median error method, but to count the points
correctly transferred up to e.g. 2 pixels tolerance instead.

3.4 Locality Constraints

If the mentioned homography detection algorithms are applied as
described above, they will mostly detect virtual homographies.
These are induced by virtual planes, i.e. geometrically valid 3D
planes with many observable points on them, but without any cor-
responding physical plane. An example can be seen in Figure 1.
Note that from geometry and the computed homographies alone,
these virtual planes do well represent sets of coplanar points and
there is no way to detect them. Additional constraints to prevent
the virtual planes therefore can not result from pure photogram-
metry. Two basic approaches occur in the literature.

In the work of (Gorges et al., 2004) an explicit locality criterion is
used. Only points in a certain neighborhood region are sampled to
compute the initial hypotheses in the RANSAC algorithm. In the
extension steps, points outside the boundaries of the local neigh-
borhood can be taken into account as well. This might seem like a

38



Figure 1: The points connected by the green and blue lines are
lying on two virtual planes, which represent coplanar points on
planes that do not correspond to any physical object plane

heuristic at first, however it directly facilitates the detection of lo-
cally planar structures. Starting from the locally planar neighbor-
hood, the iterative extension of the homography to more points
still allows the detection of larger planes with arbitrary shape. In
our experiments this method practically eliminated the detection
of virtual planes.

A more complex but in essence quiet similar criterion was used
in (Schindler, 2003). There the plane detection is initialized with
equilateral triangles selected by random sampling. All points in-
side the triangles have to match the same homography, and only
then a region growing is started. This is basically an extension
of the mentioned locality constraint above, first from an arbitrary
shaped neighborhood to the convex interior of a triangle and sec-
ond from sparse point correspondences to a dense constraint on
all image points. Due to the higher complexity with basically the
same effect, we have not investigated this method further.

4 FROM HOMOGRAPHIES TO PLANES

Detecting image regions underlying one common homography is
only the first step for finding planar patches in an image sequence.
All planar image regions will underlie a homography, but not all
image regions underlying a homography are necessary coplanar.
We will first show that these cases occur exactly if there is no
translational motion between the two frames under consideration.
Further we will present several methods for detecting these cases
in different scenarios, like known or unknown intrinsic camera
parameters.

The mentioned problematic cases are directly apparent from the
homography decomposition given in equation 1:

H = K2(R+
1

d
tnT )K−1

1

If the term tnT vanishes for planes with arbitrary normals n, the
homographies do not contain any information about the planes,
but only consist of K2RK

−1
1 . On the other hand any homogra-

phy matrix H containing the second term, has one unique plane
with normal n inducing it.

The term vanishes for arbitraryn if and only if t = 0. In that case
we have a pure rotational motion or change of intrinsic parame-
ters and can not infer anything on the 3D structure. To ensure, a
homography does contain relevant information about a 3D plane,

we therefore have to test for a translation t 6= 0. A first class
of testing methods is to analyze a single homography matrix and
check it for a particular form. A different class is taking into
account additional information from other correspondences.

Algorithms in the first class are testing, whether a given H is
of the form K2RK

−1
1 . Note these methods will always fail to

identify the plane at infinity. This is the plane containing all the
vanishing points, and it has the normal n = 0. So the homogra-
phy of this plane is always of the form of a pure camera rotation.
Only once a translational part is detected in the homography of
any other plane, it could be inferred that t 6= 0 and hence the
homography H = K2RK

−1
1 must be induced by the plane with

normal n = 0.

This inference, like the approaches using knowledge from other
correspondences, can only be used in case of a globally rigid mo-
tion of the scene however, and not in case of independently mov-
ing objects in the scene. This becomes apparent for the example
of an object moving in front of a static camera. The plane in-
duced homographies of the object do have a translational motion
part, and the whole static background is underlying the same ho-
mography. But the background does not necessarily consist of
one single plane. If a static scene is assumed on the other hand,
the additional information will ease the task of detecting motions
without translations.

4.1 Known Intrinsic Parameters

If the intrinsic camera parameters are known, a simple and straight
forward test for the translational part in a homography is possible.
Multiplying the homography matrix H with the intrinsic param-
eter matrices K1 and K−1

2 from left and right we get:

H ′ = K−1
2 HK1 =αK−1

2 K2(R+
1

d
tnT )K−1

1 K1

=α(R +
1

d
tnT )

It is obvious that the term 1
d
tnT vanishes if t = 0, i.e. there

is no translational part in the camera motion. The larger t, the
more is H ′ dominated by a rank-1 part and deviating from the
pure rotation matrix R.

A test forH ′ to be a rotation matrix is given by the singular value
decomposition. For the rotation matrix R, all singular values are
equal to 1. Taking into account the unknown scale factor α, the
ratio of largest to smallest singular value of H ′ will therefore be
1 if t = 0 or n = 0. For our experiments we used a slightly less
restrictive threshold of 1.2 for the ratio.

4.2 Unknown but Constant Intrinsic Parameters

Needing knowledge of the intrinsic parameters clearly is a short-
coming of the method above. We will consider the next sim-
ple case, where the intrinsic camera parameters are unknown, but
known to be constant. This scenario is of great practical relevance
and has been studied before (Triggs, 1998). Many and especially
cheap cameras are not equipped with a zoom-lense and hence ful-
fill the requirement.

In the case of a constant intrinsic parameter matrix K = K1 =
K2, the homography matrix H is similar (i.e. conjugate) to the
matrix R + 1

d
tnT . This means the two matrices do have the

same determinant, eigenvalues and some more properties which
are not relevant here, although the singular values might differ.
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Figure 2: Excerpts of a calibration pattern scene with planar patches detected in the individual frames shown as polygons with thick
boundary lines.

Figure 3: Excerpts of an architectural scene with the thick polygons delineating planar patches found from point correspondences.

The equivalence of eigenvalues is derived from:

det(
1

α
H − λId) = det(KRK−1 +

1

d
KtnTK−1 − λKK−1)

= det(K) det(R +
1

d
tnT − λId)

1

det(K)

= det(R+
1

d
tnT − λId)

The eigenvalues are given as the roots of this characteristic poly-
nomial and are hence identical for the two matrices. Using this
result and the equality det(A+xyT ) = (1 +yTA−1x) det(A)
it follows, that H has the same eigenvalues up to scale with the
rotation matrix R, if and only if nTRT t = 0. All three eigen-
values of the rotation matrix R do have the same absolute value
1. So do the eigenvalues of the homography matrix H up to the
common scale α, if the intrinsic parameters are constant. The
ratio of largest to smallest absolute eigenvalue hence provides a
means of detecting cases with nTRT t = 0. In our experiments
we again used a ratio of 1.2 as a threshold, to tolerate the effects
of slight noise.

The condition tested by this criterion is either met for t = 0 or
n = 0 or if the vectors Rn and t are orthogonal. This provides
a slightly over-sensitive test for the detection of translations. The
case where this measure generates false alarm is a translation in
a plane parallel to the plane inducing H .

As mentioned before, these two tests can be extended to a global
measure, if we assume a globally rigid motion. Detecting a trans-
lational part in any homography matrix, we can assume the whole
scene has undergone a translation, and hence every observed ho-
mography H carries information about coplanarity. This way the
cases where the test is oversensitive can be avoided as well, un-
less the camera motion is parallel to all planes in the scene.

4.3 Global Homography

Another very intuitive idea exploiting the rigid motion constraint
is to simply count, how many points are not correctly transferred

between the frames using the homography H . In the case of no
translation between the frames, the homography matrix for any
plane will be the same. The second, parallax term will vanish and
H = H∞ = K2RK

−1
1 . Therefore if all points are transferred

with the homography H∞, the motion of the points was most
likely caused by a camera movement without translation. For
practical purposes a small portion of outliers should be allowed,
depending on the quality of the point correspondences found.
In our experiments we considered a homography as global, if
it transferred more than 80% of all points with a small transfer
error.

However, again there are cases where this test will fail, e.g. if
only one plane is visible in the scene. This plane is not neces-
sarily the plane at infinity with n = 0, but could as well be a
real object plane filling the whole view. Knowledge of the intrin-
sic parameters and one of the tests above could decide upon this
ambiguity.

4.4 Epipolar Geometry

Another way of explicitly using points not residing in the poten-
tial plane is to take into account the epipolar geometry. Note with
the usual 8-point-algorithm the fundamental matrix F can only
be determined up to a two-parameter family of matrices in the
case of all points residing in the same 3D plane or no transla-
tion occuring between the frames (Torr et al., 1999). Testing for
these rank-deficiencies when computing the epipolar geometry
will therefore allow the detection of cases without translation.

This test basically has the same restrictions as for the global ho-
mography computation before. In fact the same condition that all
points underly a common homography is only tested differently
here. But again the numerically problematic epipolar geometry
is needed, and a small portion of incorrect point correspondences
could severely affect this method.
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Figure 4: Confidence of different criteria that a translational cam-
era motion was present in the individual frames of a sequence.
The yellow background indicates ground-truth frames with pure
camera rotation, the green background indicates general motion

5 EXPERIMENTS

We have presented a method for detecting homographies and sev-
eral different methods for checking the information on planarity
contained in a homography. For the experimental evaluation we
follow a similar structure. First the results from homography de-
tection are shown qualitatively, as this part of the work can hardly
be evaluated quantitatively. For the different methods of detect-
ing planes from homographies a detailed evaluation is given in
section 5.2.

5.1 Detection of Homographies

Detailed error analysis of the decomposition of image sequences
into planes is difficult. First of all real video sequences do not
provide a ground truth segmentation that could be used for nu-
merical error analysis. But even more important such a decompo-
sition into planar patches is not unique. Planar patches detected
from sparse point correspondences are in fact typically smaller
than the physical planes they represent, and finding the exact de-
lineations of planar regions is a different issue not covered here.

We have performed experiments with different scenes and en-
vironments. In some rather artificial sequences, checkerboard
calibration patterns were placed on a table and recorded with a
handheld camera. The checkerboards provide high contrasts and
sharp corners, that can be tracked well and provide good point
correspondences over the image sequence. Another set of im-
ages was taken from publicly available sequences of architectural
scenes showing model buildings. These kind of scenes are a typ-
ical application scenario for planar patch detection.

Example planes found with our algorithms are shown in Figure 2
for a calibration pattern scene and in Figure 3 for an architectural
scene. Note the detected planes do represent planar image areas
and correspond to physically present planes in the scene, no vir-
tual planes are detected. As it was expected, the detected planes
are typically smaller than the physical planes due to the sparse-
ness of the point correspondences used to find them. Points as-
signed to a plane were not removed and therefore some planes
are detected several times and do overlap. On the other hand this
allows correct handling of points on the delineation of two planar
patches. Note that point correspondences not lying in any of the
planes are correctly identified, so if the observed objects are not
planar, no false planes are detected.

 0  50  100  150  200  250 0  50  100  150  200  250 0  50  100  150  200  250 0  50  100  150  200  250 0  50  100  150  200  250 0  50  100  150  200  250
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Figure 5: Confidence of different criteria that a translational
camera motion was present in the individual frames of a se-
quence. The yellow background indicates ground-truth frames
with purely zooming camera, the green background indicates
general motion

In these example images, the planar patches are detected only
and not kept from one frame to the next. Depending on the appli-
cation, this temporary knowledge of coplanarity might be suffi-
cient. Otherwise a homography tracking can be applied and sim-
ple methods to prevent overlapping planes from being detected
over and over again could be thought of.

5.2 Detection of Cases Without Translation

In section 4 we have presented various ways of detecting camera
motions without translational part. In these cases the homogra-
phies do not give us any information on coplanarity of points and
hence no planes can be detected using the homographies.

To evaluate the performance of the individual methods, some
video sequences with controlled camera motion were recorded.
Mounted on a tripod, a camera captured a motion sequence with
at least approximately a pure rotational motion. With a motor-
ized zoom it was further possible to take influence on the intrinsic
camera parameters without any other camera motion. So it was
possible to acquire a ground truth classification of the camera mo-
tion and to compare the detected motion classes of “translation”
and “no translation” with that ground truth.

In Figure 4 the different criteria from section 4 were compared
for a sequence with pure camera rotation. The ground truth infor-
mation is shown as a background coloring, where the white parts
indicate no camera motion, yellow parts a camera rotation and
green parts a sequence of images with non-zero camera trans-
lation. For each image frame the tests computed one value per
detected homography, e.g. one ratio of eigenvalues. For the fig-
ure these values were averaged over several such tests (e.g. over
the 5 planes detected in this frame). Note that due to constant and
known intrinsic camera parameters, all criteria could be applied
for the sequence with pure rotation. The short times with com-
pletely static camera were clearly identified by all criteria. The
translational movement can also be clearly identified from the
global homography criterion (line “global”). Also the singular
value and eigenvalue criteria allow a classification of the camera
movement, with some small false alarms around frame 45. The
epipolar criterion seems to be severely affected by incorrect point
matches however.

A similar comparison is shown in Figure 5 for variable intrinsic
parameters, i.e. a zooming camera. Note we do not have accu-
rate knowledge of the intrinsic parameters in this case and hence
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skip the singular value criterion. To allow comparison we did test
the eigenvalue criterion however. It can be seen that the crite-
rion incorrectly classifies the zooming camera, as expected. As
described in section 4.2 the criterion needs constant intrinsic pa-
rameters to be valid. Both the epipolar and especially the global
homography criteria allow a relatively good identification of the
translational camera motion, however the results are far less clear
compared to the sequence with a rotating camera.

Overall if the intrinsic calibration is known or constant, this knowl-
edge should be used, as was seen in the test with pure camera
rotation. In other cases the global homography criterion seems
to perform sufficiently good as well. This was also confirmed
in further qualitative tests with different sequences. The epipo-
lar geometry most likely suffers from numerical instabilities and
outliers of the point matching. Skipping the tests for a camera
translation, one “plane” is detected covering all point correspon-
dences in the image, unless a translational motion is present.

6 FURTHER WORK

The criterion derived from epipolar geometry currently does not
provide a useful measure for the translational part, most likely
due to the numerical instability of computing epipolar geometry.
The normalized eight-point-algorithm used in this work already
performs better than using unnormalized pixel coordinates, but
still it is not robust against incorrect point matches. Using an im-
proved algorithm could also render the epipolar geometry useful
for homography estimation, as described in section 3.1.

Having found the coplanar point sets, the exact delineations of
the planes are still unknown. A pixel-wise assignment of im-
age points to physical planes is needed for various applications
like exact scene representation or image based rendering. This
can be solved with region growing algorithms, as was done e.g.
in (Gorges et al., 2004) or with graph-cut related techniques. Both
do need initial seed regions that can be generated robustly from
the image data with our algorithms. And both have to be made
aware of cases where it can not be inferred on coplanarity from
homographies.

7 CONCLUSION

The aim of this work was to automatically detect planar features
in image streams from handheld cameras. Various applications
were mentioned in the introduction. In most of these a man-
ual selection of planes is used. The few works dealing with the
automatic detection of planes concentrated of finding image re-
gions under homography. We have given a brief overview and
presented a similar algorithm based on random sampling and it-
erative estimation of the dominant plane.

As we have shown, finding homographies between the frames of
a sequence can not be enough for the detection of planes however.
For camera movements without 3D translational part the com-
mon homography is not a sufficient criterion for the coplanarity of
points. We have presented various methods to detect such cases
and to prevent planes from being detected in case of no camera
translation. These methods made use of known or constant in-
trinsic camera parameters or of the static-scene assumption, and
hence can be applied to many different application scenarios.

In the experiments we have first shown that physically meaning-
ful planes can be detected with the suggested approach. Also a
comparison of the various methods for plane extraction from the
homographies was given. Especially the cases of pure camera

rotation and varying intrinsic parameters were investigated, ex-
actly the cases where a homography does not contain information
about the coplanarity of points. The sequences with a pure rota-
tion could be identified clearly. It was more difficult to separate a
change of intrinsic parameters from general camera motion. But
using the appropriate methods it was possible as well.
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ABSTRACT: 
 
Convergent stereo images can be rectified such that they correspond to the stereo normal case. The important advantage is that the 
correspondence analysis is simplified to a linear search along one of the image axes. The proposed method describes a rectification 
method for three uncalibrated cameras, where the configuration is not generally known. The algorithm automatically determines the 
best positioning of the cameras and corrects mirroring effects to fit the desired camera setup. Since there is no direct solution for the 
rectification problem for three cameras, the rectification homographies are linearly determined to within six degrees of freedom from 
three compatible fundamental matrices. The remaining six parameters are then obtained by enforcing additional constraints. 
 
 

1. INTRODUCTION 

The epipolar geometry of a pinhole camera model implies that 
the correspondent of a given point lies on its epipolar line in the 
second image of a stereo pair. The pencil of all epipolar lines 
passes through a point called the epipole e, which is the 
projection of the camera center onto the corresponding image 
plane. In case of convergent stereo setups, the image matching 
task is fairly complex and thus inefficient. Rectification 
determines a transformation of each image plane such that the 
epipolar lines become parallel to one of the image axes (see 
Figure 1). This configuration corresponds to the stereo normal 
case. 

 
Figure 1. Geometry of normal images 

 
A discussion of binocular rectification methods can be found in 
Hartley (Hartley, 1999), where the normal images are generated 
using a single linear transformation, which is often referred to 
as planar rectification. In principle, the images are reprojected 
onto a plane parallel to the baseline between the optical centers. 
This technique is relatively simple, fast and retains image 
characteristics, i.e. straight lines. The reported methods 
minimize image distortion and maximize the computational 
efficiency. Matoušek (Matoušek et al., 2004) proposed a data-
optimal rectification procedure that minimizes the loss of 
discriminability in the resulting images. 
The linear approach however is not general and fails when the 
epipole lies within the image. The transformation for an epipole 
close to the image borders leads to an extremely large and 
strongly distorted image. This problem can be avoided by using 
stereo configurations with almost parallel camera alignment. 
For general image sequences with arbitrary camera orientations, 
an improved method must be used.  
In order to solve this problem, Roy (Roy et al., 1997) suggested 
a cylindrical rectification method with a separate 
transformation for each epipolar line. The basic idea lies in the 
use of polar coordinates with the epipole at the origin. Pollefeys 
(Pollefeys et al., 1999) adapted this non-linear approach for 

applications in projective geometry. However, the use of 
different non-linear transformations leads to irregular, distorted 
images, which makes the following correspondence analysis 
more difficult. To avoid this effect, a hybrid procedure was 
proposed by Oram (Oram, 2001). Here, the epipoles are first 
overlaid with a compatible homography and after which the 
same non-linear transformation is used for both images. 
It has been shown that multi-view matching can considerably 
improve the quality of spatial reconstruction, in which 
rectification remains of interest. In case of a trinocular 
rectification, the images are reprojected onto a plane, which lies 
parallel to the optical centers (see Figure 2). 

 
Figure 2. Trinocular Rectification 

 
Ayache and Hansen (Ayache et. al., 1988) proposed a technique 
for rectifying image triplets that works with calibrated cameras. 
Loop and Zhang (Loop and Zhang, 1999) presented a stratified 
method to decompose each transformation and formulate 
geometric criteria to minimize image distortion during  
rectification. For a review of various trinocular rectification 
methods, see (Sun, 2003).  
Zhang (Zhang et al., 2002/03) proposed rectification 
homographies in a closed form and introduced stronger, 
geometrically meaningful constraints. An (An et al., 2004) 
reported an efficient trinocular rectification method using the 
geometric camera model instead of the relative image 
orientation. However, this method is only applicable when well 
known control points are available to calibrate and orientate the 
cameras. 
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The proposed trinocular rectification method requires an 
uncalibrated image triple with more or less parallel camera 
alignment. The camera configuration is arbitrary, but each 
projection center must be invisible in all other images. This 
condition is necessary, since otherwise the epipoles lie in the 
image and mapping them to infinity will lead to unacceptable 
distortion of the images. Furthermore, we assume non-
degenerate camera positions, where the camera centers are not 
collinear, because collinear setups can be rectified by chaining 
a classical binocular rectification approach. Additionally, a 
common overlapping area and at least six homologous image 
points are necessary, so that the trifocal tensor, the fundamental 
matrices and the epipoles can be determined (Hartley and 
Zisserman, 2000). The result consists of three geometrically 
transformed images, in which the epipolar lines run parallel to 
the image axes. 
 

2. CAMERA SETUP 

A given image triplet consists of the original images b (base), h 
(horizontal) and v (vertical). Subsequently, we denote the 
rectified images b , h  and v . The rectification tries to fit any 
image triple to a configuration shown in Figure 3. 

 
Figure 3. Image arrangement 

 
This setup has the following properties: 
• The epipolar lines of image b and image h correspond with 

their image rows. 
• The epipolar lines of image b and image v correspond with 

their image columns. 
• The epipolar lines of image h and image v have a slope of 

minus unity.  
The last property has the advantage, that the disparities between 
corresponding points in b h↔  and b v↔  are equal.  
For rectification, the epipoles between the images b, h and v 
should be mapped to infinity: 

The relative image orientation for this setup is quite simple. The 
fundamental matrices between the rectified images are given by 

 [ ]
0 0 0
0 0 1
0 1 0

bh bh

⎡ ⎤
⎢ ⎥= = −⎢ ⎥
⎢ ⎥⎣ ⎦

×F e , 

 [ ]
0 0 1
0 0 0
1 0 0

bv bv

⎡ ⎤
⎢ ⎥= = ⎢ ⎥
⎢ ⎥−⎣ ⎦

×F e  and 

 [ ]
0 0 1
0 0 1
1 1 0

hv hv

⎡ ⎤
⎢ ⎥= = ⎢ ⎥
⎢ ⎥− −⎣ ⎦

×F e . 

(2)

 
2.1 Computation of the Projective Image Orientation 

This section describes a method to assign each image in a given 
triplet to a suitable position b, h and v. At least six homologous 
image points are used to compute the trifocal tensor T by the 
minimal 6-point-algorithm (Torr and Zisserman, 1997) with the 
robust estimator GASAC (Rodehorst and Hellwich, 2006). The 
projection matrix P1 of the reference camera is set to a 
canonical form and the projection matrices P2 and P3 for the 
other two cameras can be obtained from T. The projection 

center T
1 11 12 13 14( , , , )C C C C=C of the first camera is placed in 

the origin and the two remaining projection centers C2 and C3 
can be estimated from the projective P2 and P3.  
P1 is defined to point in z-direction and all cameras have a 
common overlapping area and are not visible in the other 
cameras. Therefore P2 and P3 can not have a significant 
translation in z-direction and the camera alignment can be 
computed in the x/y-plane. Under these conditions the absolute 
angles β1, β2 and β3 between the cameras in the x/y-plane can be 
computed: 

( ){
( ){
( ) ( )( ) ( ){

1

22 21 21
1

32 31 31
2

32 22 31 21 31 21
3

arctan / for  0

/ 2 otherwise

arctan / for  0

/ 2 otherwise

arctan / for 0

/ 2 otherwise

C C C

C C C

C C C C C C

β
π

β
π

β
π

≠
=

≠
=

− − − ≠
=

(3)

Using the absolute value is necessary, since camera 
configurations, which are different from the setup assumed in 
Figure 3 produce mirror effects. The compensation of these 
effects is discussed in section 3.3.3. Figure 3 shows that the 
camera pair with the highest angle value is the pair b v↔  and 
the camera pair with the lowest angle value is the pair b h↔ . 
Now the images can be aligned in a suitable fashion and the 
trifocal tensor T must be adapted for this enhanced setup.   
 

3. RECTIFICATION 

The initial task is to determine the relative image orientation. 
The fundamental matrices of the original images can be 
obtained uniquely by the trifocal tensor (see section 2.1). Note 
that the fundamental matrices are not independent and have 
only 18 significant parameters in total (Hartley and Zisserman, 
2000): 

T T T 0hv hb bv vb vh hb vh vb bh= = =e F e e F e e F e  

 
3.1 Mapping Epipoles to Infinity 

Let Hb, Hh and Hv be the unknown homographies between the 
original and rectified images. The rows of these homographies 
will be abbreviated by three vectors u, v and w: 

 [ ]T1 0 0bh hb= =e e  

 [ ]T0 1 0bv vb= =e e  

 [ ]T1 1 0hv vh= = −e e  

(1)
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T
1 2 3

T
1 2 3

T
1 2 3

i i i i

i i i i i

i i i i

u u u
v v v
w w w

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

u
H v

w

   
for   { }, ,i b h v∈

 (4) 

For a correspondence xb↔xh↔xv, the projective transformation 
between the image coordinates can be written as 

i i i=x H x    for   { }, ,i b h v∈ . (5)

The fundamental matrices, which are calculated from the 
original images, satisfy the epipolar constraints: 

T 0h bh b =x F x  
T 0v bv b =x F x  
T 0v hv h =x F x  

(6)

Similar conditions apply for the rectified images: 
T 0h bh b =x F x  
T 0v bv b =x F x  
T 0v hv h =x F x  

(7)

Combining equations (6) and (7), one obtains  
T T T 0h h bh b b h bh b= =x H F H x x F x  
T T T 0v v bv b b v bv b= =x H F H x x F x  
T T T 0v v hv h h v hv h= =x H F H x x F x  

(8)

and comparing the result with (7), it follows that 
T
h bh b bhλ= 1H F H F  
T

2v bv b bvλ=H F H F  
T

3v hv h hvλ=H F H F  

(9)

where iλ  are scale factors. The rectified fundamental matrices 

bhF , bvF  and hvF  contain many zeros (see Eq. 2). Hence, 
equations (9) can be simplified to give: 
 T T

1h b h b bhλ− =w v v w F  

 T T
2v b v b bvλ− =u w w u F  

 T T
3( ) ( )v v h v h h hvλ+ − + =u v w w u v F  

(10)

 
3.2 Computation of Rectifying Homographies 

Since the fundamental matrices are of rank 2, the equations (10) 
can not be solved directly. However, knowing the vectors wb, 
wh and wv, gives a solution for (10) with six degrees of freedom 
(DOF). The w-vectors have a convenient property: Since the 
epipoles in the original images should be mapped to infinity, 
the scalar product of wi with both epipoles of an image is zero. 
That means the w-vector is perpendicular to both epipoles of an 
image and can be calculated (up to a scale factor) by the cross 
product of the two epipoles:  

b bh bv= ×w e e  

h hb hv= ×w e e  

v vb vh= ×w e e  
(11)

The epipoles are the left and right null-vectors of the F-matrices 
and can be determined by singular value decomposition 
(Hartley and Zisserman, 2000). Since the projection centers are 
not collinear, all epipole pairs are linearly independent. Hence 
their cross products, especially the third components, are non 

zero and the third component of each w-vector can be scaled to 
unity to simplify the equations (10). 
Six variables have to be defined for a direct solution. 
Depending on the variables chosen, the equations become very 
simple. We recommend setting 

     
3 3 3 0b h vu v v= = =    and   1321 === λλλ  (12)

which yields the solutions 

33 31 33 321 2
*

31 32 33

1 2

0

1

bv bv bv bv
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b b

w F F w F F
F F F
w w

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

− −
=H

 
(13)

33 33 13 31 33 33 23 32 33 331 2
*

33 13 33 231 2

1 2

( ) ( )
0
1

bv bh bh hv bv bh bh hv bv hv
h h

bh bh bh bh
h h h

h h

w F F F F w F F F F F F
w F F w F F

w w

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

− + − − + − −
= − −H

 

13 23 33
*

1 33 33 13 13 2 33 33 23 23

1 2

( ) ( ) 0
1

bv bv bv

bv hv hv bv bv hv hv bv
v v v

v v

F F F
w F F F F w F F F F

w w

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

= − + − − + −H
. 

They look similar to those proposed by Zhang (Zhang et al., 
2002), but satisfy the common image representation with the 
origin in the upper left corner. These equations already describe 
primitive rectifying homographies for the given image triplet, 
but generally produce undesirable shearing and scaling. A 
detailed derivation of (13) from (10) is available online 
(Heinrichs and Rodehorst, 2006). 
 
3.3 Imposing Geometric Constraints 

The assumptions in equation (12) can be generalized once more 
by comparing equations (13) and (10). The missing variables 
will be split into different components with the geometric 
meaning of translation, mirroring, scaling and shearing. The 
mirroring component is necessary because the computation of 
the camera setup ignores mirror effects in (3). These two 
parameters are introduced for convenience, to maintain the 
order of the image content, but do not influence the correctness 
of the rectification. To clarify the meaning of the remaining 
DOF, we define: 

1 3bs u= ,
2 3hs v= ,

3 3 3v hs v v= −    and 

 
311 /λλα = ,

322 /λλα = ,
33 λα =  

(14)

The mirroring components can be written as follows: 
{ }1,1, −∈yx mm  (15)

The choice of correct signs allows a better visual interpretation. 
Mirror compensation is necessary for camera setups, in which 
the original images are flipped over one or two axes: v below b 
or h left of b. If mx and my have different signs the slope of the 
epipolar lines between h  and v  becomes positive. 
The general solution for the homographies is given by: 

1 3 2
*

2 3 1

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 1 0 0 1

x

b y b

s m
s m

α α
α α

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ⋅ ⋅ ⋅⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

H H
                

(16)

1 3 3 1 33 2
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h y h
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α α α
α α

⎡ ⎤+ − −⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥= ⋅ ⋅ ⋅⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

H H
 

1 3 2
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x
bv

v y v

s m
s s m F

α α
α α α
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where the free parameters can be interpreted as: 
• s1 is the global shift value in x-direction of all images 
• s2 defines the global shift value in y-direction 
• s3 is the shift value in x-direction for image h and the shift 

value in y-direction of image v relative to image b 
• α1 is the scale of the y-component of images b and h, 

which affects the shearing in y-direction of image v 
• α2 is the scale of the x-component of images b and v, 

which affects the shearing in x-direction of image h 
• α3 defines the global scaling factor to keep the images at a 

suitable resolution 
The two convenience parameters are:  
• mx is a mirroring factor in the x-direction of all images 
• my defines the mirroring factor in the y-direction 

The challenge is to estimate optimal values for these 
parameters. Since the first six parameters are independent of 
each other, one can deal with them separately. The shift 
parameters depend on the mirroring parameters, thus we have to 
correct the mirror parameters first. The values should be 
calculated in the following order: 

1. Finding proper shearing values for α1 and α2 
2. Finding a global scale value α3 
3. Compensate potential mirroring using mx and my  
4. Finding right offset values for s1, s2 and s3 

The factor 33 2( 1)bvF α −  in the shearing matrices of equation (16) 
of image h and v is needed to compensate the loss of 
information in (10) by applying (12). 
 
3.3.1 Shearing Correction 
 
Following the approach of Loop and Zhang (Loop and Zhang, 
1999), the shearing of images h and v can be minimized by 
keeping two perpendicular vectors in the middle of the original 
image perpendicular in the rectified one. Let W be the width 
and H be the height of the original images. Two perpendicular 
direction vectors x and y are defined by computing the center 
lines of the image.  

dcybax −=−= ,     with 
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 (17)

For the horizontal rectified image h  the vectors x  and y  can 
be calculated as follows: 

,= − = −x a b y c d  
* * * *, , ,h h h h= ⋅ = ⋅ = ⋅ = ⋅a H a b H b c H c d H d  

(18)

We apply the shearing matrix to Hh, which can be derived from 
(16): 

1

1

1 1 0
0 0
0 0 1

h

α
α

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

−
=S  (19)

Note that the factor 33 2( 1)bvF α −  in (16) is ignored, since the last 
(homogeneous) component of the vectors a , b , c  and d  are 
the same and therefore their difference equals zero. 
The vectors x  and y  are perpendicular, when the constraint 

T( ) ( ) 0h h =S x S y  (20)

is satisfied. The quadratic equation  

2
1 1

2 02 2
x y y x y y x x x y y x y y

y y y y

x y x y x y x y x y x y x y
x y x yα α

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

− − − + + +
+ + = (21)

has two solutions, where the solution with the smaller absolute 
value |α1| is to be preferred.  
For the vertical rectified image v , the vectors x  and y  can be 
calculated as follows: 

,= − = −x a b y c d  
* * * *, , ,v v v v= ⋅ = ⋅ = ⋅ = ⋅a H a b H b c H c d H d  

(22)

The shearing matrix can be written as 

2

2

0 0
1 1 0

0 0 1
v

α
α

⎡ ⎤
⎢ ⎥
⎢ ⎥
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⎣ ⎦

= −S . (23)

Once again, the factor 33 2( 1)bvF α −  can be ignored, because the 
third component of x  and y  is zero. The perpendicularity 
condition results in 

T( ) ( ) 0v v =S x S y . (24)

Again, after solving the quadratic equation  

2
2 2

2 02 2
x y y x x x x x x y y x y y

x x x x

x y x y x y x y x y x y x y
x y x yα α

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
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− − − + + +
+ + =

 (25)

the result with the smaller absolute value |α2| is selected. 
 
3.3.2 Scale Correction 
 
Once the shearing parameters have been obtained, the global 
scale can be chosen. To preserve as much information as 
possible, the number of pixels in image b and b  should be 
equal. The resolutions can be estimated from the length of the 
diagonal line through b and its projection in b . Using 

[ ] [ ]T T0 0 1 , 1W H= =a b  

2 2
* *

1 1

0 0 0 0
0 0 , 0 0
0 0 1 0 0 1

b b

α α
α α

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= ⋅ ⋅ = ⋅ ⋅
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

a H a b H b  (26)

one obtains the common scaling factor: 

3α
−

=
−

b a
b a

 (27)

 
3.3.3 Mirroring Correction 

To correct potential mirror effects, the order of the point 
correspondences are examined. First, the four corresponding 
triplets with the smallest and highest x- and y-value in image b 
are selected, to avoid flips of points due to perspective 
projection. If the order of the transformed values switches in 
one dimension for all three images, the rectified images have to 
be mirrored in that direction by setting mx or my  to -1. 
 
3.3.4 Offset Estimation 

The offsets s1, s2 and s3 depend on the origin of the coordinate 
system. The estimate for s1 is calculated from the rectification 
of the origins in image b and v. The parameter s2 can be 
determined from the origin in image b and h. First, the 
homographies with shearing-, mirroring- and scaling correction 
are applied to the origins: 
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(28)

Now, the horizontal and vertical offsets are defined by the 
negation of the minimal coordinates: 

1 1 1min( , )b vs x x= − * *  

2 2 2min( , )b hs x x= − * *  
(29)

The remaining parameter s3 is calculated from the origin of 
image h and v. Since the parameters s1 and s2 are already 
known, we can use 
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(30)

to determine the missing parameter 

3 2 1min( , )v hs y y= − * * . (31)

 
3.3.5 Finding the Common Region 

Finally, the computation of the common image regions 
minimizes the image sizes and speed up image matching. 
Therefore, we cut off regions, which are not visible in all three 
images. The required clipping lines are shown in Figure 4. 
 

 
Figure 4. Definition of the common region 

 
The vertical clipping line xmin can be derived from the corners 
of the images b and v using 
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(32)

The line xmax is given by 
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The horizontal clipping lines ymin and ymax are determined from 
the corners of the images b and h in an analogous manner.  
 
3.4 Applying the Rectifying Transformation 

To achieve optimal accuracy, the images b, h and v are 
resampled only once, using equation (16), by the indirect 
method. For every integer position in the rectified image, the 
non-integer position in the original image is determined using 
the inverse projective transformation H-1. The sub-pixel 
intensities are then computed by bicubic interpolation, which 
determines the intensity value from 16 pixels in a 4×4 
neighborhood (see Figure 5). The computation 
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2 2

1 1
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m n
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+ + = + + ⋅ − ⋅ −∑ ∑ (34)

using the cubic weighting function 
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>⎧
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(35)

defines the interpolated intensity value and must be computed 
separately for each color channel. 

 
Figure 5. Resampling using the indirect transformation 

 
4. EXPERIMENTAL RESULTS 

The proposed method is verified by rectifying some real images 
of a statue, which were acquired by hand with an uncalibrated 
digital camera (see Figure 6). The original image size is 
1024x768 pixels. For each image, 16 corresponding points were 
measured and the trifocal tensor was computed. The results are 
illustrated in Figure 7. To verify the correction of mirroring 
effects and the image alignment, several image triples were 
permutated and passed to the algorithm. The images were 
always positioned reasonably and no global mirror artefacts 
were observed.  
The mean error and variance of the epipolar distance in the 
rectified images were computed for each image pair separately 
and for all three images. The results are shown in Table 1. 
 

Distance b↔h b↔v h↔v Total
Mean error 0.378 0.285 0.573 0.398
Variance 0.374 0.163 0.688 0.393  

 
Table 1: Epipolar distance of the rectified images [in pixels] 
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Figure 6. Image triplet before rectification 

 

 
Figure 7. Image triplet after rectification 

 
5. CONCLUSIONS 

In this paper, a linear method for trinocular rectification of 
uncalibrated images, in closed form with 6 degrees of freedom, 
was proposed. In a post processing stage, proper geometric 
constraints are selected to minimize the projective distortion. 
The proposed mirror correction eases the interpretation of the 
rectified images and makes it possible to apply this approach to 
various camera setups. Furthermore, the automated image 
alignment allows more convenient image acquisition, because 
the images can be shot without minding the relative image 
order. Finally, the computation of the common image regions 
minimizes the image sizes and speeds up image matching. 
However, the quality of the rectification depends on the robust 
estimation of the fundamental matrix. Therefore, the 
correspondence sets should be carefully chosen and well 
distributed over the scene setup. 
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ABSTRACT  
This paper reports about interest operators, region detectors and region descriptors for photogrammetric applications. Features are 
the primary input for many applications like registration, 3D reconstruction, motion tracking, robot navigation, etc. Nowadays many 
detectors and descriptors algorithms are available, providing corners, edges and regions of interest together with n-dimensional 
vectors useful in matching procedures. The main algorithms are here described and analyzed, together with their proprieties. 
Experiments concerning the repeatability, localization accuracy and quantitative analysis are performed and reported. Details on how 
improve to location accuracy of region detectors are also reported. 
 
 

1. INTRODUCTION 

Many photogrammetric and computer vision tasks rely on 
features extraction as primary input for further processing and 
analysis. Features are mainly used for images registration, 3D 
reconstruction, motion tracking, robot navigation, object 
detection and recognition, etc. Markerless automated 
orientation procedures based on image features assume the 
camera (images) to be in any possible orientation: therefore the 
features should be invariant under different transformations to 
be re-detectable and useful in the automated matching 
procedures.  
[Haralick and Shapiro, 1992] report these characteristics for a 
distinctive matching feature: distinctness (clearly distinguished 
from the background), invariance (independent from 
radiometric and geometric distortions), interpretability (the 
associated interest values should have a meaning and possibly 
usable for further operations), stability (robustness against 
image noise) and uniqueness (distinguishable from other 
points).  
We should primarily distinguish between feature detectors and 
descriptors. Detectors are operators which search 2D locations 
in the images (i.e. a point or a region) geometrically stable 
under different transformations and containing high information 
content. The results are generally called ‘interest points’ or 
‘corners’ or ‘affine regions’ or ‘invariant regions’. Descriptors 
instead analyze the image providing, for certain positions (e.g. 
an interest point), a 2D vector of pixel information. This 
information can be used to classify the extracted points or in a 
matching process.  
In photogrammetry, interest points are mainly employed for 
image orientation or 3D reconstruction applications. In vision 
applications, regions have been recently also employed, for 
object detection, recognition and categorization as well as 
automated wide-baseline image orientation.  
In the literature different detectors and descriptors have been 
presented. The achieved results vary, according to the used 
images and parameters, therefore assesses of the performances 
are required. Previous works comparing feature point detectors 
have been reported in [Schmid et al., 1998; Zuliani et al., 2004; 
Rodehorst and Koschan, 2006]. [Mikolajczyk et al., 2005] 
compared affine regions detectors while [Mikolajczyk & 
Schmid, 2003] reported about local descriptors evaluation. 
Usually different measures and criterion are used to assess 
performance evaluations of interest points or regions detectors: 

for example, given a ground-truth, the geometrical stability of 
the detected interest points is compared between different 
images of a given (planar) scene taken under varying viewing 
conditions.  
Selecting the best procedure to compare the operators is very 
difficult. In our work, the evaluation is performed calculating 
the number of correct points detected, their correct localization, 
the density and analyzing the relative orientation results 
between stereo-pairs. In all the experiments, the results are 
checked by visual inspection and statistical evaluations. No 
comparison of the detection speed is performed as difficult to 
achieve and as the efficiency of a detector (or descriptor) 
strongly depends on its implementation. 
In the context of this work, we only consider points and 
regions, excluding edges. An overview and comparison of edge 
detectors is presented in [Heath et al., 1997; Ziou & Tabbone, 
1998]. 
 

2. POINT AND REGION DETECTORS 

2.1 Point detectors 

Many interest point detectors exist in the literature and they are 
generally divided in contour based methods, signal based 
methods and methods based on template fitting. Contour based 
detectors search for maximal curvature or inflexion points 
along the contour chains. Signal based detectors analyze the 
image signal and derive a measure which indicates the presence 
of an interest point. Methods based on template fitting try to fit 
the image signal to a parametric model of a specific type of 
interest point (e.g. a corner). The main properties of a point 
detector are: (1) accuracy, i.e. the ability to detect a pattern at 
its correct  pixel location; (2) stability, i.e. the ability to detect 
the same feature after that the image undergoes some 
geometrical transformation (e.g. rotation or scale), or 
illumination changes; (3) sensitivity, i.e. the ability to detect 
feature points in low contrast conditions; (4) controllability and 
speed, i.e. the number of parameters controlling the operator 
and the time required to identify features.  
Among the different interest point detectors presented in the 
literature, the most used operators are afterwards shortly 
described: 
• Hessian detector [Beaudet, 1978]: it calculates the corner 

strength as the determinant of the Hessian matrix (IxxIyy-
I2

xy). The local maxima of the corner strength denote the 
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corners in the image. The determinant is related to the 
Gaussian curvature of the signal and this measure is 
invariant to rotation. An extended version, called Hessian-
Laplace [Mikolajczyk & Schmid, 2004] detects points 
which are invariant to rotation and scale (local maxima of 
the Laplacian-of-Gaussian). 

• Moravec detector [Moravec, 1979]: it computes an un-
normalized local autocorrelation function of the image in 
four directions and takes the lowest result as the measure of 
interest. Therefore it detects point where there are large 
intensity variations in every direction. Moravec was the 
first one to introduce the idea of ‘point of interest’.       

• Förstner detector [Förstner, W. & Guelch, E., 1987]: it uses 
also the auto-correlation function to classify the pixels into 
categories (interest points, edges or region); the detection 
and localization stages are separated, into the selection of 
windows, in which features are known to reside, and feature 
location within selected windows. Further statistics 
performed locally allow estimating automatically the 
thresholds for the classification. The algorithm requires a 
complicate implementation and is generally slower 
compared to other detectors. 

• Harris detector [Harris & Stephens, 1988]: similar to 
[Moravec, 1979], it computes a matrix related to the auto-
correlation function of the image. The squared first 
derivatives of the image signal are averaged over a window 
and the eigenvalues of the resulting matrix are the principal 
curvatures of the auto-correlation function. An interest 
point is detected if the found two curvatures are high. 
Harris points are invariant to rotation. Extended versions of 
the Harris detector have been presented in [Mikolajczyk & 
Schmid, 2001; Brown et al., 2005] where the detected 
points are invariant to scale and rotation. 

• Tomasi and Kanade detector [Tomasi & Kanade, 1991]: 
they developed a features tracker based on a previous work 
of [Lucas & Kanade, 1981]. Defining a good feature ‘the 
one that can be tracked well’, a feature is detected if the two 
eigenvalues of an image patch are smaller that an 
empirically computed threshold.  

• Haralick operator [Haralick & Shapiro, 1992]: it first 
extracts windows of interest from the image and then 
computes the precise position of the point of interest inside 
the selected windows. The windows of interest are 
computed with a gradient operator and the normal matrix; 
the point of interest is determined as the weighted centre of 
gravity of all points inside the window. 

• Heitger detector [Heitger et al., 1992]: derived from 
biological visual system experiments, it uses Gabor filters 
to derive 1D directional characteristic in different 
directions. Afterwards the first and second derivatives are 
computed and combined to get 2D interest locations (called 
‘keypoints’). It requires a lot of CPU processing. 

• Susan detector [Smith & Brady, 1997]: it analyzes different 
regions separately, using direct local measurements and 
finding places where individual region boundaries have 
high curvature. The brightness of each pixel in a circular 
mask is compared to the central pixel to define an area that 
has a similar brightness to the centre. Computing the size, 
centroid and second moment of this area, 2D interest 
features are detected. 

 
2.2 Region detectors 

The detection of image regions invariant under certain 
transformations has received great interest, in particular in the 
vision community. The main requirements are that the detected 

regions should have a shape which is function of the image 
transformation and automatically adapted to cover always the 
same object surface. Under a generic camera movement (e.g. 
translation), the most common transformation is an affinity, but 
also scale-invariant detectors have been developed. Generally 
an interest point detector is used to localize the points and 
afterwards an elliptical invariant region is extracted around 
each point.  

   
Figure 1: Scale-invariant regions extracted with DoG detector (left) 
[Lowe, 2004] and affine-invariant regions extracted with Harris-affine 
(center) and Hessian-affine detector (right) [Mikolajczyk and Schmid, 
2002]. 
 
Methods for detecting scale-invariant regions were presented in 
[Lindeberg, 1998; Kadir & Brady, 2001; Jurie & Schmid, 2004; 
Lowe, 2004; Leibe & Schiele, 2004]. Generally these 
techniques assume that the scale change is constant in every 
direction and search for local extrema in the 3D scale-space 
representation of an image (x, y and scale). In particular, the 
DoG (Difference of Gaussian) detector [Lowe, 2004] showed 
high repeatability under different tests: it selects blob-like 
structures by searching for scale-space maxima of a DoG (FIG). 
On the other hand, affine-invariant region detector can be seen 
as a generalization of the scale-invariant detector, because with 
an affinity, the scale can be different in each direction. 
Therefore shapes are adaptively deformed with respect to 
affinities, assuming that the object surface is locally planar and 
that perspective effects are neglected. A comparison of the state 
of the art of affine region detectors is presented in [Mikolajczyk 
et al., 2005]. The most common affine region detectors are: 
• the Harris-affine detector [Mikolajczyk & Schmid, 2002]: 

the Harris-Laplace detector is used to determine 
localization and scale while the second moment matrix of 
the intensity gradient determines the affine neighbourhood. 

• the Hessian-affine detector [Mikolajczyk & Schmid, 2002]: 
points are detected with the Hessian matrix and the scale-
selection based on the Laplacian; the elliptical regions are 
estimated with the eigenvalues of the second moment 
matrix of the intensity gradient. 

• the MSER (Maximally Stable Extremal Region) detector 
[Matas et al., 2002]: it extracts regions closed under 
continuous transformation of the image coordinates and 
under monotonic transformation of the image intensities. 

• the Salient Regions detector [Kadir et al., 2004]: regions are 
detected measuring the entropy of pixel intensity 
histograms. 

• the EBR (Edge-Based Region) detector [Tuytelaars & Van 
Gool, 2004]: regions are extracted combining interest points 
(detected with the Harris operator) and image edges 
(extracted with a Canny operator).  

• the IBR (Intensity extrema-Based Region) detector 
[Tuytelaars & Van Gool, 2004]: it extracts affine-invariant 
regions studying the image intensity function and its local 
extremum.  
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3. DESCRIPTORS 

Once image regions (invariant to a class of transformations) 
have been extracted, (invariant) descriptors can be computed to 
characterize the regions. The region descriptors have proved to 
successfully allow (or simplify) complex operations like wide 
baseline matching, object recognition, robot localization, etc. 
Common used descriptors are: 
• the SIFT descriptors [Lowe, 2004]: the regions extracted 

with DoG detector are described with a vector of dimension 
128 and the descriptor vector is divided by the square root 
of the sum of the squared components to get illumination 
invariance. The descriptor is a 3D histogram of gradient 
location and orientation. It was demonstrated with different 
measures that the SIFT descriptors are superior to others 
[Mikolajczyk & Schmid, 2003]. An extended SIFT 
descriptor was presented in [Mikolajczyk, K. & Schmid, C., 
2005]: it is based on a gradient location and orientation 
histogram (GLOH) and the size of the descriptor is reduced 
using PCA (Principal Component Analysis). 

• Generalized moment invariant descriptors [Van Gool et al., 
1996]: given a region, the central moments Ma

pq (with order 
p+q and degree a) are computed and combined to get 
invariant descriptors. The moments are independent, but for 
high order and degree, they are sensitive to geometric and 
photometric distortion. These descriptors are suitable for 
color images. 

• Complex filters descriptors [Schaffalitzky & Zissermann, 
2002]: regions are firstly detected with Harris-affine or 
MSER detector. Then descriptors are computed using a 
bank of linear filters (similar to derivates of a Gaussian) and 
deriving the invariant from the filter responses. A similar 
approach was presented in [Baumberg, 2000]. 

 
Matching procedures can be afterwards applied between couple 
of images, exploiting the information provided by the 
descriptors. A typical strategy is the computation of the 
Euclidean or Mahalanobis distance between the descriptor 
elements. If the distance is below a predefined threshold, the 
match is potentially correct. Furthermore, cross-correlation or 
Least Squares Matching (LSM) [Gruen, 1985] could also be 
applied to match the regions (see Section 5) while robust 
estimators can be employed to remove outliers in the estimation 
of the epipolar geometry. 
 
 

4. EXPERIMENTAL SETUP AND                
EVALUATION RESULTS 

Five interest point detectors (Förstner, Heitger, Susan, Harris 
and Hessian) have been firstly compared with different tests, as 
described in Section 4.1 and Section 4.2 while in Section 4.3 
and 4.4 two region detectors/descriptors (Harris-affine and 
Lowe) are also considered.  
In our work, the evaluation is performed calculating the number 
of correct corners detected (Section 4.1), their correct 
localization (Section 4.2), the density of detected points/regions 
(Section 4.3) and analyzing the relative orientation results 
between stereo-pairs (Section 4.4). The operators used in the 
comparison have been implemented at the Institute of Geodesy 
and Photogrammetry (ETH Zurich), except Harris-affine 
[Mikolajczyk & Schmid, 2002] and [Lowe, 2004] operators, 
available on the Internet. 
 

4.1 Corner detection under different transformations 

A synthetic image containing 160 corners is created and 
afterwards rotated, distorted and blurred (Figure 2). Corners are 
firstly detected with the mentioned operators and then 
compared with the ground-truth (160).  
In Table 1 the numbers of detected corners are presented. 
Förstner and Heitger performed always better than the other 
detectors in all the analyzed images. 

   

   
Figure 2: Synthetic images used for the corners detection. The images 
are numbered left to right from the top-left (1). 
 

 IMAGE 
1 

IMAGE 
2 

IMAGE 
3 

IMAGE 
4 

IMAGE 
5 

IMAGE 
6 (blur) 

Förstner 160/160 159/160 154/160 149/160 145/160 145/160 
Heitger 160/160 157/160 158/160 148/160 145/160 148160 
Susan 150/160 139/160 118/160 90/160 121/160 141/160 
Harris 140/160 139/160 136/160 140/160 121/160 144/160 
Hessian 150/160 144/160 142/160 149/160 145/160 140/160 
Table 1: Results of the interest point detection on the synthetic images 
of Figure 1. 
 
4.2 Localization accuracy 

The localization accuracy is a widely used criterion to evaluate 
interest points. It measures whether an interest point is 
accurately located at a specific location (ground truth). The 
evaluation requires the knowledge of precise camera and 3D 
information or simply requires the knowledge of the precise 2D 
localization of the feature in image space. This criterion is very 
important in many photogrammetric applications like camera 
calibration or 3D object reconstruction. 
In our experiment, performed on Figure 3 (upper left), the 
correct corner localizations are achieved with manual 
measurements. The detected corners obtained from the different 
operators are afterwards compared with the manual 
measurements and the differences plotted, as shown in Figure 3.  
Heitger detector presents only 2 times one-pixel shifts while 
Harris and Hessian detectors have always a constant shift of 
one pixel. This might be an implementation problem, but tests 
performed with other detectors available on the Internet 
reported the same results. 
 
4.3 Quantitative analysis based on relative orientation 
between image pairs 

Interest points and regions detectors are also used to 
automatically compute the relative orientation of image pairs. 
Firstly points (regions) are detected, then matched and finally 
the coplanarity condition is applied. The correspondences are 
double-checked, by means of visual inspection and blunder 
detection (Baarda test and RANSAC estimator), therefore no 
outliers are present in the data. The extracted points are also 
well distributed in the images, providing a good input for a 
relative orientation problem. For each image pair, the same 
interior orientation parameters are used. 
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Figure 3: Synthetic image used to evaluate the localization accuracy of 
the point detectors (upper left). Results of the localization analysis 
expressed as differences between manual measurements (reference) 
and automatically detected points. 

  
 

  
Figure 4: Two stereo-pairs used for the automated relative orientation 
computation. Church (1024x768 pixel), Hotel (720x576 pixel). 
 
 

  CHURCH HOTEL 
matched 145 89 Förstner sigma0  0.0183 0.0201 
matched 133 106 Heitger sigma0 0.0217 0.0207 
matched 127 122 Susan sigma0 0.0174 0.0217 
matched 184 85 Harris sigma0 0.0256 0.0425 
matched 93 91 Hessian sigma0 0.0259 0.0290 
matched 269 135 Lowe sigma0 0.0341 0.0471 
matched 139 94 Harris-Affine sigma0 0.0321 0.0402 

Table 2: Results of the relative orientation between stereo-pairs in 
terms of matched points and sigma naught [mm] of the adjustment. 

 
In Table 2 the results of the experiments are reported. To notice 
the fact that with region detectors (Lowe and Harris-affine 
operators), the number of matched correspondences is maybe 

higher but the accuracy of the relative orientation is almost two 
time worst than with an interest points detector. 
 
 

5. ACCURACY IMPROVEMENT OF              
DETECTOR AND DESCRIPTOR LOCATIONS 

As shown in section 4.4, region detectors and descriptors 
provide worst accuracy compared to corners in orientation 
procedures. The reason might be explained as follow (Figure 
5): regions are localized with their centroid and generally 
matched using the extracted descriptor feature vectors. But, due 
to perspective effects between the images, the centre of the 
regions might be slightly shifted, leading to lower accuracy in 
the relative orientation. 
 

  
Figure 5: Affine regions detected with Harris detector [Mikolajczyk et 
al., 2004] with homologues regions. Due to perspective effects, the 
centre of the regions might be slightly shifted (red arrows). 
 
Affine invariant regions are generally drawn as ellipses, using 
the parameters derived from the eigenvalues of the second 
moment matrix of the intensity gradient [Lindeberg, T., 1998; 
Mikolajczyk, K. and Schmid, C., 2002]. The location accuracy 
of the region centers can be improved using a LSM algorithm. 
The use of cross-correlation would fail in case of big rotations 
around the optical axis and big scale changes, both typical 
situations in wide baseline images. The ellipse parameters of 
the regions (major and minor axis and inclination) can be used 
to derive the approximations for the affine parameters 
transformation of the LSM. Indeed LSM can cope with 
different image scale (up to 30%) and significant camera 
rotation (up to 20 degrees), if good and weighted 
approximations are used to constraint the estimation in the least 
squares adjustment. 
An example is shown in Figure 6. Given a detected affine 
region and its ellipse parameters in the template and search 
image, LSM is computed without and with initial 
approximations (provided by the region detector), leading to 
wrong convergence and correct matching results. 
 

 

 
Figure 6: Detected affine region (left). Wrong LSM results with 
strongly deformed image patch in the search image, initialized with the 
centroid of the region (centre). LSM result (right) obtained using the 
approximations derived by the region detector algorithm. 
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For the church example of Section 4.3, all the extracted Lowe 
points (regions) were re-located, as previously described, by 
means of LSM algorithm. The final precision of the relative 
orientation decreased to 0.0259 mm. 
 
 

6. CONCLUSIONS 

An evaluation and comparison of interest point and region 
detectors and descriptors has been presented. As the selection 
of comparison criteria is quite difficult, we tried to used 
measures and procedures which are typical in photogrammetric 
applications. Moreover, we showed how to improve to location 
accuracy of region detectors using a classical least squares 
measurement algorithm. 
From all our tests and results, [Förstner & Guelch, 1987] and 
[Heitger et al., 1992] operators showed better results than the 
others examined algorithms. Compared to other evaluation 
papers, we performed a quantitative analysis of the analyzed 
point detectors, based on the relative orientation. On the other 
hand, region detectors and descriptors, as they detect an area 
and not a single point, reported worst accuracy in the relative 
orientation problem. In fact they might detect the same region, 
but the centroid of the region (i.e. the point used to solve for the 
image orientation) might be shifted due to perspective effects. 
Nevertheless, they generally provide for affinity invariant 
parameters, which can be used as approximations for a least 
squares matching measurement algorithm, which would not 
converge without good approximations due to the large camera 
rotations or scale change. Therefore regions could also be good 
image features for precise and automated orientation 
procedures, in particular with images acquired under a wide 
baseline.  
As final remark, we should mention that each operator has its 
own set of parameters which are generally used fix and constant 
for the entire image. An adaptive parameter selection could 
help in the optimization of the point selection and distribution.  
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ABSTRACT: 
 
In this paper, we describe an extension of an automatic road extraction procedure developed for single SAR images towards multi-
aspect SAR images. Extracted information from multi-aspect SAR images is not only redundant and complementary, in some cases 
even contradictory. Hence, multi-aspect SAR images require a careful selection within the fusion step. In this work, a fusion step 
based on probability theory is proposed. Before fusion, the uncertainty of each extracted line segment is assessed by means of 
Bayesian probability theory. The assessment is performed on attribute-level and is based on predefined probability density functions 
learned from training data. The prior probability varies with global context. In the first part the fusion concept is introduced in a 
theoretical way. The importance of local context information and the benefit of incorporating sensor geometry are discussed. The 
second part concentrates on the analysis of the uncertainty assessment of the line segments. Finally, some intermediate results 
regarding the uncertainty assessment of the line segments using real SAR images are presented.  
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1. INTRODUCTION 

Synthetic aperture radar (SAR) holds some advantages against 
optical image acquisition. SAR is an active system, which can 
operate during day and night. It is also nearly weather-
independent and, moreover, during bad weather conditions, 
SAR is the only operational system available today. Road 
extraction from SAR images therefore offers a suitable 
complement or alternative to road extraction from optical 
images [Bacher & Mayer, 2005]. The recent development of 
new high resolution SAR systems offers new potential for 
automatic road extraction. Satellite SAR images up to 1 m 
resolution will soon be available by the launch of the German 
satellite TerraSAR-X [Roth, 2003]. Airborne images already 
provide resolution up to 1 decimetre [Ender & Brenner, 2003]. 
However, the improved resolution does not automatically make 
automatic road extraction easier, yet it faces new challenges. 
Especially in urban areas, the complexity arises through 
dominant scattering caused by building structures, traffic signs 
and metallic objects in cities. These bright features hinder 
important road information. In order to fully exploit the 
information of the SAR scene, bright features and their 
contextual relationships can be incorporated into the road 
extraction procedure. Detected vehicles and rows of building 
layover as well as metallic scattering caused by road signs are 
indicators of roads [Wessel & Hinz, 2004], [Amberg, et al. 
2005].  
 
The inevitable consequences of the side-looking geometry of 
SAR, occlusions caused by shadow- and layover effects, is 
present in forestry areas as well as in built-up areas. In urban 
areas, the best results for the visibility of roads are obtained, 

when the illumination direction coincide with the main road 
orientations [Stilla et al., 2004]. Preliminary work has shown 
that the usage of SAR images illuminated from different 
directions (i.e. multi-aspect images) improves the road 
extraction results. This has been tested both for real and 
simulated SAR scenes [Tupin et al. 2002], [Dell’Acqua et al., 
2003]. Multi-aspect SAR images contain different information, 
which is both redundant and complementary.  A correct fusion 
step has the ability to combine information from different 
sensors, which in the end is more accurate and better than the 
information acquired from one sensor alone.  
 
In this article we present a fusion concept based on a Bayesian 
statistical approach, which incorporates both global context and 
sensor geometry. A short overview of the road extraction 
procedure will be given in Sect. 2. The main focus of this paper 
is the proposed fusion module, which is explained in Sect. 3. 
Some intermediate results of an uncertainty assessment of line 
segments based on a training step and global context are 
discussed in Sect 4.  
 

2. ROAD EXTRACTION SYSTEM 

The extraction of roads from SAR images is based on an 
already existing road extraction approach [Wessel & 
Wiedemann, 2003], which was originally designed for optical 
images with a ground pixel size of about 2m [Wiedemann & 
Hinz, 1999]. The first step consists of line extraction using 
Steger’s differential geometry approach [Steger, 1998], which is 
followed by a smoothening and splitting step. By applying 
explicit knowledge about roads, the line segments are evaluated 
according to their attributes such as width, length, curvature, 
etc. The evaluation is performed within the fuzzy theory. A 
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weighted graph of the evaluated road segments is constructed. 
For the extraction of the roads from the graph, supplementary 
road segments are introduced and seed points are defined. Best-
valued road segments serve as seed points, which are connected 
by an optimal path search through the graph. The approach is 
illustrated in Fig. 1.  
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Figure 1. Automatic road extraction process 
 
The novelty presented in this paper refers on one hand to the 
adoption of the fusion module to multi-aspect SAR images and 
on the other hand to a probabilistic formulation of the fusion 
problem instead of using fuzzy-functions (marked in gray in 
Fig. 1).  
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Figure 2.  Fusion module and its input data 
 

3. PROBABILISTIC FUSION CONCEPT 

Line extraction from SAR images often delivers partly 
fragmented and erroneous results. Especially in forestry and in 
urban areas over-segmentation occurs frequently. Attributes 
describing geometrical and radiometric properties of the line 
segments can be helpful in the selection and especially for 
sorting out the most probable false alarms. However, these 
attributes may be ambiguous and are not considered to be 
reliable enough when used alone. Furthermore occlusions due 
to surrounding objects may cause gaps, which are hard to 
compensate. One step to a solution is the use of multi-aspect 
SAR images. If line extraction fails to detect a road in one SAR 
view, it might succeed in another view illuminated from a more 
favourable direction. Therefore multi-aspect images supply the 
interpreter with both complementary and redundant 
information. But due to the over-segmented line extraction, the 
information is often contradicting as well. To be able to solve 
possible conflicts, the uncertainty of the incoming information 
must be considered.  
Many methods, both numerical and symbolic, can be applied 
for the fusion process. Some frameworks worth to mention, are 
evidence theory, fuzzy-set theory, and the probability theory. 
The last one is, regarding its theoretical foundations, the best 
understood framework to deal with uncertainties. In this chapter 

we will discuss a fusion process accommodating for these 
aspects.  
 
3.1 Features, Attributes and Evaluation 

Man-made objects in general tend to have regular geometrical 
shapes with distinct boundaries. The main feature involved in 
the road extraction process is the line segment, which can either 
belong to the class ROADS or to the class FALSE_ALARMS. The 
selection of attributes of the line segments is based on the 
knowledge about roads. Roads in SAR images appear as dark 
lines since the smooth surface of a road acts like a mirror. 
Therefore radiometric attributes such as mean and constant 
intensity, and contrast of a line as well as geometrical attributes 
like length and straightness should be representative attributes 
for roads.  
 

Other features of interest are linked to global and local context. 
Bright linear features (BRIGHT_LINES) represent the local 
context in this work. The global region features applied in this 
work are URBAN, FOREST, FIELDS and OTHER_AREAS. These 
regions are of interest, since road attributes may have varying 
importance depending on the global context region. For 
example, length becomes more significant for roads in rural 
areas, but may be of less importance in urban areas.   
 

By means of an attribute vector x, the probability that a line 
segment belongs to the class ωi (i.e. ROADS or 
FALSE_ALARMS) is estimated by the well-known Bayesian 
formula, 
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If there is no correlation between the attributes, the likelihood 
p(x|ωi) can be assumed equal to the product of the separate 
likelihoods for each attribute 
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It is important to show that this simplification is valid for the 
data used. Furthermore, it should be noted that this is not a 
definite classification; instead each line segment obtains an 
assessment, which is necessary for the subsequent fusion of 
multi-aspect SAR images. 
 
3.2 Definition and Validation of Probability Density 
Functions 

Each separate likelihood p(xj|ωi) is approximated by a 
probability density function learned from training data. 
Learning from training data means that the extracted line 
segments are sorted manually into two groups, ROADS and 
FALSE_ALARMS. The global context (URBAN, FOREST, 
FIELDS and OTHER_AREAS) is specified for each line segment 
as well. A global context term will be helpful by the latter 
estimation of the prior term p(ωi). The training data used is X-
band, multi-looked, ground range SAR data with a resolution of 
about 0.75 m. The small test area is located near the airport of 
DLR in Oberpfaffenhofen, southern Germany.  
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The independence condition has been empirically proved by a 
correlation test using the training data. Only two attributes, 
mean intensity and constant intensity, showed any correlation, 
which in fact can be expected due to the speckle characteristics 
of SAR data. As a conclusion, the factorized likelihoods can not 
be applied for these two attributes. The rest of the attributes did 
not indicate any dependence. Figure 3 exemplifies this for the 
two attributes length and intensity. 
 
A careful visual inspection indicated that the histograms might 
follow a lognormal distribution, i.e.  
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A reasonable way to test the match of histograms and 
parameterized distributions is to apply the Lilliefors test 
[Conover, 1999]. This test evaluates the hypothesis that x has a 
normal distribution with unspecified mean and variance against 
the alternative hypothesis that x does not have a normal 
distribution. However, the Lilliefors test tends to deliver 
negative results, when applied to histograms of manually 
selected training data, since the number of samples is naturally 
limited. To accommodate for this fact, the probability density 
functions have been fitted to the histograms by a least square 
adjustment of S and M since it allows to introducing a-priori 
variances. Figs. 4 and 5 show the histogram of the attribute 
length and its fitted lognormal distributed curve. A fitting 
carried out in a histogram with one dimension is relatively 
uncomplicated, but as soon as the dimensions increase, the task 
of fitting becomes more complicated. Since mean intensity and 
constant intensity tend to be correlated, fitting of a bivariate 
lognormal distribution shall be carried out. This is under 
development and until than, only the one-dimensional fitting of 
mean intensity is applied.  
 
Please note that the estimated probability density functions 
should represent a degree of belief rather than a frequency of 
the behaviour of the training data. The obtained probability 
assessment shall correspond to our knowledge about roads. At a 
first glance, the histograms in Figs. 4 and 5 seem to overlap. 

However, Fig. 6 exemplifies for the attribute length that the 
discriminant function 
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increases as the length of the line segment increases. The 
behaviour of the discriminant function corresponds to the belief 
of a human interpreter. The behaviour of the discriminant 
function was tested for all attributes. All are illustrated in Fig 
6a-d.  
 

 
 

Figure 3. Scatter plot of attributes intensity and length 
 
It should be kept in mind that statistical attributes addressing 
deviation and mean are not reliable for short line segments of 
only a few pixels length. Since these line segments are 
considered unreliable with respect to their short length, they can 
simply be sorted out. It should also be pointed out that more 
attributes does not necessarily mean better results, instead 
rather the opposite occur. A selection including a few, but 
significant attributes is recommended.  
 

  

 
 
Figure 4. A lognormal distribution is fitted to a histogram of the 

attribute length (ROADS). 
 

 
 

Figure 5. A lognormal distribution is fitted to a histogram of the 
attribute length (FALSE_ALARMS).  
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a) 

 
b) 

 
c) 

 
d) 

Figure 6 a-d. Discriminant function for the attributes a) Length, b) Straightness, c) Inner intensity and d) Contrast. 
 
  

3.3 Global and Local Context 

Since even a very sophisticated feature extractor delivers 
generally results with ambiguous semantics, additional 
information of global and local context is helpful to support or 
reject certain hypotheses during fusion. Assume, for instance 
that two SAR images with perpendicular view direction contain 
a road flanked by high buildings. The road is oriented across-
track in one scene and along-track in the other scene. While in 
the first image, the true road surface is visible, in the second 
image, merely the elongated shadow of the fore-buildings and 
the bright, elongated layover area of the buildings across the 
road are detectable. The parallel appearance of bi-polar linear 
features (dark/light) would stand for local context, while the 
whole urban area would represent the global context region. 
Hence, a correct fusion of both views must involve a reasoning 
step, which is based on the sensor geometry and its influence on 
the relations between the extracted features. Relations between 
features, which appear due to local context, usually need to be 
detected during the extraction process. Consequently also the 
features involved in local context relations should be attached 
with confidence values. 

Global context regions are derived from maps or GIS before 
road extraction, or can be segmented automatically by a texture 
analysis. As a start, global context (URBAN, FOREST, FIELDS 
and OTHER_AREAS) is extracted manually (see Fig. 7b). Global 
context plays an important role for the reasoning step within the 
fusion module as well as for the definition of the priori term. 
The frequency of roads is proportionately low in some context 
areas, for instance in forestry regions. The a-priori probability 
must be different in these areas. In this work the user specifies 
the priors (see Tab. 1). Therefore the priors represent the belief 
of the user to a certain degree. In future work, these values will 
be compared with values learned from training data.  

 

Global context p(ROADS) p(FALSE_ALARMS) 
FIELDS 0.4 0.6 

URBAN AREAS 0.5 0.5 
FOREST 0.1 0.9 

OTHER AREAS 0.3 0.7 
 

Table 1. Prior terms for different global context areas 
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a) 

 
b) 

 
c) 

 
d) 

Figure 7. a) SAR image analysed in this work b) Manual extraction of global context from previous SAR scene c) Results of 
discriminant function neglecting global context d) Results of discriminant function incorporating global context  

 
 

4. RESULTS AND DISCUSSION 

A cross-validation was carried out in order to examine if the 
assessment of a sample of the training data (1220 line 
segments) delivers a correct result. 83.5% of the line segments 
belonging to the class ROADS were correctly classified and 
76.0% of the FALSE_ALARMS were correctly classified. An 
assessment ignoring global context did not change the number 
of correctly classified road segments, but deteriorated the 
classification of FALSE_ALARMS. As much as 54.3% of the 
FALSE_ALARMS are falsely classified as road segments. The 
prior terms of each classes were assumed to be p(ROADS)=0.3 
and p(FALSE_ALARMS)=0.7. 
 
The assessment was also tested on a line extraction carried out 
in a scene taken by the same sensor as the training data but now 

performed with different parameter settings. In order to test the 
derived likelihood functions in terms of sensitivity and ability 
to discern roads from false alarms, we allowed a significant 
over-segmentation. Results of this test are illustrated in Fig. 7c). 
The derived discriminant value g(x) of each line segment is 
coded in gray, i.e. the darker the line the better the evaluation. 
Two assessments are carried out, one incorporating global 
context and one containing the same priori terms for all context 
areas.  
  
A fact that comes clear from the comparison of Figs..7c) and d) 
is the importance of using global context for the evaluation, in 
particular for determining the Bayesian priors. Incorporating 
global context reduces the number of false alarms in forest 
regions (marked black in Fig. 7b). Still many line segments are 
falsely classified in urban regions, which indicates the need of 
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additional local context information and a different assessment 
in these regions. The attribute length, for instance, should have 
less influence on the final evaluation since short line segments 
may also correspond to roads.  
 
As can also be seen from Fig. 7, most line segments that 
correspond to roads still got a good evaluation. On the other 
hand, many of the false alarms in the urban and forest area are 
rated worse, even though also some correct segments got a bad 
rating. However, keeping in mind that this evaluation is only an 
intermediate step before fusion and network-based grouping 
(see flow charts in Figs. 1 and 2) the learned likelihood 
functions seem indeed being robust enough to be applied to 
different parameter settings as well as different images – of 
course under the condition that the image characteristics do not 
differ too heavily.  
 
The results achieved so far are promising in terms that the 
evaluation of the lines is on one hand statistically sound and, on 
the other hand, it closely matches the assumptions on the 
significance of different attributes with respect to their 
distinctiveness. However, the fusion of evaluated lines from 
different views and thereby taking into account local context 
needs still to be done and analysed in depth.  
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ABSTRACT:

3D models are very important in many industrial and scientific applications. Most part of commercial sensors obtain only a partial
acquisition of the object, so that a set of views are required to build a complete model of the object. Although the motion between these
views is usually unknown, it can be computed by means of registration algorithms. A survey of most important techniques is presented
in this paper, in which they have been classified into coarse and fine registration and compared in terms of the number of views aligned
at every step, the accuracy and the robustness against outliers. The second part of the article presents an improvement of point-to-plane
registration, which includes the determination of cycles in a sequence of views with the aim of minimizing the propagation error or
drift.

1 INTRODUCTION

The acquisition and representation of 3D information is a very
important topic in Computer Vision. The main steps involved
in this problem are: a) Surface acquisition; b) Registration and
c) Integration. Surface acquisition is focused on the search of
the depth usually by means of laser scanning (Forest and Salvi,
2002) or coded structured light (Salvi et al., 2004) among others
such as stereovision (Matabosch et al., 2003) or structure from
motion (Armangué et al., 2003). Registration is the process to
determine the Euclidean motion between two or more views of a
given surface that permits to align them with respect to the same
reference (Besl and McKay, 1992). Integration consists of rep-
resenting the set of views in a continuous and homogeneous sur-
face (Curless and Levoy, 1996).

Although there are many papers focused on surface acquisition,
only a few of them obtain a complete reconstruction. Most papers
are based on one-shot acquisition, so that only a partial view of
the surface is obtained(Salvi et al., 2004). Besides, other papers
take advantage of some sort of mechanical system such as robot
arms or rotating tables to obtain a set of views with respect to the
same reference (Levoy et al., 2000). However, the reconstruc-
tion of the surface is still incomplete due to surface occlusions
depending on the shape of the surface itself and the number of
degrees of freedom of the mechanics. Finally, the accuracy of
these kind of systems highly depends on the accuracy of the me-
chanics.

Range Image Registration is a sort of techniques that computes
the motion between 3D views with the aim of aligning them with
respect to the same reference without any prior knowledge of
the pose from where such views where acquired. Most part of
techniques are centered on pair-wise registration so that only two
different views are aligned in every registration. Hence, a regis-
tration error is accumulated when we are aligning a sequence of
views making necessary to use a further process (multi-view) to
reduce the drift once all the views are already aligned. In sum-
mary, a complete reconstruction of objects is not a trivial problem
in computer vision.

In this paper a survey of the most important registration methods

is presented in section 2. Furthermore, a summary of the state-of-
art is given in section 3. Then, section 4 details the new method
proposed to reduce the propagation errors. Experimental results
are provided in section 5. The article ends with conclusions.

2 REGISTRATION ALGORITHMS

Registration is defined as the set of techniques used to determine
the Euclidean motion between two or more sets of points. There
are several varieties of registration: a) 2D/2D Registration; b)
2D/3D Registration and c) 3D/3D Registration. The surveyed
techniques differ as to whether initial information is required, so
that a Coarse Registration can only be estimated without an initial
guess. If an estimated motion between views is available, a Fine
Registration can then be computed.

2.1 Coarse Registration

Coarse Registration techniques can be defined as the group of
techniques that estimates the motion between two views without
any prior information.

There exists lots of methods to obtain a coarse estimation of the
motion. Some of them are especially used in registration appli-
cations, while others are adaptations of recognition algorithms.
The main idea of them is to characterize some features (points,
lines, etc) in both surfaces in order to find correspondences. Al-
though points are the most used correspondences (Chen et al.,
1998) (Johnson, 1997), other characteristics can be used such as
lines (Stamos and Leordeanu, 2003) or principal axis (Kim et
al., 2003). For instance, Johnson (Johnson, 1997) characterizes
points by using the Spin Image. This image is a 2D representa-
tion of the neighborhood of one point on the surface. Comparing
Spin-images from two different surfaces, point correspondences
between them can be established. Another point descriptor is the
point signature (Chua, 1997). This algorithm describes a point by
using all the points located in a constant distance from it obtain-
ing a vector descriptor of the point which is then compared with
all points in the second surface to find matchings.

Some authors propose to use lines to find pairs of correspon-
dences. Examples are the straight line-based method proposed by
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Stamos (Stamos and Leordeanu, 2003) and the curved line-based
method proposed by Wyngaerd (Wyngaerd, 2002). The first one
is only applied in structured objects, not in free-form shapes. The
second one is based on extracting curves from free-form shapes
to find matchings between pairs of segments.

The main problem of most of these algorithms is the large com-
puting time involved in obtaining a solution. This is because once
some points on the first surface are characterized, they must be
compared with all points in the second surface in order to find
correspondences. In general, Spin Image presents the best ratio
accuracy/time, and the solution obtained is good enough to be
used as an initial guess in a further fine registration.

Although coarse registration techniques are used in many appli-
cations, in others the motion is provided by mechanical or manual
alignment. Despite the method used to estimate the initial guess,
usually the registration error is minimized using next a fine regis-
tration technique.

2.2 Fine Registration

Fine registration refers to the set of techniques that obtain the
Euclidean motion between two or more surfaces by an iterative
minimization. The main drawback of these techniques is the re-
quirement of an initial guess to start the process which may be
quite close to the solution to guarantee the convergence. Here-
after, the most known fine registration techniques are discussed

2.2.1 Iterative Closest Point (ICP) The ICP method was pre-
sented by Besl (Besl and McKay, 1992). The goal of this method
is to obtain an accurate solution by minimizing the distance be-
tween point correspondences, known as closest point. When an
initial estimation is known, all the points are transformed to a
reference system by applying the Euclidean motion. Then, every
point in the first image is taken into consideration to search for its
closest point in the second image. A new motion is estimated by
the minimization of the distances between these correspondences,
and the process is iterated until convergence.

ICP obtains good results even in the presence of Gaussian noise.
However, the main drawback is that the method can not cope
with non-overlapping regions because outliers are never removed.
Moreover, when starting from a rough estimation of the motion,
the convergence is not guaranteed.

Some modifications of ICP have been presented in recent years.
Greenspan (Greenspan and Godin, 2001) applied the Nearest
Neighbor Problem to facilitate the search of closest points. The
first range image is considered as a reference set of points, which
is preprocessed in order to find for every point the neighbor-
hood of points in the second view located at a certain distance.
The points of the neighborhood are sorted according to that dis-
tance. The use of this pretreatment leads to consider the clos-
est point of the previous iteration as an estimation of the cor-
respondence in the current iteration. If this estimation satisfies
the spherical constraint, the current closest point is considered to
belong to the neighborhood of the estimate. This pretreatment
decreases the computing time drastically. A year later, Jost (Jost
and Hugli, 2002) presented the Multi-resolution Scheme ICP al-
gorithm, which is a modification of ICP for fast registration. The
main idea of the algorithm is to solve the first few iterations using
down sampled points and to progressively increase the resolution
by increasing the number of points considered. The author di-
vides the number of points by a factor in each resolution step.
The number of iterations in each resolution step is not fixed, so
that the algorithm goes to the next resolution when the distance
between correspondences falls below a threshold.

Some other approaches (Godin et al., 2001) (Sharp et al., 2002)
are presented with the aim of incorporating features in the points
to increase the efficiency in the matching. In addition, other au-
thors (Trucco et al., 1999) (Zinsser and Schnidt, 2003) proposed
some improvements to increase the robustness of ICP by remo-
ving correspondences whose distances are higher than a thres-
hold.

Overall, ICP is the most common registration method used and
the results provided by authors are very good. However, this
method usually presents problems of convergence, lots of iter-
ations are required, and in some cases the algorithm converges to
a local minimum. Moreover, unless a robust implementation is
used, the algorithm can only be used in surface-to-model regis-
tration.

2.2.2 Method of Chen The algorithm proposed by Chen
(Chen and Medioni, 1991) is an alternative to the Iterative Clos-
est Point. The main difference between both algorithms is in the
matching algorithm. While ICP uses point-to-point matchings,
Chen’s approach is based on point-to-plane matchings. Con-
cretely, considering a point in the first image, the intersection of
the normal vector at this point with the second surface determines
a second point in which the tangent plane is computed. The dis-
tance between this plane and the initial point is the function to
minimize.

Although of most part of this paper is focused on pair-wise regis-
tration, at the end, the author proposed to fuse consecutive views
in a single metaview, avoiding propagation errors. This approach
can be considered as the beginning of the multiview approach.

Despite of the difficulty to determine the cross point between a
line and a plane in a point of clouds, some techniques are pre-
sented to speed up this process (Gagnon et al., 1994) (Park and
Subbarao, 2003).

Compared to ICP, this method is more robust to local minima
and, in general, better results are obtained. The method is less
influenced by the presence of non-overlapping regions. The rea-
son is that only the control points whose normal vector intersects
the second view are considered in the matching, deferring from
ICP, where all points in the first cloud are used in the registra-
tion. Moreover, Chen’s approach usually requires less iterations
compared to ICP.

2.2.3 Matching Signed Distance Fields Masuda (Masuda,
2001) (Masuda, 2002) presented a new registration algorithm ba-
sed on the Matching Signed Distance Fields. The main idea of
a signed distance field is to store the distance to the nearest sur-
face for each point in space. The method is robust so that outliers
are automatically removed. Another advantage of this algorithm
is that all the views of a given object are registered at the same
time, which means a multi-view registration. Hence, the propa-
gation error problem is drastically reduced.

Summarizing, all views are first transformed to a reference coor-
dinate system using the initial estimations of the motion. A set
of key points are then generated on a fixed-size 3D grid of buck-
ets. Finally, the closest point from every key point is searched in
every surface to establish correspondences.

The algorithm presents the advantage of a multi-view registra-
tion and the fact that an integration solution is directly given. Be-
sides, this algorithm can not be used in real time applications such
as simultaneous localization and mapping because it requires the
knowledge of the complete set of views to start the minimization
process.

62



2.2.4 Genetic Algorithms Chow (Chow et al., 2004) presen-
ted a dynamic genetic algorithm to solve the registration problem.
The goal of this method is to find a chromosome composed of the
6 parameters of the motion that aligns a pair of range images ac-
curately. The chromosome is composed of the three components
of the translation vector and the three angles of the rotation ma-
trix. In order to minimize the registration error, the median of
distances between correspondences is chosen as the fitness func-
tion.

Therefore, only a sample of points of the first image are used to
compute the error with the aim of decreasing the computing time.
New chromosomes (potential solutions) are generated by cross-
over and mutation operators. The cross-over operation consists
in combining genes made by two chromosomes to create a new
chromosome. The number of genes to be swapped is randomly
selected in each iteration. The cross-over operation works well
when the chromosome is far from the final solution but it is use-
less for improving the solution in a situation close to convergence.
Therefore, the mutation operation was defined as follows: a gene
is randomly selected and a value randomly obtained between the
limits [−MV, +MV ] is added. The limits are very wide at the
beginning and become narrower at every step in order to guaran-
tee the convergence in the final steps.

A similar method was proposed the same year by Silva (Silva
et al., 2003). The main advantage of this work is that a more
robust fitness function is used and no initial guess is required. The
author defined the Surface Interpenetration Measure (SIM) as a
new robust measurement that quantifies visual registration errors.
Another advantage compared to Chow’s method is the multi-view
registration approach. Finally, the hillclimbling strategy was used
to speed up the convergence.

Overall, the use of genetic algorithms has the advantage of avoid-
ing local minima, which is a common problem in registration, es-
pecially when the initial motion is not provided or it is given with
low precision. This algorithm also works well in the presence of
noise and outliers given by non overlapping regions. The main
drawback of this algorithm is the time required to converge.

3 SUMMARY OF THE STATE-OF-ART

Referring to Pair-wise registration, Chen’s approach presents the
best results in terms of accuracy and convergence. Although, the
fact of computing the normal vectors may be considered a draw-
back, most of the commercial sensors directly provide this infor-
mation during the acquisition step. Otherwise, normal vectors
can be estimated by local planar approximation. Another impor-
tant aspect is that Chen’s approach obtains the best results in case
of low sampling data. The reason is that ICP needs point-to-point
correspondences, so that in the presence of a low resolution it
is very difficult to ensure that the same 3D point is present in
both views. Besides, point-to-plane distances let us to establish
correspondences between points in the second image that are not
present but estimated by a local planar approximation. So, it is
easier to find fine correspondences in a point-to-plane approach.

Another important aspect in registration techniques is the per-
centage of overlapping area. Although original ICP can not cope
with non-overlapping area, robust variants presented by Trucco
and Zinsser obtain good results because of the removal of out-
liers (Trucco et al., 1999) (Zinsser and Schnidt, 2003). In Chen’s
approach, as only correspondences are considered if the normal
vector intersect with the other surface, some outliers are removed
avoiding convergence problems. The method of Chow is also

very robust against outliers, however the high computing time is
an important drawback in genetic algorithms.

Most part of algorithms presented are based on Pair-wise registra-
tion, so that only two views are registered simultaneously. This
fact implies that in the presence of more views, a sequence of
pair-wise registration must be computed. As every registration
presents errors in the computation, this error is accumulated
through all the views producing a drift in the alignment. In or-
der to solve this problem, a refinement step is required. There
are several possibilities to apply this refinement. A solution is
to apply a multi-view algorithm (Pulli, 1999) (Masuda, 2001).
Although this is probably the most accurate solution, it presents
some problems when lots of views are used. First, the time in-
volved in the registration is very high. Second, due to propaga-
tion errors, initial guess of the multi-view algorithm can be far
from the solution, producing errors in the convergence. Finally,
it can only be used once all views are already acquired.

With the aim of solving these problems, some other proposals
have been recently presented. The main idea is to determine loops
between the views. A cycle is considered when the actual acqui-
sition contains significant overlapping area with a previous sur-
face. A minimum number of views is required in order to avoid
loops in consecutive acquisitions. The idea of a loop is similar to
robot navigation where a cycle is considered when the same place
is revisited by a robot. When a cycle is determined, the accu-
mulated registration error associated is computed by forcing the
product of all matrices to be the identity. Some authors (Sharp et
al., 2004) distributes the error through all the views of the cycle.
However, some rules are required to distribute the error between
views properly. Another important step is the way a cycle is de-
termined. Registration errors can increase dramatically if a cycle
is estimated between views that do not really form a cycle.

Although, the method proposed by Sharp solves the drift prob-
lem between the initial and the final view in a cycle, the propa-
gation error is not always correctly distributed through the rest of
views. The final view is forced to be well registered to the initial
view, and the transformation involved in this motion is distributed
through the rest of views depending on the weight associated to
each view. Hence, the selection of the weights of every view
is crucial to obtain good results. If these weights are not very
accurate, the error is badly distributed, obtaining misalignments
inside the loop. Views near the endings are good located, but
not the views far from them. In order to solve this problem, we
propose to analyze simultaneously all the views belonging to the
loop, as explaining next section.

4 REFINEMENT STEP

In order to solve the problem of the propagation error without
using all views in the minimization, we propose to minimize the
error in a loop by only considering the views that have common
information. Note that in large sequence of views, when views
are registered simultaneously, a lot of time in general is wasted
in searching potential correspondences between views that do not
even contain overlapping area.

Our algorithm is based on Pair-wise registration of consecutive
views until a cycle is determined reducing the search of corre-
spondences to only the views with overlapping area. Then, all
the views of the cycle are minimized simultaneously to remove
propagation errors. Finally, the algorithm follows until another
cycle is found or no more surfaces are acquired.

The goal of our application is to develop an algorithm to register
surfaces acquired by a 3D hand-sensor. Our refinement approach
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Figure 1: Flow diagram of the proposed method

is composed of three main parts: a) Initial alignment; b) Cycle
detection; and c) Cycle Minimization. All the steps are shown in
Figure 1 and detailed in the following section.

4.1 Initial alignment

The first part of the algorithm is focused on obtaining an initial
alignment. As views are acquired consecutively, we assume that
two consecutive views are close one to the other. This assumption
only fails when we analyse two views that have not been acquired
consecutively but they belong to a sequence. In this case, the
motion between both views is computed by the product of all the
motions in the sequence.

The algorithm selected is based on the method of Chen. However,
some modifications have been done to increase the accuracy. The
Normal Space Sampling defined by Rusinkiewicz (Rusinkiewicz
and Levoy, 2001) is added in order to select the most representa-
tive points in the first image. Furthermore, the proposal of Park
(Park and Subbarao, 2003) is used to speed up the process. An
example of registration is presented in Figure 2.

Figure 2: Result of pair-wise registration between two consecu-
tive views

4.2 Cycle detection

A cycle is defined as a set of views that forms a sequence and the
initial and final views shares a large overlapping area. The cycle
determination step consists in searching for surfaces whose over-
lapping region is significant. As two consecutive views contain
lots of points in common but do not form a cycle, a minimum
number of views in a sequence is required to check if they form a
cycle.

In order to determine if two views are close enough, the motion
between them is computed by using pair-wise registration. The
motion (jTi) between any view (i) and the last view acquired (j)
is estimated by the product of all consecutive motions (kTk−1)
from i to j as shown in equation 1.

jTi =

j∏

k=i+1

kTk−1 (1)

Then, the translation is given by the fourth column of jTi. Fi-
nally, both views are considered close one to the other if the norm
of the translation vector is smaller than a threshold.

In order to validate this result, the overlapping percentage be-
tween both views is computed. First, as the computation of the
overlapping region is hard consuming, an approximation is ap-
plied. Hence, the 3D bounding box of both surfaces is com-
puted. Then, the overlapping is analyzed in 2D by projecting
both bounding boxes on the planes X-Y, X-Z and Y-Z. Then, the
percentage of overlapping area is computed by means of the over-
lapping of the bounding boxes in such planes. If this overlapping
percentage is higher than a threshold (50% in our case), a loop
is considered between these views. Second, in order to speed
up the process and assuming that the real overlapping area is not
necessary but just a percentage, an approximative but very fast
computation is proposed. Hence, a nxn matrix is defined whose
elements are increase by 1 if they belong to any box, and unset to
0 otherwise. Then, an approximation of the overlapping area is
obtained by counting the number of 2 divided to the area formed
by both boxes.

4.3 Cycle minimization

When a cycle is found, a multi-view minimization must be ap-
plied to decrement the propagation errors. In order to take into
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account all the views of the cycle, corresponding pairs are simul-
taneously searched for in all views. For each view i, the trans-
lation vector with respects to the other views j is computed. If
the distance is small enough to guarantee an overlapping region,
point-to-plane correspondences are searched for, obtaining two
sets of points Pik and Pjk, where Pik and Pjk are the points from
the view i and j, respectively. Then, the function f to minimize
is the following:

f =

N−1∑

i=1

N∑

j=2

Np∑

k=1

Pik − (T o
i ×)−1T o

j × Pjk (2)

where N is the number of views in the cycle, Np is the number of
point correspondences between views i and j and T o

i is the trans-
formation matrix than aligns view i with respect to the first view
in the cycle. This function is minimized by using Levenberg-
Marquardt algorithm.

5 RESULTS AND DISCUSSION

In order to test our approach, real images are acquired with the
3D sensor developed in our laboratory (Matabosch et al., 2006).
The goal of this sensor is to acquire 3D surfaces by means of a
on-the-self camera and a stripe laser composed of 19 slits. The
set-up lets us to acquire views from moving objects or acquire
consecutive views while the sensor is manually displaced around
the object, without any prior information about the pose.

As the goal of the experiments is to evaluate the accuracy of the
registration process, the sensor is placed on a XYZ-translation
table (see Figure 3). In this experiment the object of Figure 5a is
used and 27 consecutive views are acquired.

Determining the transformation matrix that relates the coordinate
system of the sensor with respects to the coordinate system of the
table, the motion between consecutive views can be computed
and compared to the motion obtained by the registration process.

Figure 3: Set-up used in the experiments

Both translation and rotation errors are represented in Figure 4.
Translation errors are obtained as the discrepancy between the
real translation (given by XYZ-Table) and the estimated one (ob-
tained by registration). Rotation errors can be analysed by com-
paring the angle between both real and estimated rotation axis and
the discrepancy between the norm of both axis of rotation. Fig-
ure 4 shows that our method is suitable to reduce the propagation
error in the presence of cycles. Although Sharp’s method obtains
better results at the end of the cycle (view 21), the error is worse
distribute inside the view with respect to our approach. After this
view, the error increases because no other cycle is found.

The complete reconstruction is shown in Figure 5, where an inte-
gration algorithm is applied to obtain a continuous surface with-
out redundant information. The algorithm used is based on the
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Figure 4: Evolution of the registration errors: a) Rotation Errors;
b) Translation Errors

Volumetric Integration method of Curless (Curless and Levoy,
1996).

6 CONCLUSIONS

In this paper, a survey of registration techniques is presented dis-
cussing the pros and cons among them. Furthermore, as most
part of registration algorithms do not solve the problem of error
propagation, some approaches are discussed and a new proposal
is presented.

Our proposal is based on minimizing the registration errors be-
tween all views contained in a loop. A loop is detected by com-
puting the translation vector between views. Then, in order to
prove that a real loop exists, the overlapping between the first and
the last view in the loop is computed. An approximation of the
overlapping area is computed by means of the projections onto
planes X-Y, X-Z and Y-Z with the aim of reducing the computing
time.

When a loop is found, global error is minimized by using a multi-
view registration algorithm based on Levenberg-Marquardt and
point-to-plane correspondences.

Results show that errors are less important compared to the ones
obtained by using traditional Pair-wise approach. Furthermore,
as only views of the same cycle are simultaneously minimized,
our approach obtains better accuracy in less computing time com-
pared to a classic multi-view.

These experiments also show than our method obtain better re-
sults than the proposal of Sharp. This is because our proposal
minimize the global registration error whereas Sharp’s algorithm
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Figure 5: Complete registration of a real object: a) Picture of the object b) Final registration including bounding boxes of all 27 views
acquired to obtain the final model

only force that the error between initial and final view of the cy-
cle must be zero, then the error is distributed through the views
of the cycle. On the other hand, this distribution does not require
significant computation, obtaining final results in less time than
our proposal.

Experimental results are done with real objects, obtaining both
visual and quantitative good results.
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ABSTRACT:

Laser scanning- or ”LIDAR”-based systems show perfect performance during time-critical events, like data collection in disaster mana-
gement. To this end the research reports from classification of damagedbuildings, a special challenge, for which first results are given.
Firstly, mathematical foundations compile some new insights which are specific for the mentioned task, like Bolzano’s theorem and
statistical tests based on an extended Gauss-Markov model. Secondly, itis presented how these tools support the segmentation of planar
surfaces and the classification of TIN segments into undamaged and damaged elements as well as into connecting triangles. Results
are presented for real data from a training area of the Swiss Military Disaster Relief. The present status of the investigation shows that
clear assumptions can be made for damaged buildings. Further steps willfuse additional knowledge in terms of data and algorithms.

1 INTRODUCTION

Disaster Management issues, unfortunately, are of growing im-
portance worldwide. In any case of disaster, spatial data are the
backbone for adequate decisions.

This is particularly true in case of time-critical situations, where
the responsible experts have to make their decisions very fast with
respect to save as many lives as possible. Therefore, image-based
data acquisition including automatic image analysis procedures
proves to be an excellent tool in a disaster environment.

More precisely, laser scanning (”LIDAR”) shows an ideal per-
formance for such environments due to fast and geometrically
precise data. At the IPF the technique has been analysed in the
context of strong earthquakes since 1997 (Steinle & Bähr 1999;
Vögtle & Steinle 2000). However, a general problem is the lack
of ”real” laser scanning data from earthquakes or similar occa-
sions: synthetic simulations of destroyed or damaged buildings
would never fully reveal what might happen in reality.

This problem has overcome by a laser scanning flight of a camp
from the Swiss Military Disaster Relief. The camp contains a
complete collection of different types of destroyed or damaged
building ensembles. The aim of this publication is to show the
performance of laser scanning data for detection and classifica-
tion of such an environment. This is a challenging new task
which starts from the results for modelling undamaged build-
ings, which have been broadly published (see e.g. Kaartinen et
al. 2005; Schwalbe et al. 2005; Steinle 2005).

Before starting, some basic terms have to be clarified. The over-
all aim is classificationof damaged buildings recorded by laser
scanning in the context of disasters, like earthquakes. Classifica-
tion means to assign unknown patterns to a priori given classes.
The classes are expressed by names (concepts). This is a very
important observation, since concepts are by nature ambiguous
(Bähr & Müller 2004; B̈ahr 2005).

The patterns to be classified are the result of asegmentationpro-
cess of the LIDAR point clouds. Therefore, segmentation is a
necessary step with respect to the following classification and
means division of the point cloud into homogenous features.Ho-
mogeneitymay be very diverse, like patches of similar colour,

shape or orientation, like edges of similar length, width and mu-
tual position and even like point clusters of given distribution.
The features extracted in the segmentation process are, nota bene,
without any semantics.

Finally, the termmodelneeds some comments, since its use is of-
ten vague and not clearly defined. In the context of this work the
model contains the knowledge (i.e. facts and rules) necessary for
segmentation of the point cloud. Subsequently,modellingmeans
formalising the physical world in order to make the data fit for
reasoning.

2 SOME MATHEMATICAL FOUNDATIONS

2.1 Theory of Model Error Detection in Gauss-Markov Mo-
dels

In order to check a Gauss-Markov model for model errors, the
initial model given by

l + v = A x̂ and Cll = σ2
0 Qll = σ2

0 P−1 (1)

may be extended. To do this,p new unknownsy are introduced,
which compensate gross errors from single observations or from
groups of observations (see Baarda 1967; Baarda 1968; Heck
1985; Niemeier 2002).

While the stochastic model remains unchanged, the extended
functional model is given by

l + v̄ = A ˆ̄x + B ŷ. (2)

The matrixB describes the influence of the new parametersy
on the observations. Since the residuals and the estimates of the
unknowns change in relation to the initial model, these values
are written as̄v and ˆ̄x. The estimates of the new unknowns are
collected in the vector̂y. The extensionB ŷ may be regarded as
an improvement of the initial model. The redundancyr̄ of the
extended model is given by

r̄ = dim(l) −
(
dim(ˆ̄x) + dim(ŷ)

)
= r − p (3)
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wherer is the redundancy of the initial model.

If B is column-regular, the weighted square sum of the residuals
Ω̄ = v̄T P v̄ of the extended model follows from the weighted
square sum of the residualsΩ = vT P v of the initial model:

Ω̄ = Ω − ŷ T Q−1
yy ŷ = Ω − ∆Ω (4)

with

ŷ = −Qyy BT P v and Qyy = (BT P Qvv PB)−1

This equation shows clearly that the model extension leads to a
reduction of the weighted sum of the squares of the residuals.
The extension makes sense only if the square sumΩ̄ of the ex-
tended model becomes significantly smaller than the respective
value from the initial model (Ω). This is precisely the case if∆Ω
is significantly larger than zero.

This case may be checked by means of a parameter test. The be-
lief that the model errors are not significant (i.e. the initial model
does fit to the physical reality) corresponds to the null hypothesis
H0. The alternative hypothesisHA, on the other hand, assumes
that model errors do exist and therefore the extended model has
to be accepted. In order to test whether the model errors are sig-
nificant, the weighted square sum∆Ω may be compared to the
a priori varianceσ2

0 or to the a posteriori variancē̂σ2 of the ex-
tended model (Niemeier 2002).

The corresponding test statistics are

T1 =
ŷ T Q−1

yy ŷ

σ2
0

∼ χ2
(p,λ) = p · F(p,∞,λ) (5)

and

T2 =
ŷ T Q−1

yy ŷ

ˆ̄σ2
∼ p · F(p,r−p,λ) (6)

respectively. Ify = E(ŷ) is the expectation of̂y,

λ =
y T Q−1

yy y

σ2
0

(7)

is the non-centrality parameter of the (non-central) Fisher distri-
bution and vanishes ifH0 is valid.

2.2 Segmentation of Planar Surfaces

The selected approach for modelling buildings is based on the as-
sumption that undamaged buildings may be represented by planar
surfaces. For the extraction of planar surface elements a region
growing algorithm is used, taking 2.5D raster data. The starting
point for any surface segment is a seed region which fulfils the
condition that then assigned points are approximately located
in a plane. The parameters of this plane are determined by least
squares adjustment. Owing to only 3 unknowns (â0, â1, â2), the
solution of the adjustment may be given straightforward by the
well known expressions (xi, yi: position coordinates;g(xi, yi):
height):

g(xi, yi) + vi = â0 + xi â1 + yi â2 (8)

(
â0

â1

â2

)
=
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After determination of the seed region any of the adjacent pix-
els which were not yet assigned to a surface segment is tested
whether it fulfils the planar equation under concern. To this end,
in a first step the plane is computed again, based on the enlarged
set of points. In a second step it is decided by a global test, in-
volving

Tglob =
vT P v

σ2
0

∼ χ2
r , (10)

if the null hypothesis can be accepted.v is the column vector of
least squares residuals resulting from the enlarged set of points.

Moreover, the model error detection method described in chapter
2.1 is taken in order to check whether the tested point might show
a gross error.

In case of rejection of the null hypothesis by either the global
test or the model error detection method, the model contains an
unacceptable error. As the model was ok before adding the point,
the conclusion is that this point does not fit to the plane. The
results of the segmentation procedure are stored in a so-called
label imagefrom where they are taken for further processing.

2.3 Bolzano’s Theorem for Retrieving Vertical Planes

By the segmentation of planar surfaces vertical planes cannot be
extracted. Therefore, the neighbourhood between the planes may
only be determined, for a first step, in relation to the projection of
the segments onto the ground plane. By this procedure it is im-
possible to recognise if adjacent planes do really intersect at their
border lines. Due to this situation for any contour line recovered
from the ground plane it is necessary to test if a vertical break ex-
ists between the two neighbouring segments. In case of detection
of such a vertical break, a vertical plane has to be inserted in the
course of the border line in order to form a consistent building
model.

Based on this procedure it is tested if adjacent planes do really
intersect in the vicinity of a common border line. Because of
linear height change along the border line it is sufficient to test
in the endpoints if there is a significant height difference between
the two planes.

The methodology is based on Bolzano’s theorem (see Bronstein
et al. 2001 (p.61)):

If a functionf(x) is defined and continuous on a closed
interval[a, b ] and the values of the function in the end-
points of the intervalf(a) andf(b) have different signs,
then there exists at least one valuec, wheref(x) is
zero:

f(c) = 0 for a < c < b.

Geometrically spoken, the curve of a continuous func-
tion intersects thex-axis at least one time at the transi-
tion from one side of thex-axis to the other.
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This mathematical theorem is graphically explained and sub-
sumed to the case of segmentation of planes in Figure 1. For any
border line of the two planesA andB exist exactly two vertical
planes, which respectively contain one of the two endpointsPA

andPE of the border line and which are orthogonal to that line.
By intersecting the two vertical planes with the planesA andB,
the four straight linesgAA

, gBA
, gAE

andgBE
are created. More

precisely, the linesgAA
andgBA

result from the intersection with
the vertical plane which containsPA, whereas the linesgAE

and
gBE

result from the intersection with the vertical plane which
containsPE .

This height checking test investigates whether the straight lines
which result from intersection with one of the vertical planes do
intersect within a given interval. The valuek that defines the
interval may be chosen arbitrarily, but it controls the velocity of
the procedure and the quality of the final results.

As a straight line is a continuous function, the distance between
two straight lines again is continuous. Therefore, instead of test-
ing intersection of two lines within a particular interval, it may
be asked whether the function which results from the distance
between the two lines shows a zero point within this interval.

In order to determine if the linesgAA
andgBA

do meet in the
interval which is given byPA1 andPA2 it has to be tested after
Bolzano’s theorem if the differencesdA1 anddA2 from the func-
tions of both lines show the same sign. If so, the two lines do
not meet within the given interval and vice versa (see Figure 1 (b)
and (c)).

If both the linesgAA
, gBA

and gAE
, gBE

do intersect within
the intervals defined by the pointsPA1, PA2 andPE1, PE2, re-
spectively, the trace of the resulting line in the ground plane is
within the red domain of Figure 1 (a). This means that it nearly
matches the estimated border line. Consequently, the intersection
of this line with other edges will lead to points in the estimated
locations. Therefore, in such cases no vertical plane has to be
inserted. However, if only one of the two line pairs intersects
in the given interval or if no intersection can be determined at
all, the vertical gap between the segmentsA andB in the vicin-
ity of the border line is too large and the intersection is rejected.
To make the model consistent, a vertical plane has to be intro-
duced. The equation of this plane may easily be determined by
the coordinates of the pointsPA andPE together with the vertical
condition.

3 FROM SEGMENTS TO CAD MODELS FOR
UNDAMAGED BUILDINGS

In order to do the step from single segments to CAD models after
completion of the surface segmentation, an analysis of the neigh-
bourhood conditions of the surfaces has to be performed. For this
reason by means of morphological operators and starting from
the label image(see par. 2.2), it is checked in a 2D space which
surface segments are adjacent (according to (Steinle 2005)). In a
next step the border lines between neighbouring segments are de-
termined. For the itinerary of the border lines it is tested if breaks
between adjacent segments do occur, a case which would demand
the insertion of a vertical plane. For this procedure the described
approach based on Bolzano’s theorem is taken (see par. 2.3).

After the topological relations between the single surfaces are
known, the lines which describe the edges of the buildings may
be determined from intersections of the planes. The topology of
the edges is derived indirectly from the neighbourhood conditions
of the surfaces, since the edges are not determined directly from

BA
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PE1 PE2
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PAPA1 PA2
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zP BA2
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Figure 1: Height checking based on Bolzano’s theorem; (a)
Ground plane; (b) Intersection along profile I - I in case that the
straight linesgAA

andgBA
do not intersect in the given interval;

(c) Intersection along profile I - I in case that the straight lines
gAA

andgBA
do intersect in the given interval
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the original data but from plane intersections. The corner points
of the buildings are the result of intersecting edges.

Since the geometrical primitives and the corresponding topology
is known, it is possible to construct a wireframe model auto-
matically. Commercial visualisation software shows certain con-
straints and therefore does not fully allow presenting such a wire-
frame model. One of the limitations is that surfaces can be dis-
played only if they are composed of 3 or at maximum of 4 points.
Since the surfaces of buildings are generally made of more than
4 points, it is required to cut the surfaces into subsurfaces (e.g.
triangles). To this end in a first step the border polygons of sin-
gle building surfaces are determined. Afterwards it is tested if
the polygons are ”simple polygons” what means that ”non adja-
cent edges” do not contain common points. For all ”non simple
polygons” a reduction to simple polygons is mandatory, e.g. after
Sunday’s method (Sunday 2005).

The polygons then have to be cut into triangles, what in our case
is performed by a Constrained Delaunay Triangulation. It must be
pointed out that a bordering polygon of a roof surface may con-
tain another polygon of the same surface completely. This e.g.
happens in case of garrets which appear within a roof surface.
The central polygon then has to be excluded from the triangula-
tion. An example for an automatically generated building model
is shown in Figure 2.

Figure 2: Automatically generated building model

4 CLASSIFICATION OF DAMAGED BUILDINGS

Classification of damages in buildings affected by earthquakes
presents a key research topic at Karlsruhe University since a de-
cade (Steinle & B̈ahr 1999). The solutions all have to be based on
comparing pre- and post event structures of the buildings under
investigation. In a first step appropriate models for describing
damages from the laser scanning data have to be set up.

Damaged buildings may show very different damage types. The
types to be discriminated are summarised in a damage catalogue
as shown in Figure 3. In detail, for each damage type descrip-
tions and geometrical characteristics are assigned. As geometry
is concerned, features are e.g. differences in height and volume
as well as changes of the inclinations of the building’s surfaces
(Schweier & Markus 2004).

Therefore, modelling damaged buildings has to take into account
such geometrical features which characterise the respective dam-
age types well. The sequence of the approach is given in Figure 4.
In a first step planar surfaces are segmented (see par. 2.2) in or-
der to answer questions about change of inclinations and about
size of the registered surfaces. In case of strong damages the
segmentation results in many small surface elements and many
non-segmented pixels. If a reference model of the undamaged
building structure is available, an estimation is possible, whether
damage occurred or not. This may be done by comparing num-
ber and size of the surfaces under concern. If no reference model
is available, speculation must be done most carefully (e.g. many
small surfaces might represent a dome).

1. Inclined plane 2. Multi layer

collapse

3. Outspread

multi layer col-

lapse

4 a) Pancake

collapse, first
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mediate story
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bris with vertical
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Figure 3: Compilation of the damage types (Schweier & Markus
2004)

First Segmentation of planar surfaces

Triangulation

Classification

Second Segmentation of planar surfaces

Second Classification

Figure 4: Workflow of the modelling of damaged buildings

After the surface segmentation a planar Delaunay-based TIN in
2.5D is produced. For the definition of the mesh points the re-
sults from the surface segmentation have to be taken into account.
Therefore, points have to be selected which guarantee that the
produced triangles match the adjusted planes sufficiently in seg-
mented areas. This is the case if, for any segmented pixel, a grid
point is produced with position coordinatesxP andyP equal to
the pixel coordinates and with heightzP computed in such a way
that the point exactly matches the extracted plane. This height
may be derived from the general equation of a plane:

zP = (d − a xP − b yP )/c (11)

As the non segmented points of course have to be integrated into
the triangulation, too, for each pixel which was not assigned to
a surface segment a point is added to the number of the mesh
points, whereas its coordinates are taken from the respective pix-
el. For reducing the number of the created triangles, only the non
segmented points and the border points of the surface segments
are accepted as mesh points. Figure 5 shows the TIN of an area
with damaged buildings.

Figure 5: Produced TIN of an area with damaged buildings
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Because of the ambiguity of the 2D Delaunay Triangulation in a
raster domain, the TIN produced this way is not fully clear as it
may lead to different results in case of regular distribution of the
grid points. A 3D approach would improve this situation.

After creating the TIN the triangles have to be classified accord-
ing to Figure 4. For each triangle it is tested, whether its cor-
ners were assigned by the surface segmentation process to the
same segment i.e. whether the triangle is located in the associ-
ated plane. If this is true, the triangle represents a part of the
assigned plane and is added to the class ofplane triangles. It
may happen that the corners of a triangle are not part of a sin-
gle plane. For this type of triangle the termplanes connecting
triangle is used because it is representing a connection between
two or three planar surfaces. If a triangle contains just one point
which was not segmented it is classified asdebris triangle. For
such triangles the probability exists that they represent strongly
damaged building parts.

Narrow shaped planar surfaces are not registered, because in the
surface segmentation process a new surface segment may be cre-
ated only if a seed region is found which shows a minimum area
(e.g. 3 x 3 pixels) and fulfils a certain precondition (see par. 2.2).
Therefore it may happen e.g. that side roofs or parts of ton-shaped
roofs are represented bydebris triangles(see par. 5).

To avoid this problem, a second segmentation is executed starting
from thedebris triangles(Figure 4). In this process it is looked
for several neighbouringdebris triangleslying approximately in
a plane. The used approach is similar to the first segmentation
based on raster data (see par. 2.2). The starting point is built by
a debris triangle. First of all the parameters of the plane defined
by the three points of this triangle are calculated. Afterwards it
is tested for any of the neighbouring triangles if it concerns ade-
bris triangle. If this is the case a regression plane is calculated
through the points of the initial triangle and the points of the cur-
rently examined triangle. In order to check the correctness of the
used model a global test (eq. (10)) and a test for blunders (eq. (5)
and (6)) are carried out. Is the model accepted by both tests the
triangles are lying approximately in a plane. So the examined tri-
angle is assigned to the new segment. Is the assumption rejected
the triangle is not assigned to the new segment and the plane para-
meters are reset. In both cases the next adjacent triangle is looked
at. In the further steps the regression plane is calculated through
the points of all triangles that have already been assigned to the
new segment and the point of the momentarily considered trian-
gle that does not belong to one of the other triangles. If no further
adjacent triangle can be found that fulfils the requirements it is
tested how many triangles have been assigned to the segment. If
the number is less than a given number the area of the segment is
regarded as too small and therefore the segment is deleted.

After the second segmentation, the triangles of course have to
be classified once more. Now, two new classes are introduced:
segment trianglesandsegment/planes connecting triangles. The
first mentioned class represents newly detected surface segments.
The second class contains triangles which connect new detected
segments or new and old ones.

5 RESULTS

It has to be highlighted that the classification approach for dam-
aged buildings was tested by real laser scanning data in an area of
physically damaged buildings (i.e. no simulation!). The test area
is a training field from the Swiss Military Disaster Relief (Fig-
ure 6). It has an extension of about 500 m× 800 m and is used
for training rescue and support during catastrophic events. The

Figure 6: Aerial photograph of the test area

original data were acquired by TopoSys Company in 2004 and
transformed into digital surface models of 1 m raster width. The
precision of these models is in the order of±0.5 m in position
and± 0.15 m in height.

Figure 7 displays how a side roof of a building and a ton-shaped
roof (a) look before (b) and after (c) the second surface segmen-
tation step. Thedebris trianglesare shown in red, theplanes
connecting trianglesin dark and thesegment/planes connecting
triangles in light grey. Each of the extracted segments is dis-
played in a different colour. It is obvious, that by the first step
neither the side roof nor parts of the ton-shaped roof were seg-
mented correctly. Consequently, they are shown as debris in Fig-
ure 7 (b). After the second segmentation step the corresponding
surfaces are assigned to the new surface segments.

Figure 8 shows the model of a larger area, where each surface
segment is displayed by a different colour. The area contains both
the building from Figure 7 of pancake collapse type and some
heaps of debris. Besides, two trucks are imaged and marked by
black circles. The discrimination between debris on the one hand
and obsolete information like the trucks (”perturbations”) on the
other hand plays an important role in classification of damage
types. Elements like the trucks, taken as building components,
do inevitably lead to misclassifications. The example in Figure 8
clarifies, that the trucks may not be discriminated from the further
debris structures without introducing additional knowledge.

A CAD model for the area shown in Figure 6 is given in Figure 9.
This example shows that, supported by such a model, estimations
at high probability are feasible for areas where strong damages
exist and for areas where the buildings will probably not show
major damages.

6 CONCLUSIONS

Modelling undamaged buildings by laser scanning is nearly oper-
ational (Kaartinen et al. 2005), whereas segmentation and clas-
sification of damaged buildings is a new challenging task. Laser
scanning obviously is an ideal tool for developing fast automatic
real-time procedures, e.g. in the context of rescue in a disaster
environment. First results are presented which use extended clas-
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segment/planes connecting triangles

debris triangles

planes connecting triangles
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planes connecting triangles
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(b) (c)

Figure 7: (a) A building with a side roof and a ton-shaped roof in
a classified TIN (b) before and (c) after the second segmentation
step. Each of the extracted segments is displayed in a different
colour.

debris triangles

planes connecting triangles

segment/planes connecting triangles

Figure 8: Model containing damaged buildings and ”perturba-
tions” (trucks marked by black circles). Each segment is shown
by another colour.

debris triangles

planes connecting triangles

segment/planes connecting triangles

Figure 9: Model of the test area containing damaged buildings.
The segments are shown in different colours.

sical approaches known from modelling of undamaged buildings
and which make clear that damaged parts may be discriminated
from undamaged parts of buildings.

The results are encouraging to further extend the approach: As far
as the algorithms are concerned, much more should be possible
to extract from the TIN than just geometrical parameters, espe-
cially when modelling in 3D instead of 2D. For instance, neigh-
bourhood and shape are important additional features to take into
consideration. Besides refinement of the algorithms additional
data is expected to strongly improve the results. The step to fuse
multispectral scanner and laser scanning data suggests itself as
today the flights do provide both.
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ABSTRACT:

A method for accurate 3D reconstruction of road features from multiple calibrated aerial images of urban areas is proposed in this
paper. We here focus on road-marks and in particular on zebra-crossings and discontinuous road-marks separating circulation lanes.
The approaches used here are generic and based on a-priori external knowledge and thus constrain the extraction of image features. As
we will explain, two strategies are adopted depending on the object size. For zebra-crossings, we first build 3D segments representing
stripes’ borders by 2D segments matching. For discontinuous lanes, webuild a graph describing the network in each image and then
match nodes in order to obtain 3D position of stripes’ centers. This provides in both cases an initial solution in 3D space. Using
geometric and radiometric modeling to obtain a set of plausible models, e thenlook for an optimal solution. The last step yields us
to choose the best one in adequacy with images data. A correlation based energy and template matching strategy achieve this in a
hierarchical frame. The algorithm is finally evaluated with ground controlpoints surveyed with a millimetric precision.

1 INTRODUCTION

Most of the photogrammetric research on object extraction from
aerial images in the last years has focused on building reconstruc-
tion. However, the road network is extremely structuring for ur-
ban scene analysis and for defining possible building ROIs. In
addition, in 3D city models, roads and pavements should need to
be described as well as buildings, thus needing a surfacic repre-
sentation and a decimetric and geometric accuracy instead of the
classical linear spaghetti model encountered in most of Road GIS
databases. In this scope, (Vosselman, 2003) proposed a 3D road
reconstruction from LASER points cloud and a cadastral map.
For these applications, road-marks are very interesting descrip-
tors of the road surface architecture. Semantic and functional
informations can be derived from them: way of circulation, num-
ber of lanes, special lanes (public transport, ...). They can be used
in numerous applications such as cartographic road databases up-
dating (Zhang, 2003), road extraction (Hinz and Baumgartner,
2002; Steger et al., 1997) or creation of visual landmarks used in
autonomous navigation systems (Royer et al., 2006).
Concerning ground-based imagery, many papers were published
and various approaches are used. (Se and Brady, 2003) de-
tect zebra-crossings for outdoor aid navigation for the partially
sighted using vanishing lines. (Rebut et al., 2004) proposed
a method for road marks analysis with mathematical morphol-
ogy and a training database. For an automatic road marking
repainting tool, (Charbonnier et al., 1997) designed an algo-
rithm analysing segments by pairs. In real time driver assistance
(Enkelmann et al., 1995) introduced a method using parallel seg-
ments and radiometric features in order to detect marking lanes.
The link between aerial and terrestrial imagery has become more
and more important in the last years. It is crucial for instance for
urban environments reconstruction problematics such as georef-
erencing and / or matching of images produced by mobile map-
ping systems (MMS) or to texture 3D models obtained from aer-
ial imagery (Ṕenard et al., 2006). Most of the problems encoun-
tered by MMS lies in the fine and robust absolute localisation of
the vehicle. Direct georeferencing methods such as GPS com-

bined with INS and / or other sensors (odometers, gyroscopes,
...) are often used. However, in dense urban areas, GPS masks,
multi-path errors and bad satellites configurations are extremely
frequent. These errors cannot be fully corrected with an INS due
to its relative drift on long distances providing an absolute accu-
racy from 0.5 m to 1 m. Thus, to provide an accurate georef-
erencing, we have to deal with external data to introduce con-
straints on the position. A strategy is to integrate in the system
aerial images georeferenced with a bundle adjustement. Images
then become the key-frame for obtaining absolute localisation by
matching shapes detected from the two points of view.
In France, zebra-crossings, and more generally road marks are (in
most cases) governed by careful specifications1. Moreover, these
kinds of objects can be considered as invariants with a simple
shape not suffering from generalisation, e.g to match aerial and
ground based images or for the generation of landmarks data-
bases for autonomous navigation.
This paper describes robust and accurate road-mark detection and
reconstruction experts that can be helpfull for all previously de-
scribed applications. We will not at all describe the reconstruc-
tion of the road network topology which could be in any case
be extracted from medium-scale existing databases (at least in
Europe and North America) but only describe two road-mark ex-
perts that could be helpfull to derive higher level information in
a more complete system. The paper is organised as follows. A
first part presents the algorithm for 3D zebra-crossing reconstruc-
tion. A second one is focused on the 3D reconstruction of dashed
lanes. We then present in a third section a hierarchical method
for refining the 3D position of the detected objects. Finally, we
present briefly numerical results and evaluations.

2 ZEBRA-CROSSING RECONSTRUCTION

We first choose to reconstruct zebra-crossings because they strongly
structure the road network in urban areas. Moreover, they are the

1Source: Minist̀ere de l’Int́erieur et Minist̀ere de l’Equipement, de
l’Am énagement du Territoire et des Transports:Instruction intermin-
istérielle sur la signalisation routìere. 1988.
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objects covering the greatest surface.

2.1 Zebra-crossing specifications

The specifications show that pedestrian walkaways have a fixed
width of 0.5 m. The length of each stripe is only described in ur-
ban areas by a minimal size of 2.5 m. Two consecutive stripes
are separated by a distance in the range[0.5m; 0.8m], but is
regular for a zebra-crossing. Finally, the stripes are white on a
black background, but in special cases, like pedestrian areas, the
hue can be inversed, or the background can be colored. Zebra-
crossings have most of the time four to twenty stripes, and their
maximum length is around 6 m.

Figure 1: Extracts of a 4000×4000 digital image in Amiens (25
cm ground pixel)

2.2 Zebra-crossing extraction

Our strategy relies on 2D segments lines image features. We use
the Canny-Deriche edge detector (Deriche, 1987). The images
are oversampled by a factor2 to have a better sampling of the
convolution filter, andα is set to 1.5 to handle a compromise
between localisation and sensitivity to noise. A hysteresis thresh-
old is then processed, followed by subpixelar localisation of each
contour point. Finally, chaining of contour points and polygonal-
isation is performed by the Douglas-Peucker algorithm (Douglas
and Peucker, 1973). We now have 2D segments, with the knowl-
edge of their covariance matrix in(ρ, θ) polar coordinates (De-
riche et al., 1991).
In order to find zebra-crossings’ segments, we analyse their rela-
tive organisation, and use specifications. First, segments are fil-
tered on their length, taking in account a tolerance error. After
this, we search for parallel groups of segments (with a tolerance
taking in account the angular variance) respecting stripes size and
distance between stripes. The homogeneity of length is equally
computed, thus following again specifications. Finally, we retain
objects that have at least six segments.

2.3 3D segments reconstruction

This 2D processing provides a set of segments belonging to zebra-
crossings. We now build 3D segments with the detected struc-
tures in the images. For 3D segments reconstruction, we choose
a true multi-image matching algorithm of sweep-planes (Collins,
1996) (more details can be found in (Taillandier, 2004)). Here,
we introduce an external data - a DSM computed by image match-
ing (Pierrot-Deseilligny and Paparoditis, 1996) - to limit search
space to cut down combinatory. The DSM is morphologically
dilated (to define an upper and lower bounding surface) and the
object space is discretised in voxels. The sweep step and the cells’
size are defined with respect to the flight parameters.
With this sweep-plane technique, we obtain for each voxel seg-
ments correspondences between each images. To reconstruct a
3D segment from a match, we use a two step minimisation proce-
dure. We first construct a set of 3D segments by intersecting two

by two all the pairs of planes within the set (see Figure 2 and 3).
Each plane is defined by the center of projection of the camera
and goes through the image straight line. Each segment of a set
defines a(Pi,

−→ui) 3D line. The final 3D segment lies on the line
whose direction−→v minimises in a robust way the sum of angu-
lar difference with all the segments of a given set (see Equation
1). Using a least squares minimisation, it leads to find the vec-
tor X =

→

v = (x, y, z)t by solving the systemAtAX = 0 where
AtA is the3 × 3 matrix defined in Equation 2. VectorX is fi-
nally obtained by extracting the eigenvector corresponding to the
smallest eigenvalue ofAtA. Note that the normalisation of the
−→ui leads to the constraint‖X‖ = 1.
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Figure 2: One possible two by two planes intersection

Figure 3: Zebra-crossing of Figure 1 3D segments corresponding
to the two by two intersection of pairs of planes

Once we have the direction, we have to find the point which the
3D line goes through. It is defined as the one which minimises
the sum of distances to each 3D segment of a given set. Using the
same techniques, we have to solve the systemAtAX = B where
B is a3 × 1 vector. Finally, the end-points of the reconstructed
3D segment are given by projecting orthogonally the extremities
of each segment of the considered set and computing the union
(see Figure 4 - (Xu and Z.Zhang, 1996)).

Figure 4: Final 3D segments

This process only reconstructs the long sides of the stripes. We
now need to find the transversal axis , i.e the stripes’ small side.
Thus, we have to find two 3D lines, each of this corresponding to
one transversal side of the zebra-crossing. On each side of it, we
use a robust least squares minimisation on the long side segment
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extremities to find those 3D lines. The small sides are then ob-
tained by projecting those lines on the stripes’ borders segments.
To find a stripe, and thus know which borders we have to link two
by two, we use the gradient direction and distance between two
consecutive segments (distances constraints from specifications
are introduced). Result is shown on Figure 5.

Figure 5: Final zebra-crossing stripes of Figure 1

Figure 6: Final zebra-crossings projected in image space

Each stripe of a zebra-crossing is now modeled by a 3D parallel-
ogram and is considered as an initial solution for a fine position
refinement described in section 4

3 DISCONTINUOUS ROAD-MARKS
RECONSTRUCTION

The other road-mark feature extremely structuring for the road
network is the discontinuous line. We now present our strategy
for its reconstruction.

3.1 Discontinuous road-marks specifications

Many kind of Discontinuous Road-Marks (DRM) can be found
in urban environments. They depend on the road functionality, or
on the road type, and the stripes they are composed of are defined
by three characteristics: the length, the width and the distance be-
tween consecutive stripes. Table 1 and Figure 7 give an overview
of the discontinuous road-marks available in the French towns.

Type Stripes length (m.) Distance between stripes (m.)
T3 3 1.33
T2 3 3.5
T’2 1.33 5

Table 1: Specifications for discontinuous road-marks

3.2 Monocular extraction

We do not use the protocol presented for zebra-crossing. DRM
are objects whose size is under the ground pixel size. Indeed,
their stripes are at most 12 cm width. So, working directly with
segments in 3D space is not possible because these image features
at this resolution are highly miss located: the stripes’ borders are
stretch toward the exterior, and because of their small length, seg-
ments lines have also a very noisy direction. So, the protocol de-
scribed in 2.3 will be inefficient for reconstructing 3D segments

Figure 7: Extracts of a 4000×4000 digital image in Amiens (25
cm ground pixel)

describing stripes’ borders. A graph representation - which pro-
vides the neighbors of an object - is for this purpose more robust,
because predecessor and successor of a stripe will provide a fine
orientation needed for the 3D reconstruction of stripes’ borders.
The strategy for DRM detection is based on graph theory. The
graph construction of the DRM in an image consists in find-
ing arrangements of segments who best fit the external geomet-
ric knowledge from specifications. As for zebra-crossings, seg-
ments are extracted and we only keep the ones belonging to a
specific length interval defined by the type of DRM we want to
extract (see Table 1). We then have segments that potentially be-
long to DRM. We now have to describe arrangements between
those road-marks. So, we build numerical potentials describing
the strength of the interactions between pairs of segments. Three
potentials described below are used in our application: a connec-
tion potential, an alignment potential and a potential for the the
length homogeneity. The value for each potential is given by a
set of parameters and takes a value thanks to a function.

3.2.1 Potential function
The potential functionζ is generic and has the same general shape
for each potential. Two parameters describe it (c ande). How-
ever, this function must respect a set of constraints:
• its values must be in[0; 1]
• it must be symmetric
• it must be increasing on[−1; 0]

•

8<: ζ(c) = ζ(−c) = 0
ζ(0) = 1
∀x ∈ [−e; e] , ζ(x) = 1

The symmetry is important because angles are computed on[0; 2π].
The parameterc allows to choose the extension of the potential
function.e is used to have a ”plateau” defining a set of values for
which the potential function takes its maximum value. Finally,
we choose to define the functionζ as:

ζ : R
3

→ [0; 1]0� x
c
e

1A 7→

8<: 1 if |x| ≤ e
0 if |x| ≥ c

c2−x2

c2−e2 else
(3)

3.2.2 Potentials definitions
Connection potential
This is the first potential to be computed because if it is null, the
others are undefined. Around a given segmentsi, we define a
region of interestROIsi

= ROI
(1)
si

∪ROI
(2)
si

. Given an angular
toleranceθc, ROI

(j)
si

is an union of discs of radiirc located at
a given distance fromsi the middle ofsi in the direction ofsi.
This surface is approximated by a trapeze (see Figure 8).
We then look for segmentssj whose middlesj belongs toROIsi

.
If such segments exist, the connection potential is:

P(si ∼
c

sj) = ζ
�
d(si, sj) − dth, cc, ec

�
(4)
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Figure 8: Connection potential description

wheredth is the distance between two consecutive stripes.cc can
be defined as a fraction ofdth andec allows to take into account
segment detection accuracy.
Alignment potential
After the connection potential, we compute an alignment poten-
tial. It is an angular difference between the two segmentssi and
sj we are studying. The angular differenceθj

i is thenθj
i = θi−θj

(see Figure 9). As we want to penalise pairs of segments having
a high angular difference, the alignment potential is:

P(si ∼
a

sj) = ζ
�
θj

i , ce, ea

�
(5)

si

sj

θj

θi

θ
j
i

Figure 9: Alignment potential description

In our application, we usece = π/2 because when segments are
perpendicular, the potential must be null.ea is set to avoid pe-
nalising curved roads, and can take into account the segment’s
variance, i.e uncertainties on their angular parameter.
Length potential
This potential is useful to know the length homogeneity of two
segmentssi andsj . We assign a higher potential to pairs of seg-
ments of the same length - in a DRM network stripes have the
same length (see Figure 10). Thus, we compute the norms’ ratio:

P(si ∼
l

sj) = ζ
�
1 − min

� ‖si‖

‖sj‖
,
‖sj‖

‖si‖

�
, cl, el

�
(6)

Favorised grouping

Penalized grouping

Figure 10: Length homogeneity potential description

el allows to have a tolerance on the length. Indeed, the edge de-
tector is very sensitive and often, segments are truncated at their
extremities. This parameter is then set to take this observation
into account, and so on to avoid penalising grouping of pairs of
segments having a small length difference. In addition, we use
cl = 1.
Global potential
Finally, once we have computed the three individual potentials,
we use a global potential to summarise existing relations between
pairs of segments. The global potential is simply a weighted sum:8<: P(si ∼

G
sj) =

P
k=c,a,l

αkP(si ∼
k

sj)

∀k, αk ≥ 0,
P
k

αk = 1
(7)

As we know, there is a high incertitude on segments norms, soαl

is the smallest coefficient. In addition,αc andαa are high, and

can be equivalent, but most of the time, we will haveαc > αa.
In our application, we often useαc = 0.45, αa = 0.35 and
αl = 0.2
To be sure to find the objects relations we are looking for, we
use a thresholdδk on each individual potential and also on the
global one. Thus, two segmentssi andsj are considered to be in
interaction, only if the following conditions are respected:(

∀k ∈ {c, a, l} ,P(si ∼
k

sj) > δk

P(si ∼
G

sj) > δG
(8)

It is efficient to obtain good results and also in terms of time con-
suming. Interactions are stored in ann × n adjacency matrix,
wheren is the number of selected segments. A segment is se-
lected only if it interacts with another one. The matrix fully de-
scribes our DRM network, but we need some simplifications in
order to obtain a graph composed of nodes and edges.
Note that some tests show thatαk andδk values are not critical.

3.3 Graph creation

As we used a segment detector for our modeling of DRM net-
work, a stripe is most of the time composed of two parallel seg-
ments. We want to have a node representing each stripe, and a
valued edge (modeling interaction’s strength) linking two adja-
cent stripes.
Thus, a node is created with the following rules:
• if there is only one segment for a stripe, the node is its middle,
• if there are two segments for a stripe, the node is the barycenter
of the four extremities (a stripe is composed of two segments if
two segments having the same direction and a high recovering are
found in a small neighborhood)
The valuations between two edges are computed using the inter-
actions values between pairs of segments composing each stripe.
Thus, if we consider two stripes (i.e two nodes), the valuation of
the edge linking them is the maximum of the interaction between
their segments.
As we use 2D noisy segments lines, the center of a stripe as com-
puted above can only be considered as an estimation of the real
position. To obtain a best solution, we build a 2D radiometric
template (see section 4) with the known geometry and find the
best location of the center by moving the template in the vicinity
of the node and optimising a similarity score.

3.4 Chaining road-marks

The graph created in 3.3 is used to extract DRM chains. This
is done recursively on its adjacency matrix. We search for long
paths and validate them with geometric characteristics. We first
look for regularity, i.e a path must not be auto-intersecting and
its curvature must vary slowly. In addition, some structures are
found on the roofs (false alarms). We filter them using a DTM
generated from a DSM. Results are shown on Figure 11.

3.5 3D Reconstruction

A graph of the DRM is created as described in the previous sec-
tions for each images. The last step of the reconstruction process
consists in matching nodes across the different views. We use
here a simple algorithm consisting in making each image being
successively the master one. For each stereopairs and epipolar
constraints, we search for candidates for matching. The graph
structure allows introducing topological, i.e neighborhood con-
straints. We can thus create a set of possible matches.
From each matching possibility, a 3D point is reconstructed by in-
tersecting the rays (a ray is a 3D line going through the camera’s
center of projection and the image point). The resulting 3D point
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Figure 11: Road marks chaining

is the one which minimises the sum of distances to the rays. To
decide between concurrent matches, we use a DSM and check for
theZ difference between the reconstructed point and the height
given by the DSM. A multi-image similarity score is also used to
validate or not the 3D point.
We thus obtain 3D points describing the center of DRM’s stripes.
Note that if an object (car, tree, ...) hides a DRM element in an
image, the multi-image frame allows to obtain with this robust 3D
reconstruction the missing element if it is at least not occluded in
two images. A 3D reconstruction is given on Figure 12.

Figure 12: 3D DRM reconstruction and textured triangulation on
the 3D stripes’ centers

Figure 13: Final DRM of Figure 12 projected on image space

4 3D OBJECTS POSITION REFINEMENT

The strategies presented in 2.2 and 3.2 provides us a robust initial
solution that needs to be refined. So, we model a stripe as a par-
allelogram in 3D space and try to find its optimal position using
multiple images (Baltsavias, 1991) in a hierarchical frame. The
idea is to distort the base model (the initial solution) in 3D space
and to correlate a derivated 2D signal with images data. (Jain et
al., 1996) uses this principle in 2D space with a grid transforma-
tion. An other modeling of this strategy is proposed in (Chen et
al., 2003).

4.1 Notations and definitions

M
(n)
r : the model of reference at leveln (see 4.3),

Mb: the best model,
T : a class of transformations,
Ti: a transformation (T =

S
i

Ti),

Mi: a transformed model (Mi = TiM
(n)
r ).

An object’s model is represented with a set of four points. So, a
model is defined by the central pointpi = (xi, yi)

t of the stripe,
its lengthLi and directiond1

i , its width li and directiond2
i .

A transformation is the set of operations used for the genera-
tion of the model hypothesis. Both for zebra-crossing and DRM
stripe, it is composed of two rotationser1 and er2 along the direc-
tions vectorsd1

i andd2
i , and of translationst1, t2 and t3 along

each 3D axis. Specially for zebra-crossings, the transformations
also have to take into account the length and width variations of
the object. Finally, a model is composed of five parameters for a
DRM stripe and of six parameters for a zebra-crossing stripe (see
Equation 9).(

T Zebra
i ( er1, er2, t1

→

X, t2
→

Y , t3
→

Z, αLi) = T Zebra
i .

T DRM
i ( er1, er2, t1

→

X, t2
→

Y , t3
→

Z) = T DRM
i .

(9)

The vectors of parameters to be estimated are then defined by:�
ΘZebra = ( er1, er2, t1, t2, t3, α)
ΘDRM = ( er1, er2, t1, t2, t3)

(10)

4.2 Model choice

To choose the best 3D position for a stripe, our strategy is to
compare the image signal with a perfect simulated signal. For
each model in 3D spaceMi we have four points making a par-
allelogram. The knowledge of the projection geometry allows to
project this shape in all the imagesIj . We thus obtain for each
vertex ofMi its subpixellar position in 2D images spaces. We
then simulate a signalSSij (j stands for the image number) with
this positions for each images, i.e a white anti-aliased 2D shape
on black background. Finally, the best 3D modelMb is chosen
by maximising the following energy:

Mb = max
i

X
j

CorrMi
(SSij , Ij) (11)

Figure 14: Projections in image space of 3D models (lower im-
age) on a simulated signal (upper image). Each color corresponds
to a different modelMi. The found solution is in green.
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4.3 Hierarchical models generation

As we have six parameters to estimate a zebra stripe and five for a
DRM stripe, the computational search space is huge (because all
parameters are estimated simultaneously) and need to be reduced.
That is why we adopt an iterative multi-scale frame (Kropatsch,
1991; Hummel, 1988). For each level of the hierarchy, we set
search spaces and steps. This idea has already been used in dif-
ferent context (Gharavi-Alkhansari, 2001; Stefano et al., 2005).
The system is initialised withM(n)

r (the initial solution). At this
leveln of the hierarchy, the search spaces and sampling distances
on the parameters are the biggest. From this reference model and
with a class of transformationsT , we build several modelsMi

and the simulatedSSij signals in the images. Then, the best
modelM(n)

b at this level is given by Equation 11. We go down
a level of the hierarchy and repeat this process with initialising
M

(n−1)
r with M

(n)
b .

Each time we go down a level, the search spaces and sampling
distances are reduced. Here, for both we use a dyadic factor. This
protocol is iterated whilen > 0 or convergence is reached.
The numbern of levels of the hierarchy, the search spaces and
sampling distances are chose to be in adequation with the wished
accuracy for the final stripe position.

5 RESULTS

To test the robustness of our algorithms and their ability to de-
tect and reconstruct road marks, we have a reference database
of points surveyed with a millimetric accuracy on the town of
Amiens. It is composed of both zebra-crossings and DRM stripes’
corners, and were acquired with classical topometric techniques.
The evaluations were done only for the zebra-crossings, but give
clear information about the algorithm’s accuracy.B

H
ratio is in the

range[0.2; 0.6] and reconstructions were performed using from
3 to 9 images. We first measure absolute planimetric and altimet-
ric accuracies on a set of 112 stripes. The RMS is about 15 cm
for the first one, and less than 20 cm for the second one mainly
to the quality of the aerial triangulation. In terms of relative ac-
curacy, the algorithm shows its ability to be very fine. Indeed,
it’s about only a few cm, meaning that the global structure of a
zebra-crossing is preserved by our algorithm. We can also note
that the geometric refining presented in section 4 gives good re-
sults. The accuracy gain is about 5 cm. For both zebra-crossing
and DRM, there are only a few false positives alarms because
there are no ground structures having the same radiometric and
geometric properties as the objects we want to reconstruct. In
addition, the false positives detected for DRM are located on the
buildings’ roof and can easily be filtered with a focalisation mask.
However, the detection rate is higher than 90% for zebra-crossing
stripes. The missing stripes are the small ones located near the
pavement, the ones hidden by a car or the old ones degraded (thus
loosing their geometric and radiometric properties).

6 CONCLUSION AND FUTURE WORKS

As we have shown on examples, our modeling and detection of
the road-marks is very efficient for road detection and charac-
terisation in an urban environment. In can also be extended to
suburban areas or motorways.
To obtain a tool able to give more complete informations on the
road network, we now have to detect other road-marks (specialised
lanes, bus stops, traffic informations, ...).
An other key point to take advantage of our systems (aerial and
terrestrial) is to have a full collaboration between them, e.g to
search for missing objects in the images from the other viewpoint.

We have presented 3D reconstructing experts for road marks which
are a structuring features of the road network e.g to separate lanes
and estimate their width.
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ABSTRACT: 
Digital terrain models (DTM’s) are widely used in coastal engineering. Reliable height information is necessary for different 
purposes such as calculating flood risk scenarios, change detection of morphological objects and hydrographic numeric modelling. 
In this specific field light detection and ranging (lidar) replaces step by step other methods such as terrestrial surveying. However, 
some new problems are associated with lidar technology. For instance, in vegetated areas the accuracy of the lidar DTM decreases.     
In this paper the influence of different types of coastal vegetation on the accuracy of the lidar height information is investigated. For 
that purpose this research starts with a comparison of terrestrial control measurements and the lidar data in order to detect 
problematic areas with respect to the accuracy of the DTM. Based on the resulting height differences the influence of different 
attributes of the vegetation, i.e. type, height, density, is analysed. In the next step typical features, which are able to describe the 
attributes, are extracted from the available remote sensing and GIS data (ranging from laser heights and intensity information to 
multispectral images and biotope mapping). These features were used to perform a classification of the lidar data in different 
categories of accuracy. Finally, first results for two test areas are presented. 
 

1. INTRODUCTION 

Various agencies operating in the field of coastal management 
require reliable area-wide height information for the transition 
zone between land and water, in dunes and for their protection 
facilities, in order to detect important changes with regard to the 
safety of the coastal area. In former times terrestrial surveying 
was used to collect this information. However, these methods 
are very time and cost consuming as well as difficult to perform 
in coastal areas with dense vegetation and frequently flooded 
terrain. Therefore, the lidar technique replaces more and more 
the traditional methods. However, new problems related to the 
application of the lidar data have to be solved. The influence of 
vegetation on the quality of the lidar DTM is one of these 
problems. The laser beam is not able to fully penetrate dense 
vegetation surfaces such as shrubberies in dune valleys. Thus, 
the laser pulse is often reflected before hitting the bare ground 
or a mixed signal (surface as volume scatterer) generates a 
certain height off-set. Common filter algorithms are able to 
remove points reflected from higher vegetation. If there are 
only a few or no ground points in the analysed area caused by 
the dense vegetation the filter methods fail. Additionally, low 
vegetation which is not significantly higher than the 
surrounding bare ground is difficult to detect. Figure 1 
demonstrates the circumstances on the basis of a valley in the 
dunes (East Frisian Island Juist) with dense standings of 
Japanese rose and creeping willow. The digital surface model 
(DSM) from the unfiltered lidar data is illustrated on the left 
side (a), whereas the figure in the middle depicts the lidar DTM 
(b) and the DTM of the control points is displayed on the right 
(c). Obviously, some vegetation points are still present in the 
dataset after the filtering process. This paper investigates the 
described influence of the vegetation on the accuracy of the 
lidar DTM for typical plant population in the coastal area of 
Northern Germany.  
 

 
 
 
 
 
 
Figure 1: a) lidar DSM, b) lidar DTM, c) DTM of control points 
 
Additionally the potential of different attributes (vegetation 
height and density) for the description of the height 
discrepancies caused by the vegetation are analysed. These 
attributes have to be connected to features extracted from the 
available remote sensing data in order to perform a 
classification of the lidar data in different accuracy levels. 
Finally, the presented approach generates a lidar quality map 
depending on the vegetation.  
 

2. STATUS OF RESEARCH 

Before choosing attributes which influence the lidar quality in 
vegetated areas, it is necessary to understand the basic 
principles of the interaction between the laser beam and the 
reflecting surface. Wagner et al. (2004) discussed physical 
concepts for understanding how distributed targets such as trees 
or inclined surfaces transform the emitted laser pulse by using 
the radar equation. Additionally, they pointed out the 
advantages of full-waveform scanners in the analysis of the 
backscattered laser pulse. Pfeifer et al. (2004) considered the 
influence of different parameters such as flying height, footprint 
size, echo detection and selection as well as pulse width on the 
laser measurement over vegetation. 
 
After understanding the basic principle an analysis can be 
performed by using ground truth measurements in comparison 
to the lidar height. In this manner several studies investigated 
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the influence of different vegetation types on the quality of the 
lidar DTM. Elberink and Crombaghs (2004) found a systematic 
upwards shift of up to 15cm for low vegetated areas (creeping 
red fescue). Ahokas et al. (2003) evaluated the lidar accuracy 
for asphalt (standard deviation 10 cm), gravel (4cm), grass 
(11cm) and forest ground (17cm). Pfeifer et al. (2004) 
investigated the influence of long dense grass (+ 7.3cm), young 
forest (+ 9.4cm) and old willow forest (+ 11.6cm) on the 
accuracy of lidar data. Hodgson and Bresnahan (2004) used the 
horizontal coordinates of the irregularly distributed lidar points 
for the measurement of the ground truth in order to avoid an 
interpolation influence during the calculation of an error budget 
for a lidar data set. They found a standard deviation of 17cm for 
evergreen and 26cm for deciduous forest, however in contrast 
to other studies only low shifts (-4,6 cm for evergreen, + 1,0cm 
for deciduous) occurred. 
 
Only a few researchers investigated object or data driven 
parameters with an influence of the laser measurement except 
the vegetation type. Hopkinson et al. (2004) presented a method 
to identify the relationship between the standard deviation of 
pre-processed laser heights (the ground elevation was 
subtracted from the first and last pulse measurement) and 
vegetation height itself for low vegetation (<1,3m). They found 
the following expression, 

 

vegetation height = 2.7 * standard deviation, 
 

and determined the r.m.s.e. of the predicted vegetation heights 
with 15cm. Pfeifer et al. (2004) and Gorte et al. (2005) used 
also the variation of the laser heights in order to detect relations 
to the height shift in low vegetated areas. Instead of the 
standard deviation they defined texture parameters and showed 
their potential for correction. 
In (Moffiet et al., 2005) the capabilities of classified returns 
(ground and vegetation, first, last and single pulse) as well as 
the returned intensity were investigated to distinguish different 
tree types. The authors pointed out that the average and the 
standard deviation of the intensity values are affected by the 
forest structure as well as the reflective properties of the 
vegetation, whereas the information content of a single intensity 
value is difficult to interpret.  
 
In different studies a combination of height and multispectral 
data is used in order to detect and classify vegetation types. For 
example, Mundt et al. (2006) explored the potential of this 
combination for mapping sagebrush distribution; and Straub 
and Heipke (2001) determine tree hypothesis using geometric 
and radiometric features from height and image data. 
 

3. DATA 

This research is mainly based on two test flights. Most of the 
investigations were carried out using data collected by the 
company Milan-Flug GmbH covering the region of the East 
Frisian Island “Langeoog” in the leaf-off period (April 2005). 
During the campaign a LMS Q560 system of the company 
Riegl was used. Flying at a height of 600m the system provided 
an average point density of 2.9 points/m2. The following data 
were collected: 

- RGB – Orthophotos (resolution: 0,2 m) 
- maximum of three pulses per laser beam  
- unfiltered raw data (x, y, z, intensity) 
- points (x, y, z), separated into ground and vegetation 

 
Supported by biologists various control areas for typical 
vegetation types were defined. Within a few days of the flight 

campaign ground truth data for these regions were collected 
including the height of the ground and the vegetation as well as 
a verbal description of the vegetation. For each of the following 
vegetation types two test fields were chosen: 

- Japanese rose (Rosa rugosa) (vegetation heights up 
to 1,3 m) 

- Beach grass (Ammophila arenaria) (<1,0m) 
- Crowberry (Empetrum nigrum) (<0,4m) 
- Creeping willow (Salix repens) (<1,6m) 
- Common seabuckthorn (Hippophaë rhamnoides) 

(<1,4m) 
- Common reed (Phragmites australis) (<2,2m) 
- Sand couch grass (Agropyron pungens) (<0,5m) 

 
Furthermore, two mixed habitats (rose/seabuckthorn (<2,6m) 
and seabuckthorn/willow (<1,6m) were investigated. 
Additionally, some fisheye photos taken from the ground to the 
zenith were acquired in order to quantify the vegetation density 
(Figure 3). Four bare ground areas in the immediate vicinity of 
the vegetated test region were surveyed to check the general 
quality of the data. 
 
The data for the second test flight were collected during a 
measurement campaign of the company TopScan with an 
ALTM 2050 scanner from Optech covering the East Frisian 
island Juist (March 2004). The flying altitude was 1000m and 
the system provided an average point density of 2 points/m2. 
The following data were used for the analysis: 

- CIR – Orthophotos (resolution: 0,2 m) 
- last pulse data 
- unfiltered raw data (x, y, z, intensity) 
- points (x, y, z), separated into ground and vegetation 

A test area called “Dunes” consisting of 696 control points 
within a mixed population of Japanese rose and willow was 
surveyed in the same way as described above. Vegetation 
heights of up to 2,8m occurred. 
 
Finally, a biotope mapping performed on aerial photos taken in 
2002 and 2003 with a HRSC-AX and a DMC camera was used 
as input for the distinction of different predominant vegetation 
types. 
 

4. METHODS 

In this paper we analyse the relationship between different 
object as well as data driven features and the accuracy of the 
lidar DTM in vegetated areas. We combine image, lidar and 
GIS data to accomplish this task. In contrast to the above 
mentioned work our aim is not to do vegetation classification 
Initially, section 4.1 investigates the characteristics of 
vegetation with respect to the lidar measurement. The next 
section connects the analysed vegetation attributes to features 
generated from remote sensing data. Finally, in 4.3 the 
workflow to classify the lidar data into different accuracy levels 
using the extracted features is discussed. 
 
4.1 Characteristics of vegetation in lidar data 

For an assessment of the influence of vegetation attributes on 
the quality of the lidar height information we use ground truth 
measurements. In order to compare directly terrestrial and lidar 
data it is necessary to interpolate the heights obtained by one of 
the methods from the surrounding measurements. One argument 
for the interpolation of the lidar data is the higher point density 
(~3 points/m2 in comparison to ~0.5 points/m2 for the ground 
truth measurements). Additionally, the topographic features of 
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the surface are not reflected in the point distribution of the 
terrestrial data due to the difficult measurement conditions, i.e. 
dense vegetation and rough terrain. For these reasons we 
compute a DTM from the filtered lidar data and interpolate the 
lidar height information for the control points using their x- and 
y-coordinates. Then the mean height discrepancies (lidar-DTM 
minus reference height) and their standard deviation were 
determined. 
 
Initially the height discrepancies (lidar DTM minus reference 
height) depending on one parameter are analysed. The influence 
of the following parameters is investigated: 

- vegetation type 
- vegetation height 
- vegetation density 

 
Many related studies found that the surface type is one of the 
crucial factors for the accuracy of the DTM derived from lidar 
data (see also status of research). For that reason the first 
parameter which has to be analysed is the vegetation type. 
Laser pulses do not penetrate every layer of the vegetation in a 
similar way. Therefore, the laser beam is very often reflected 
above the bare ground or a mixed signal from ground and 
vegetation returns to the scanner. Thus, an upwards shift for the 
lidar heights is expected in vegetated areas. Caused by the 
different structure the influence of several vegetation types on 
the lidar accuracy should vary. 
The research focuses on typical vegetation for coastal areas, 
beginning with layers of biomass covering the ground in spring, 
produced by felted mulch or bear leaves during winter times. 
For example dense standings of beach grass and shrubberies in 
dunes as well as common reed and sand couch grass in the 
transition zone between land and water belong to the monitored 
vegetation types. 
 
The vegetation height is the next analysed parameter. With 
higher vegetation the distance of the laser beam through the 
different layers of organic material becomes longer. Therefore, 
assuming a uniform vegetation structure in every layer the 
probability that a part of the laser energy is absorbed or 
reflected before reaching the ground is higher. 
In order to investigate the influence of the vegetation height the 
parameter is divided into regular intervals. The height 
discrepancies at the control points are assigned to the related 
interval. For every related interval the mean and the standard 
deviation of the height shift are determined and plotted over the 
vegetation height.  
 
Subsequent, the influence of the vegetation density is studied.  
The vegetation density can not be measured directly. Therefore, 
suitable values which are able to describe the characteristics of 
the vegetation density must be defined. One method to quantify 
this parameter determines the ratio of the classified ground 
points to all lidar points in the analysed test field. This idea 
assumes that in dense vegetation less laser pulses penetrate the 
canopy and more vegetation points are filtered. For that reason 
a larger ratio implies a lower vegetation density and can 
potentially act as an indicator for higher accuracies of the lidar 
DTM. However, the filter result may be wrong, and thus the 
definition of vegetation density breaks down in very dense 
vegetation surfaces which are hardly penetrated by the Laser 
beam. 
The analysis of the fish eye photos offers another method to 
define the vegetation density (figure 2). An algorithm to 
calculate the coverage with organic material depending on the 
zenith angle was developed based on the rectified image (for 

the rectification process see r. g. Schwalbe, 2005). The images 
are segmented into vegetation and background using simple 
thresholds which are calculated from the minima of the grey 
value histogram. Finally, the correlation between the degree of 
coverage and the height discrepancies is investigated. 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: Segmented fish eye photo (rosa rugosa) 
 
Note that the term “dense vegetation” is also related to the size 
of the lidar footprint: lasers with smaller footprints are able to 
penetrate vegetation with higher density in a more undisturbed 
way. The impact of the size of the lidar footprint on the 
penetration rate, however, is not subject of this research. 
 
Finally, the parameters vegetation height and density are also 
analysed with respect to only one vegetation type, in order to 
describe a more complex model of the influence of the 
vegetation on laser heights.   
 
4.2 Features for classification 

In the next step features have to be determined which are able 
to represent the vegetation attributes in the remote sensing data. 
The mean value and the standard deviation of the multispectral, 
lidar height and intensity channels and some texture parameters 
derived from the co-occurrence matrix (i.e. contrast and 
homogeneity) are investigated. The co-occurrence matrix 
contains the spatial dependencies of the grey values for certain 
directions and distances (see e. g. Haralick, 1979).  
Considering one vegetation type we assume that the mean 
values of the Normalized Difference Vegetation Index (NDVI) 
correspond to the vegetation density: The leaf area index (LAI) 
is one of the most important parameters for characterising the 
structure of canopy. Many studies such as (Pandya, 2004) found 
a strong positive correlation between the LAI and the NDVI 
calculated from remote sensing data. Therefore, if the NDVI 
increases, the amount of active organic material and the 
vegetation density in the pixel should be higher. For the test 
flight in the area of the island Langeoog the near infrared 
channel is not available. Thus, the Degree of Artificiality (DoA) 
as defined in (Niederöst, 2000) is used instead of the NDVI.  
Next, we relate lidar intensity to vegetation density: Every layer 
of the vegetation where the laser pulse is reflected decrease the 
intensity value for the following echoes. For that reason a lower 
intensity indicates a higher vegetation density under the 
assumption of a similar reflectivity observing only one kind of 
vegetation and the same beam direction. However, very dense 
vegetation surfaces which can not be penetrated by the laser 
pulse yield higher intensity values. But the cross section of the 
illuminated area is not as homogeneous as the footprint hitting 
bare ground. Therefore, the average returned intensity in 
vegetated areas should be lower. Thus, for pre-defined 
neighbourhoods we compute the mean and the average of the 
lidar intensity (also motivated by Moffiet et al. 2005). 
Furthermore, features have to be defined for the vegetation 
height. On one side we can use the contrast of the height image 
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derived from the co-occurrence matrix to describe height 
differences in the local neighbourhood of a pixel. A higher 
contrast is equivalent to larger differences of grey values, and 
we assume a correlation with higher vegetation. On the other 
side for vegetation heights larger than 0.5m different pulses can 
be detected by the Riegl scanner. In this case we use the 
differences between the first and the last pulse of lidar raw data 
to define the vegetation height. 
Finally, instead of extracting features for the distinction of 
different vegetation types we use the biotope mapping in order 
to limit the research area to one predominant plant population. 
 
The capabilities of extracted features to describe the 
characteristics of the vegetation and their influence on the 
accuracy of the lidar DTM are tested using the height 
discrepancies at the control points. 
 
4.3 Classification  

Based on the different data sources (multispectral image, lidar 
data, biotope mapping) a supervised classification is performed 
in order to divide the lidar data into different levels of accuracy 
depending on the predominant vegetation. Figure 3 depicts the 
workflow of the classification. 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Figure 3: Classification workflow 
 
A segment based approach for the classification was chosen in 
order to consider the local neighbourhood of the laser pulse and 
to define mean values and standard deviation as well as other 
texture parameters. 
Initially, a DSM is calculated using the unfiltered lidar data in 
order to preserve texture information stemming from the 
vegetation. Subsequently, this DSM is transformed to a 
greyscale image in order to use the data in combination with the 
multispectral images for an image based classification. The 
same procedure is accomplished for the intensity values of the 
returned laser pulses. 
The segmentation is performed using a region growing method 
applied to the low pass filtered lidar intensity image. Starting 
with the local grey value minima as seed regions (corresponds 
to areas with low lidar accuracy), the analysed pixel is assigned 
to the current segment if the difference of the average grey 
value of the segment and the grey value of the pixel is smaller 
than a certain threshold. 
Previous work indicates that the vegetation type is an important 
factor for the accuracy of the lidar DTM and for the 
applicability of the discussed features. Thus, the extension of 
the segments and, consequently, the area of the following 
classification are limited to one predominant vegetation type 
using the borderlines of the biotope mapping.  
Training areas are generated by using the height discrepancies 
from the control points. For that purpose a difference model is 

calculated and transformed into an image, so that the grey 
values correspond to the height discrepancies. This image is 
segmented into different accuracy levels. These segments are 
used as training areas for the classification. 
In the last step the feature vectors derived for the training areas 
and the segmentation are used to classify the lidar height data 
into different levels of accuracy. In this paper the Euclidian 
distance between the feature vectors is used to classify the 
current segment. For this method the features are normalised to 
the same overall value in order to weight the features equally. 
 

5. RESULTS 

5.1 Characteristics of vegetation in lidar data 

The influence of the vegetation type on the lidar accuracy is 
illustrated in figure 4. Obviously, the lidar DTM is higher than 
the related control points for each vegetation type (8 – 24 cm). 
This finding corresponds to the theoretical consideration that 
laser pulses do not penetrate all vegetation. For each type the 
standard deviation of a single measurement is only in the range 
from 5 up to 15cm. The highest height shift was detected for 
beach grass (+19.3cm), seabuckthorn (+18.4cm), sand couch 
grass (+20.1cm) and the mixed area seabuckthorn/willow 
(+23.2cm). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: Height shift for different surface types  
(Langeoog, Riegl scanner) 
 
Figure 5 illustrates the accuracy of the lidar DTM depending on 
the vegetation height. The relatively large discrepancies for the 
vegetation heights of 0.5 – 1.0m are caused by the beach grass 
belonging to this range. Various standings of beach grass 
produce a height shift up to 0.38m. In contrast many values 
obtained by the control area in the reed lead to lower 
discrepancies in the diagram for vegetation heights between 1.7 
and 2.0m. Due to the vertical plant structure without 
ramifications in the leaf-off period the influence of the reed on 
the quality of the lidar DTM is low. In summary, the diagram 
demonstrates that the vegetation height without considering 
other parameters does not suffice in order to describe the height 
discrepancies in the vegetated areas.  
 
However, considering only one vegetation type some plant 
heights show a strong correlation with the height discrepancies 
(see figure 6). Obviously, the filtering process influences these 
dependencies. If some points of the higher vegetation are 
filtered, the accuracy for the related interval increases. 
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Figure 5: Height shift plotted over vegetation heights for all 
vegetation types (Langeoog, Riegl scanner) 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6: Height shift plotted over vegetation heights for beach 
grass (Langeoog, Riegl scanner) 
 
In figure 7 the correlation between the vegetation density 
calculated from the fisheye images and the height discrepancies 
is visualised. Only a low correlation (0.19) was found 
considering all vegetation types. However, for several lower 
vegetation types a high correlation was detected, e.g. for beach 
grass and Japanese rose. Therefore, for certain vegetation types 
the defined vegetation density seems to correspond to the height 
shift. The two negative values are caused by some outliers 
which occurred due to the filtering process, as was determined 
by a detailed analysis of the data. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7: Correlation between the degree of coverage of the 
fisheye photos and the height shift (zenith angle up to 40°) 
 
5.2 Features for classification 

Figures 8 and 9 show the height discrepancies depending on the 
lidar intensity for some vegetation types. A high negative 
correlation can be detected for the intensity values (-0.51 for 
beach grass, see figure 8), and especially for the lidar DSM (-
0.92 instead of -0.6 for the DTM, see figure 9). Thus, whereas 
the filtering process eliminates higher vegetation and therefore 

increases the accuracy of the lidar result, it unfortunately also 
renders lidar intensity less useful as an indicator for the lidar 
DTM accuracy, because the darker points potentially belonging 
to the upper vegetation are filtered out. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8: Height shift plotted over lidar intensity for beach 
grass (Langeoog, Riegl scanner) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9: Height shift plotted over lidar intensity for Japanese 
rose/willow (Juist, ALTM scanner) 
 
Figures 10 and 11 illustrate the height discrepancies depending 
on the DoA and NDVI. Only a low correlation (0.39 for beach 
grass (DoA), 0.23 for Dunes (NDVI)) between the height shift 
and the indices could be identified. Due to the fact that the 
measurement campaign was conducted in spring, the plants in 
the test area Dunes (rose, willow) had just started their activity. 
Therefore, in general only low NDVI values occurred. 
Obviously, the correlation for active vegetation such as beach 
grass is higher.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10: Height shift plotted over DoA for beach grass (island 
Langeoog, Riegl scanner) 
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Figure 11: Height shift plotted over NDVI for the test area 
dunes (Japanese rose/willow, island Juist, ALTM scanner) 
 
In summary, lidar intensity as well as vegetation indices show 
potential for the distinction of different accuracy levels in the 
lidar DTM. Additionally, a negative correlation between the 
height shift and the values of the channels in the visible 
spectrum was also detected. However, all values vary strongly 
in a single accuracy interval. Therefore, mean values for 
segments are more suitable for classification purposes. 
 
5.3 Classification  

Finally, first classification results for beach grass and the test 
area Dunes are presented. Tables 1 and 2 summarise the 
extracted features for different accuracy levels, while figures 12 
and 13 illustrate the results graphically. In addition to the 
features discussed in 5.2 the contrast of the height image was 
also used (see also chapter 4.2).  
In the first example two different training areas of beach grass 
are used to classify the same region. If the algorithm works 
correctly, the extracted features for the accuracy intervals in 
table 1 and the classifications on the left and the right side of 
figure 12 have to be the same. However, comparing these 
features and classifications some differences can be identified. 
The problems are associated with the different range of the 
height shift (table 1 second row) and the varying size of the 
control areas related to the accuracy levels for the two test 
fields. The latter one has a strong influence on the extracted 
height contrasts.   
 
Table 1: Extracted features for the accuracy levels of beach 
grass (not normalised) 

Parameter Beach Grass 1 Beach Grass 2 
Area Height Shift (cm) (+5,7) – (+34,5) (-1,2) – (+38,5) 

Class (Height Shift) <+13 <+26 >+26 <+13 <+26 >+26 
Mean Blue 88,5 83,6 82,5 86,4 83,0 80,6 
Mean DoA 79,5 89,0 92,7 76,1 89,2 94,5 

Mean Intensity 70,0 69,6 65,1 83,6 67,7 60,8 
Height Contrast 0,20 0,21 0,24 0,13 0,30 0,33 

 
 
 
 
 
 
 
 
 
Figure 12: Classification result using two different control areas 
of beach grass (red = height shift up to +13cm, green = +26cm, 
blue = >26 cm)   

Due to the completely different size and form of the training 
areas and the segments it is also possible to compare the 
classification result within the training areas in order to assess 
the applicability of the segmentation process and the 
practicability of the classification using the extracted features. 
A good match can be detected in the second example for the 
test area Dunes (figure 13). 
 
Table 2: Extracted features for the accuracy levels of the test 
area Dunes (not normalised) 

Parameter Test Area Dunes  
Area Height Shift (cm) (-7,7) – (+72,0) 

Class (Height Shift) <+15 <+30 <+45 <+60 >+60 
Mean Green 84,7 81,1 77,3 76,7 76,5 
Mean NDVI 129,0 136,9 146,0 145,6 149,2 

Mean Intensity 88,5 81,6 62,0 40,5 38,3 
Height Contrast 0,28 0,34 0,68 0,62 0,50 

 
 
 
 
 
 
 
 
 
 
Figure 13: Left: training area from control points, Right: 
Classification result for a part of the island Juist (red = height 
shift up to +15cm, green = +30cm, blue = +45 cm, cyan = 
+60cm, pink = >+60cm)   
 

6. CONCLUSION AND OUTLOOK 

This paper discusses an approach for mapping the quality of 
lidar heights in vegetated areas using a combination of various 
data sources. Some features (lidar intensity, height contrast, 
vegetation indices) show capabilities in order to classify lidar 
data in vegetated areas into different accuracy levels. However, 
attributes and features are strongly correlated to the vegetation 
type. Therefore, a biotope mapping or a multispectral 
classification of the vegetation has to be used in conjunction 
with the lidar data.  
The vegetation attributes, such as the height and density, as well 
as some extracted features, such as lidar intensity, show a better 
correlation to the height discrepancies using unfiltered lidar 
data. Only the height contrast is related to the filtering process. 
Therefore, the presented method should be applied to unfiltered 
lidar data in order to assess the quality of the height information 
in vegetated areas, and the filtering process has to be modelled 
as well. For example, a simple method can be designed using a 
difference model between the unfiltered and the filtered lidar 
heights. This difference model can then be subtracted from the 
predicted height shift. 
The transferability of the features extracted from the lidar data 
to other scanners, flight conditions and regions seems to be 
difficult. For instance, lidar intensity values depend on many 
parameters (i.e. the scanner type, echo detection methods and 
intensity determination, characteristics of the emitted pulse, 
flight date, surface type etc.). For the general transferability of 
the method this approach uses ground truth data which adapt 
the features to the current conditions.  
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ABSTRACT:  
 
Three dimensional building models have become important during the past for various applications like urban planning, enhanced 
navigation or visualization of touristy or historic objects. 3D models can increase the understanding and explanation of complex 
urban scenes and support decision processes. A 3D model of the urban environment gives the possibility for simulation and 
rehearsal, to "fly through" the local urban terrain on different paths, and to visualize the scene from different viewpoints. The 
automatic generation of 3D models using Laser height data is one challenge for actual research. 
In many proposals for 3D model generation the process is starting by extraction of the border lines of man made objects. In our paper 
we are presenting an automatic generation method for lines based on the analysis of the 3D point clouds in the Laser height data. For 
each 3D point additional features considering the neighborhood are calculated. Invariance with respect to position, scale and rotation 
is achieved. Investigations concerning the required point density to get reliable results are accomplished. Comparing the new 
features with analytical results of typical point configurations provide discriminating features to select points which may belong to a 
line. Assembling these points to lines the borders of the objects were achieved. First results are presented. 
Possibilities for the enhancement of the calculation of the covariance matrix by including the intensity of the Laser signal and a 
refined consideration of the neighborhood are discussed. 
 
 

1. INTRODUCTION 

Three-dimensional building models have become important 
during the past for various applications like urban planning, 
enhanced navigation or visualization of touristy or historic 
objects (Brenner et al., 2001). They can increase the 
understanding and explanation of complex scenes and support 
the decision process. The benefit for several applications like 
urban planning or the virtual sightseeing walk was 
demonstrated utilizing LIDAR data. 
For decision support and operation planning the real urban 
environment should be available. In most cases the necessary 
object models are not present in the simulation data base. 
Especially in time critical situations the 3D models must be 
generated as fast as possible to be available for the simulation 
process. 
Different approaches to generate the necessary models of the 
urban scene are discussed in the literature. Building models are 
typically acquired by (semi-) automatic processing of Laser 
scanner elevation data or aerial imagery (Baillard et al., 1999; 
Geibel & Stilla, 2000). For large urban scenes LIDAR data can 
be utilized (Gross & Thoennessen, 2005). Pollefeys (1999) uses 
projective geometry for a 3D reconstruction from image 
sequences. Fraser et al. (2002) use stereo approaches for 3D 
building reconstruction. Vosselman et al. (2004) describes a 
scan line segmentation method grouping points in a 3D 
proximity. 
Airborne systems are widely used but also terrestrial Laser 
scanners are increasingly available. The latter ones provide a 
much higher geometrical resolution and accuracy (mm vs. dm) 
and they are able to acquire building facade details which are a 
requirement for realistic virtual worlds. Whereas in the orthogo-
nal Nadir view of an airborne system the data can be interpreted 
as 2D image this is not possible for terrestrial Laser scanners. 

We are presenting an approach for the segmentation of building 
parts like 3D edges. Analytical considerations give hints to ex-
tract these characteristic objects. We have realized and tested 
the detection of 3D edges as well as their approximation by 
lines. Also quality measures for the lines are determined. The 
capability of the algorithm is additionally demonstrated on the 
detection of overhead wires of a tram. 
In chapter 2 the calculation of additional point features is 
described. The features are normalized with respect to 
translation, scale and rotation. The dependencies between 
covariance matrix and the tensor of momentum of inertia are 
discussed. Investigations on the sensitivity of the specified 
features deliver constraints concerning their usage. 
In chapter 3 typical constellations of points are discussed and 
discriminating features are presented. Examples for the 
combination of eigenvalues and structure tensor are shown. For 
typical situations analytical feature values are derived.  
The importance of a precise registration of Laser point clouds if 
different data sets have to be fused is illustrated in chapter 4. 
The generation of lines is described in chapter 5. Points with 
the same eigenvectors are assembled and approximated by 
lines. Resulting 3D boundaries of objects are shown for 
different data sets.  
In chapter 6 the possibilities using additional features are 
summarized. Outstanding topics and aspects of the realized 
method are discussed. 
 

2. ADDITIONAL POINT FEATURES 

A Laser scanner delivers 3D point measurements in an 
Euclidian coordinate system. For airborne systems mostly the 
height information is stored in a raster grid with a predefined 
resolution. Image cells without a measurement are interpolated 
by considering their neighborhood.  
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a  
 

b   c  
Figure 1.  Point clouds from Toposys® Laser scanner  
 a) colored by height 
 Raster image based on point clouds:   

b) without, c) with interpolated values 
 
An example data set gathered by an airborne Laser scanner 
system as 3D points is shown in Figure 1a. The color 
corresponds to the height. A transformation to a raster image 
selecting the highest value for each pixel yields the Figure 1b. 
After filling missing pixels we are able to detect more details in 
Figure 1c. Due to the preprocessing steps the image does not 
represent the original 3D information anymore. The horizontal 
position is slightly different and some of the height values are 
calculated not measured. Additionally, sometimes more than 
one measurement for a resolution cell exists considering first 
and last echo or combining data of several measurement 
campaigns.  
An example for a dense point cloud of a terrestrial Laser 
scanner is shown in Figure 2 representing the intensity of the 
signal. 
 

 
Figure 2.  Point clouds colored by intensity 
 
In contrary to the airborne data the projection of terrestrial 
Laser data along any direction is not very reasonable. 
Especially the combination of airborne (Figure. 1) and 
terrestrial (Figure. 2) Laser scanning data requires directly the 
analysis in the 3D data. 
 
2.1 

v

Moments 

A 3D spherical volume cell with radius  is assigned to each 
point of the cloud. All points in a spherical cell will be 

analyzed. 3D moments as described by Maas & Vosselman 
(1999) are discussed and improved.  

R

In a continuous domain, moments are defined by: 
 , (1) ( ), ,= ∫ i j k

ijk
V

m x y z f x y z d

where , , ∈i j k , and i j k+ +  is the order of the moment 
integrated over a predefined volume weighted by ( ), ,f x y z . 
As weighting function the mass density can be used. It reduces 
to a constant value if homogeneous material is assumed.  
Another possibility is to use the intensity of the reflected Laser 
beam (s. Figure 2, Figure 11) as weighting function. Some 
aspects of using the intensity signal were discussed in (Jutzi et 
al., 2005).  
We restrict the order of moments to . This delivers 
the weight, the center of gravity and the matrix of covariance. 
To be invariant against translation we calculate the center of 
gravity  

2+ + ≤i j k

 100 010 001

000 000 000

,   ,    = = =
m m mx y z
m m m

 (2) 

and the centralized moments  

 ( ) ( ) ( ) ( ), ,
i j k

ijk

V

m z z fx x y y= −− −∫ x y z dv  (3) 

with 000 000m m= . Scale invariance may be achieved by 

 
000

ijk
ijk i j k

mm
R m+ +

=  (4) 

We need two normalizations because ( , , )f x y z  can take a 
different physical unit (other than length).  
In the discrete case the integral (3) is approximated by the sum 
  

 ( ) ( ) ( ) ( ) ( )
1

, , , ,ijk

N i j k
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l

m x y z x x y y z z f x y z v
=

= − − −∑ Δ (5) 

   
including all points inside the sphere with radius  centered at 
an actual point 

R
( )a a ax y z  with the constraint 

 ( ) ( )l l l a a ax y z x y z R− ≤  (6) 

Under the assumption that the incremental volume vΔ  is 
constant and due to the dependency of the moments from the 
number of points inside the sphere and the selected radius  
we get the normalized moments  

R

 
( ) ( ) ( ) ( )

( )
1

000

1

, ,

, ,

ijk

N i j k

l l l l l
l

ijk Ni j k
i j k

l l l
l

m lx x y y z z f x y z
m

R m R f x y z

=
+ +

+ +

=

=
− − −

=
∑

∑
(7) 

For constant weighting function ( , , )f x y z  as used in many 
cases we get  

 
( ) ( ) ( )

1

N i j

l l l
l

ijk i j k

k
x x y y z z

m
R N

=
+ +=

− − −∑
 (8) 

Neither the number of points nor the chosen physical unit for 
the coordinates, the radius and the weighting factor influences 
the values of the moments. 
Finally we calculate for each point of the whole data set a 
symmetrical covariance matrix 

 
200 110 101

110 020 011

101 011 002

m m m

M m m m

m m m

⎛ ⎞
⎜ ⎟

= ⎜
⎜ ⎟⎜ ⎟
⎝ ⎠

⎟  (9) 
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The calculation of the eigenvalues iλ  and eigenvectors 

 delivers features for each point. The 
eigenvalues are invariant concerning rotation. 

   with  1,2,3ie i =

If we calculate the tensor of momentum of inertia by 

  (10) ( )200 020 002

1 0 0
0 1 0
0 0 1

T m m m M
⎛ ⎞
⎜ ⎟= + + −⎜ ⎟
⎜ ⎟
⎝ ⎠

 
instead of the moments M of order two we will get the same 
eigenvectors. The sum of the eigenvalues belonging to the same 
eigenvector is constant for each eigenvector. 
 
 ( ) ( ) 200 020 002    1,2,3i iM T m m m const i+ = + + = ∀ =λ λ  (11) 
 
Due to the non contiguous (discrete) calculation of the moments 
the quality of the resulting numerical invariants can be discus-
sed in a statistical (as moments M ) or a physical (as moments 
of inertia T ) way considering each point not only as a point 
but as a representative physical part of its surrounding. 
 
2.2 Point distribution in 3D space 

In this section we discuss the influence of the distribution of 
point measurements concerning the proposed features. 

a  b  
Figure 3.  Point clouds of a terrestrial Laser scanner:   

a) vertical view, b) horizontal view; color indicates 
the distance to the sensor (blue=near, red=far away) 

 
Figure 3 shows as an example for the dependency of the point 
density of the Zoller+Fröhlich Laser scanner concerning the 
distance to the sensor.  
The comparable scan pattern of the Toposys sensor is shown in 
Figure 4a for a regular pattern and in Figure 4b for a wavy 
pattern. The point density in flight direction is usually much 
higher than in the perpendicular direction. In both cases there is 
no uniform distribution of the measured points.  
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Figure 4.  Scan pattern similar to the Toposys Laser scanner:   

a) regular pattern, b) wavy pattern  
 
For non uniform distribution equations (1) and (5) imply to 
weight each point by the volume around this point without 
other points like inside a cell of a Voronoi diagram 

(Aurenhammer, 2000) or to correct the moments by integration 
over each cell of the diagram separately. To avoid such a time 
consuming but more precise calculation we have discussed the 
behavior of the eigenvalues of M  dependent on the radius of 
the sphere and the density of the points. To investigate the 
behavior of the eigenvalues we have generated synthetically 
regular scans and also wavy scans (Figure 4) for a plane. After 
calculating covariance and eigenvalues taking all points inside 
the green circle we consider the ratio 2 1/λ λ  of the second and 
the greatest eigenvalue. The third eigenvalue is 3 0λ = . 
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Figure 5.  Ratio of 2 1/λ λ  dependent on the smaller point 

density : blue: regular pattern; green: wavy 
pattern 

/dy R

 
Figure 5 shows the ratio of the non zero eigenvalues dependent 
on the density of the points in the y-direction. Nearly the same 
behavior is calculated for both the regular and the wavy scan. 
The ratio for the regular pattern (blue) is slightly greater than 
for the wave pattern (green). The variations of the function are 
caused by the digitalization (Figure 4). For / 0.5dy R < ,  
point distance in y-direction, we got acceptable results. 
Weighting each point by the same factor we have to select the 
radius of the sphere as

dy

2R dy>  (two times of the largest point 
distance.) Under this constraint 2 1/λ λ  is greater than  (e.g. 0.75

0.1   0.5     1dx m dy m R m= = ⇒ > ). 
 

3. FILTERING OF POINTS 

After calculation of the covariance matrix for each point in the 
data set considering a local environment defined by a sphere we 
have additional features for each point.  
 

S Type 1λ  2λ  3λ  

Isolated 
point 0  0  0  

End of a 
line 

1
12

 0  0  

Line 
1
3

 0  0  
 

Half plane
1
4

 
2

1 641 0.07
4 9
⎛ ⎞− =⎜ ⎟π⎝ ⎠

 0  

Plane 
1
4

 1
4

 0  

Quarter 
plane 

1 21 0.
4
⎛ ⎞− =⎜ ⎟π⎝ ⎠

09  2

1 1 32 0.05
4 2 9
+ − =

π π 0  

Two 
planes 

1
4

 1
8

 
2

1 8 0.03
8 9
− =

π
 

Three 
planes 

1 11 0.
6
⎛ ⎞− =⎜ ⎟π⎝ ⎠

11 1 11 0.
6
⎛ ⎞− =⎜ ⎟π⎝ ⎠

11  6

3 2

1 2 21 0.03
6 3
⎛ ⎞+ − =⎜ ⎟π π⎝ ⎠

Table 1. Eigenvalues for some typical situations 
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These features are the center of gravity, the distance between 
center of gravity to the point, the eigenvectors, the eigenvalues 
and the number of points inside the sphere. They can be used 
for determination of object characteristics. 
Table 1 shows the eigenvalues of the covariance matrix of some 
special point configurations. The first six rows present 2D cases 
the last two 3D ones.  
The ratios are based on typical situations and analytically 
calculated. For an ideal line two eigenvalues are zero and one 
of it is greater than zero. For straight edges at the border of a 
half-plane one eigenvalue is zero and the ratio of  

2
2

2
1

9 64 0.28
9

λ π
λ π

−
= =  shows a significant difference between 

the both non zero eigenvalues. If we are looking for points 
inside a plane we have to compare the eigenvalues 

 with the values for a plane. For the 
edge points at the intersection line of two orthogonal planes the 

ratios are 

1 2 30.25      0λ = λ = ∧ λ =

2

1

0.5=
λ
λ

 and 3
2

1

320.5 0.14
9

= − =
λ
λ π

. 

Figure 6a shows all points with eigenvalues satisfying the 
criteria for planes. The color indicates the object height. In 
Figure 6b only the edge points are drawn corresponding to 
Table 1 row 4. 

a   

b  
Figure 6.  a) Points identified as plane points      

b) Points with one high and two small eigenvalues 
 
For object classification especially for region growing West 
(2004) uses the following features which depends on the 
eigenvalues: 

 
3

3

1

Structure Tensor Omnivariance  i
i

λ
=

= ∏  (12) 

 1 3

1

Structure Tensor Anisotropy  λ λ
λ
−

=  (13) 

 2 3

1

Structure Tensor Planarity  λ λ
λ
−

=  (14) 

 3

1

Structure Tensor Spheric 1 Anisotropyity  λ
λ

= − =  (15) 

 ( )
3

1
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i

iλ λ
=

= −∑  (16) 

 1 2

1

Structure Tensor Linearity  λ λ
λ
−

=  (17) 

 

a  

b  
Figure 7.  Points marked by a) Omnivariance b) Linearity 

 
Figure 7 shows the points classified and colored by the features 
a) Omnivariance and b) Linearity. A detailed analysis of these 
features for point classification is under investigation. 
 

4. REQUIREMENT FOR REGISTRATION 

The enhancement of resolution is possible combining multiple 
scans of the same scene. We have investigated this approach for 
airborne Laser scan data (Toposys). Especially the 
reconstruction of gabled roofs was considered. A precise 
registration of the data sets is necessary.  
The application of the filter process mentioned before delivered 
the result shown in Figure 8a. A detailed analysis shows some 
discrepancy in the registration of different scan data. Viewing 
along the ridge of the gabled roof, Figure 8a, demonstrates the 
gap between two flights. 

a  b  
Figure 8.  Gabled roof a) before and b) after fine registration 

 
Using the Iterative Closest Point (ICP) algorithms (Besl 1992, 
Fitzgibbon, 2001) the registration was refined (Figure 8b). This 
method uses data of two point clouds inside a common region 
and determines translation, rotation and scaling to minimize the 
distance between the point clouds. Based on the transformed 
data acceptable eigenvalues for the classification of the planes 
of the gabled roof are achieved. 

5. LINE GENERATION 

All points marked as edge point may belong to a line. These 
points are assembled to lines by a grouping process. We 
consider the greatest eigenvalue 1λ  and its eigenvector 1e . 
Consecutive points with a similar eigenvector, lying inside a 
small cylinder are grouped together and approximated by a line. 
Let  be the set of all points of the cloud. Starting with any 

point 

Cl

p Cl∈  with eigenvector p
1e as feature. This point is 
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called the trigger point. Now we are looking for all points c  
and determine the set  

 { }1 1 min_ cosp cC c Cl e e= ∈ > . (18) 

This set contains all points with nearly the same or opposite 
direction for the first eigenvector tested comparing the inner 
product of two vectors against a given threshold . We 
construct a line through the trigger point along its first 
eigenvector: 

min_ cos

 1
pg p e= + μ  (19) 

The scalar components for c C∈  to each eigenvector are 
 ( ) ( ), p

i c p c p eμ = − i . (20) 
Due to the normalization of the eigenvectors these components 
describe the distances along each direction. The distance of the 
point c  to the line is  

 ( ) ( ) ( )2 2
2 3, ,d c p c p c p= μ + μ ,  (21) 

Let ( ){ }, max_ dD c Cl d c p= ∈ ≤  be the set of edge points 

inside the cylinder given by g  with the given radius . 
The intersection GP  includes all edge points with 
nearly the same first eigenvector as the trigger point and not far 
away from the straight line given by the trigger point and its 
first eigenvector. 

max_d
C D= ∩

Collinear edges of different buildings in a row may belong to 
(GP p ). Therefore we examine the contiguity of the points in 

the neighborhood of p . The scalar values ( )1 ,c pμ  describe 

the projection of the points onto the straight line. Let ( ),s c pμ  

a sorted list of the ( )1 ,c pμ . Because ( ),s p pμ = 0

R

, we have to 
search for gaps defined by an acceptable value  on 
the left and the right side of zero.  is the left boundary 
and  is the right boundary if  

max_gap
0Lsμ ≤

0Rsμ ≥

 1 1max_gap<    max_gap<L L Rs s s s− +μ + μ ∧ μ + μ   
  (22) 1   max_gap   L<j Rj js s−∧ μ + ≥ μ ∀ ≤

Let ( ){ },L RGPs c GP s c p s= ∈ μ ≤ μ ≤ μ  the set of points along 

the straight line without gap with respect to p . For 
determination of the line we calculate the mean values 

1
c GPs

cm c
n ∈

= ∑  where  is the number of points in GPs . The 

direction of the line is given by the eigenvector 

n

1e  belonging to 
the greatest eigenvalue of the covariance matrix . The 
elements of the matrix are 

CM

 ( ) ( ) ( )1 i j
ij

c GPs
cm x xm y ym z zm

n ∈

= − − −∑ k  (23) 

where  
 ( ) ( )   and   x y z c xm ym zm cm= =  (24) 
 
The straight line is described by 1xl cm e= + μ . Start point and 
endpoint are given by  
 ( ) ( )1 1 1 1min    and   max

c GPs c GPs
xa cm c e e xe cm c e e

∈ ∈
= + = +  (25) 

The length of the line is  
 L xe xa= −  (26) 

The eigenvalues of  can be normalized by CM 2
i

i L
λ

ν =  to be 

independent from length. These normalized eigenvalues are 
reasonable for a quality assessment of the lines. The same 
process is repeated for all points not assigned to a line until 
each point belongs to a line or can not generate an acceptable 
line. 
Figure 9 shows the results of the line generation for the data set 
shown in Figure 1. The color indicates the height of the lines. 
The eaves as well as the ground plan of the buildings are 
approximated by lines. For the detection of the ridge of the 
saddle roof we have to use other thresholds for the eigenvalues 
especially for roofs with small inclination. 

10
20

30
40

50
60

70
80

10
20

30
40

50
60

70

0

5

10

 
Figure 9. Lines generated from edge points 

 
For the scene from Figure 3 we got the approximation lines 
shown in Figure 10. The ridge line, the contour lines at the 
bottom of the building and the boundary lines of the door are 
detected.  

 
 

Figure 10. Lines generated from edge points for the point 
clouds of a terrestrial Laser scanner (s. Figure 3) 
colored by the 1. eigenvalue 

 

 
 

Figure 11. Building of Figure 3 colored by intensity  
 
Considering the intensity of the Laser scanner signal of the 
same scene (Figure 11) we will investigate the reconstruction of 
windows. More tests have to be accomplished to stabilize the 
method. 
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The proposed method delivers not only edges of buildings but 
also the overhead wires of tramways in a city. For data from the 
Toposys sensor Figure 12 displays the Last- and First-Echo and 
Figure 13 shows the generated lines of the power lines and the 
support wires. 
 

 a  b  
Figure 12. LastEcho and FirstEcho of a city scene 

 
 

Figure 13. Lines generated from edge points for overhead wires 
 

6. CONCLUSION AND OUTLOOK 

Laser scanner systems gather directly 3D information. For data 
reduction and visualization the data sets are transformed often 
to a raster grid interpolating gaps. Due to this step the original 
3D data is tampered.  
For terrestrial Laser scan data this method is more difficult to 
apply and tampering error may be larger. Additional problems 
will appear if we want to fuse airborne and terrestrial data sets. 
We propose the exploitation of the original 3D point clouds.  
Additional features for each point of the cloud are calculated 
from the covariance matrix including all neighbor points. The 
neighborhood is defined by a sphere. The quality of the 
resulting eigenvalues and the eigenvectors of the matrix 
depends on the resolution and the number of points inside the 
sphere. For different resolutions of different scan directions 
these values are discussed. Based on this investigation the 
radius of the sphere can be calculated by a function of the 
resolution. The new features are invariant with respect to 
position, rotation and scale. 
The additional features are appropriate for classification of the 
points as edge, corner, plane or tree points. For some typical 
situations analytically determined eigenvalues are opposed to 
calculated eigenvalues of real data for comparison. The greatest 
eigenvalue is used for filtering edge like points. 
The described method for generation of lines combines 
consecutive points with the same eigenvector inside a small 
cylinder without any gap. The presented results are promising.  
Further investigations are planned concerning the fusion of the 
data on basis of the point clouds and/or on a higher level of 
lines. For the filtering process features derived from the 
eigenvalues (12)-(17) should be tested on different kind of data 
to get a robust point classification.  
A further topic is the construction of planes assembling plane 
like points.  

A calculation of the covariance matrix which is adapted to the 
resolution should be investigated and may deliver better results. 
This process is expensive and should be tested on several data 
sets.  
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ABSTRACT:  

 

Laser altimetry provides reliable and detailed 3D data, which to certain extent, can be processed (semi-)automatically into 3D 

information. The use of an additional source of information, like 2D GIS data, can improve the reconstruction process, especially in 

terms of time and reliability. This paper describes the reconstruction of 3D topographic objects by fusing medium scale map data 

with the national height model, acquired by airborne laser altimetry. We assume that the topographic objects can all be described by 

smooth surface patches. We therefore first process the laser data to extract the larger smooth surfaces. Discontinuities are, however, 

preserved. The resulting set of laser points is used to first assign heights to the lines of the 2D GIS data and later on to reconstruct the 

surfaces of the objects. A set of processing rules is used in the first step to obtain the most likely heights of the object outlines. A 

constraint Delaunay triangulation of combined 3D outline points and laser points is used for the surface reconstruction. The 

developed method is demonstrated with a 3D reconstruction of a complex motorway interchange. 

 

 

 

1. INTRODUCTION 

With the growing demand for 3D topographic data the need for 

automated 3D data acquisition also grows. Over the past 10 

years several researchers proposed methods to acquire 3D 

topographic data. Many of them focussed on 3D reconstruction 

of man-made objects, (Haala et al., 1998; Rottensteiner and 

Briese, 2002; Vosselman, 1999). Automated methods for 

reliable and accurate 3-D reconstruction of man-made objects 

are essential to many users and providers of 3-D city data, 

including urban planners, architects, and telecommunication 

and environmental engineers (Henricsson and Baltsavias, 

1997).  

 

Laser altimetry provides reliable and detailed 3D data, which to 

certain extent, can be processed (semi-)automatically into 3D 

information. The use of an additional source of information, 

like 2D GIS data, can improve the reconstruction process, 

especially in terms of time and reliability.  

 

This paper describes the reconstruction of 3D topographic 

objects by fusing medium scale map data with the national 

height model, acquired by airborne laser altimetry. This topic is 

part of a larger research project handling the data modelling, 

acquisition and analysis of national 3D topographic databases.  

 

In section 2 we first describe related work on 3D reconstruction 

from laser scanner data. The datasets, advantages of merging 

information and the properties of an extension of a topographic 

database to 3D are discussed in section 3. In section 4 we 

describe the approach to derive the 3D topographic information. 

Adding height to a 2D topographic database not only requires 

assigning heights to the object boundaries, but also needs the 

introduction of surface descriptions. Results of the 3D 

reconstruction of a complex highway interchange are shown 

and discussed in section 5. 

 

2. RELATED WORK 

Over the past ten years airborne laser scanning has broadened 

its application fields from a suitable technique for the 

acquisition of digital terrain models, to more detailed 

reconstruction tasks like the acquisition and modelling of 3D 

(topographic) objects (Maas, 2001). When used for the 3D 

reconstruction of buildings the increasing amounts of points 

contain more and more information about the shape of 

buildings. Therefore methods for 3D reconstruction can be 

more data driven and need less specific object models 

(Vosselman, 1999). 

 

There are several papers concerning the reconstruction of 

objects from laser data without using additional information 

sources like 2D maps or aerial images. Most of them discuss the 

geometric reconstruction of buildings in dense laser scan data, 

(Vosselman, 1999), (Maas and Vosselman, 1999), 

(Rottensteiner and Briese, 2002), (Elaksher and Bethel, 2002). 

(Maas and Vosselman, 1999) suggest when using laser 

altimetry data with a point density of 0.1 point / m2 or less, the 

use of GIS data is necessary to successfully reconstruct building 

roofs. (Rottensteiner and Briese, 2002) also suggest to use 

image edges for matching roof edges, to improve their building 

extraction results. In (Rottensteiner and Briese, 2003) they 

present the use of image segments to find planar regions and 

use image edges to fit wire frames.  

 

The use of an additional source of information can improve the 

reconstruction process, especially in terms of time and 

reliability. Several papers describe the advantage of using both 

laser data and 2D maps. 2D maps provide outlines, classified 

polygons and topologic and 2D semantic information. Although 

most of the papers in this field discuss the reconstruction of 

buildings, (Haala et al., 1998), (Brenner, 2000), (Vosselman 

and Dijkman, 2001), (Overby et al., 2004), (Hofmann, 2004) 

and (Schwalbe et al., 2005), there are some authors handling the 
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reconstruction of other topographic objects, like roads in 

(Vosselman, 2003) and (Hatger and Brenner, 2003), roads and 

lakes in (Koch, 2004), or unclassified break lines (Briese, 

2004). The purposes for integrating map data and laser data 

vary from improving the filtering process for DTM generation 

by explicitly modelling 3D breaklines (Briese, 2004) to rapid 

acquisition of 3D city models for virtual reality applications 

(Haala et al., 1998).  

 

In this research we recognise and model height discontinuities 

between objects that are adjacent in a 2D topographic database. 

For modelling the surfaces of the 3D topographic object a point 

cloud segmentation algorithm is used. This algorithm preserves 

height discontinuities, but eliminates small objects like cars and 

traffic signs that should not be included in the 3D topographic 

database. Filtering algorithms are also used to select the correct 

laser points for modelling the object surfaces. 

 

 

3. DATA PROPERTIES 

3.1 Data sources 

This research is a part of a project to develop methods for 

acquiring, storing, and querying 3D topographic data as a 

feasibility study for a future national 3D topographic database. 

Usage is therefore made of the current national 2D topographic 

database TOP10vector and the national elevation model AHN. 

 

TOP10vector is a digital 2D topographic database for usage at a 

scale around 1:10.000. It has been built up in a fully coded 

object structure. The database is acquired from photographs in a 

1:18.000 scale and has an accuracy of 1-2 m. Small buildings 

like houses, are stored in a different layer and are not shown in 

figure 1. 

 

 
Figure 1: The study area in the TOP10vector database. 

 

The national Height model of the Netherlands (AHN) has an 

average point density of 1 point per 16 m² or better and a height 

precision of about 15 cm standard deviation per point.  In the 

standard production process the laser data has been filtered, 

removing buildings, trees and outliers. This filtered dataset will 

normally be interpolated to a regular grid, and delivered in grid 

sizes of 5, 25 and 100 meter. However, in this project the 

original, unfiltered irregular point cloud has been used in order 

to use as much information from the point cloud as possible 

(Figure 2). 

 

 
Figure 2: Colour coded AHN elevation data of the study area. 

 

3.2 Data fusion 

The existing topographic data delivers a large amount of 

topological and semantical information. Objects in topographic 

maps have been classified by human interpretation of aerial 

images. In this step the outlines, classification and semantics of 

topographical features are being stored for every object. We 

describe four different examples, showing how 2D map data 

can be used to better process the laser data: 

1. Outlines. Although there might be small planimetric 

discrepancies between map data and laser altimetry data, 

the map data delivers information at object edges where 

there might be a change of class, resulting in break lines in 

the height data. Outlines can also be used as input for 

partitioning the 2D object (Haala et al., 1998), (Vosselman 

and Dijkman, 2001). 

2. Classification in relation to individual laser points: 

Because the ground structure at the earth surface has 

influence on the characteristics of the returned laser pulse 

(Jutzi and Stilla, 2003), (Pfeifer et al., 2004), this class 

information will be used as input knowledge to further 

process the laser data. 

3. Classification in relation to groups of laser points. Where 

the previous step focussed on the behaviour of individual 

laser pulses, the class information can be extended to 

groups of laser points. Lakes should be horizontal, roads 

should be smooth, and vegetated areas can show varying 

heights. Using the information that roads should be smooth 

in 3D, helps to determine filter parameters for road 

polygons, filtering out laser points reflected on small 

objects like cars, containers, traffic lights etc. 

4. Semantics. One step further is the implementation of 

knowledge about an object in relation to its neighbouring 

objects. A good example is given in [Koch, 2004] where 

the object ‘lake’ has not only to fulfil internal constraints 

(the lake should be horizontal), but it also has to lie below 

its neighbouring objects. To give another example, 

reconstructing two intersecting roads should result in a 

smooth surface at the junction. 

 

3.3 Features & representation 

In the 2D map used in this project, road segments are 

represented by closed polygons. Its geometry has been defined 

by the coordinates of vertices and the topology. In the map 

implicit height information can be stored by adding ‘hidden’ 

objects classifications to polygons covering locations with 

multiple land use. Figure 3a shows that the middle polygon has 

two classification attributes: ‘visible road 1’ and ‘hidden road 

2’. Figure 3b clarifies that adding height to 2D vertices is not 
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enough to get a 3D model. At a certain point the terrain will 

connect the upper road with the lower road; part of the edges 

between terrain and road, which were connected in 2D do not 

connect to each other in 3D. This means that additional 3D 

edges have to be created for overlapping objects. Our task is to 

derive a method which automatically determines the location 

and shape of the interchange by adding laser data to map data. 

In the next chapter we describe a method, which integrates 

object knowledge into the reconstruction of 3D infrastructural 

objects. 

 

Figure 3: Fly-over in a 2D (a) and 3D representation (b). 

 

4. APPROACH 

4.1 Pre-processing 2D map 

As shown in figure 3b, edges that are straight in the 2D map do 

not need to be straight in the 3D model. To correctly capture the 

shape of the infrastructural objects, the edges therefore need to 

be described by more points. For this purpose, points were 

inserted into the edges of the polygons at every 10 m. For all 

these points and the original map points the height needs to be 

determined from the laser data. 
 

4.2 Segmentation  

We assume that the topographic objects can all be described by 

smooth surface patches. The purpose of the point cloud 

segmentation is therefore to find piece-wise continuous surfaces 

that can be used to infer the heights of the topographic objects. 

Traditional filter algorithms that are used to produce digital 

elevation models often completely or partially remove objects 

like bridges and road crossings (Sithole and Vosselman, 2004). 

By segmenting a scene into piece-wise continuous patches and 

further classifying the segments this problem can be avoided 

(Sithole and Vosselman, 2005); (Tóvári and Pfeifer, 2005). 

 

In our case, we do not perform a classification of the segments, 

but just use the segmentation results to eliminate laser points on 

small objects like cars, light poles, traffic signs, and trees. By 

requiring a minimum segment size, all these points will be left 

without a segment number after the segmentation step and can 

be easily removed. 

 

For the segmentation of the point cloud a surface growing 

algorithm is used with some modifications that allow a fast 

processing of large datasets (Vosselman et al., 2004). The 

surface growing method consists of a seed surface detection 

followed by the actual growing of the seed surface. For the 

detection of seed surfaces we employ the 3D Hough transform. 

This transform is applied to the k nearest points of some 

arbitrary point. If the Hough transform reveals that a minimum 

number of points in this set is located in a plane, the parameters 

of this plane are improved by a least squares fit and the points 

in this plane constitute the seed surface. To speed up the seed 

detection, we do not search for the optimal seed (with most 

points in a plane and the lowest residual RMS of the plane fit), 

but start with the growing once an acceptable seed surface is 

found. 

 

In the growing phase we add a point to the surface if the 

distance of the point to a locally estimated plane is below some 

threshold. This threshold is set such that some amount of noise 

is accepted. At the same time is also serves to allow for a small 

curvature in the surface. For a faster processing, the normal 

vectors of points are not computed and checked. The distance 

of a point to the local plane is the only criterion. If a point is 

accepted as an expansion of the surface, a local plane needs to 

be assigned to this point. In case the distance computed for this 

point was very small, no new local plane is estimated, but the 

plane parameters of the neighbouring surface point is copied to 

the new point. This strategy again serves a faster processing of 

the point cloud. Once no more points can be added to a surface, 

the seed detection is repeated. This process continues until no 

more seed surfaces are found. 

 

4.3 3D reconstruction method 

The first step of adding the third dimension to the map is to 

assign heights to the boundaries of all map objects. In many 

cases, two objects that are adjacent in 2D are also adjacent in 

3D. In some cases, however, there will be a clear height 

difference for (a part of) the boundary that the objects share in 

2D. Assigning the proper heights to the object outlines then 

requires the introduction of additional lines in the database (cf. 

section 3.3).  

 

For each point in the map lines after the densification (section 

4.1), the objects with boundaries containing this point are 

selected. For each of the objects around a point the height is 

derived from the laser points inside the object outline. For this 

purpose the segmentation results are used. First the k laser 

points that are nearest to the map point are selected. Next it is 

determined which segment number is most frequent among the 

selected laser points. A plane is fitted through the laser points 

of the most frequent segment number and the height of this 

plane at the location of the map point is taken as the boundary 

height. The usage of the most frequent segment number has 

proven useful in cases of a slight misregistration between the 

map and the laser data. In this case points of a high object may 

be located inside the boundaries of an adjacent low object or 

vice versa. A straightforward fitting of a surface to all laser 

points near the map point would then lead to errors. The 

selection of the points of with the most frequent segment 

number makes the height assignment more robust. 

 

Once a height has been estimated for all objects around a point, 

it needs to be determined whether objects with similar heights 

should share the same 3D boundary point. A series of 

processing rules is used to make this decision: 

- If a water and a meadow object are adjacent, the height of 

the meadow boundary point is set to the height of the water 

level. This ensures that the shores of water areas are hori-

zontal (Koch, 2004). 

- If there is a small height difference between two objects of 

the same type, a common 3D boundary point is used with 

the average height of the two objects. 

- If there is a small height difference between a road object 

and another object, the height estimated for the road object 

is taken as the height of a common 3D boundary point. This 
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rule is used because the heights on (the very smooth) road 

surfaces can be estimated more accurately. 

 

Figure 4 shows an example of a few road and meadow objects 

of a road junction. At the locations where the road surface is 

above the ground level, additional object lines are introduced to 

model the height difference. 

  
Figure 4:  2D map lines of a few road and meadow objects 

(left) and perspective view on the reconstructed 3D 

object boundaries (right). 

 

4.4 Surface modelling 

In the previous section laser data has been used to assign 

heights to the dense map points, which are situated on the 

object boundaries. Adding height to a 2D object not only means 

giving height to the boundaries of this object, but also to the 

surface of the object. Most of the objects show some relief at its 

surface, like structures on the roof of a building and height 

differences in grasslands. 

 

To obtain a realistic surface model, a Delaunay triangulation 

was performed with the set of dense 3D map points combined 

with the set of laser points. However, road and water objects are 

triangulated without using the laser points. The motivation is 

that the resulting 3D road will be smoother, which can be seen 

as a generalization choice in 3D. Implicitly the laser points on 

the road segments already gave their height information to the 

map points, as described in section 4.3. In all triangulations the 

object boundaries have been added as constraints.  

 

Morphological filtering has been applied to prevent unwanted 

spikes near edges between roads and meadow. These spikes are 

caused by misregistrations between the laser and map data, e.g. 

when laser points are located within meadow polygons but 

actually lie on upper roads of the interchange. These mistakes 

did not influence the height determination of the map points (in 

section 4.3), because a plane was fitted through a dominant 

segment of laser points. However, when adding individual laser 

points to the surface these errors show up as steep triangles in 

the TIN, and have to be removed. This filtering is performed for 

each object separately. 

 

In 3D, road objects can be modelled as volume objects, instead 

of surface objects. At this moment we have added a fixed, 

predefined thickness of 1 meter, underneath the road surface to 

improve the visualisation at interchanges and flyovers. In the 

future terrestrial laser data will be integrated to be able to model 

the object parts which can not be seen from aerial laser and 

image data. For visualisation purposes the boundary 

representation has been converted to VRML 2.0 format.   

 

5. RESULTS 

Figure 5 shows the result of an important preprocessing step on 

the laser data: removing small segments from the point cloud. It 

can be seen that many small features like cars and bushes are 

being removed in this step.  

 

    
Figure 5: Laser scanner data before (left) and after (right) the 

removal of small segments. Black areas contain no 

laser points. 

 

Note that on some parts of the roads even in the unfiltered data 

set only a few laser points return from the surface. This type of 

asphalt partly absorbs the laser pulse, resulting in lower point 

density on road objects. Only for small 2D road objects the low 

point density results in unreliable 3D reconstruction (cf. figure 

10). 

 

  
Figure 6: Aerial photograph of the motorway interchange (© 

Picture archive of the Ministry of Transport, Water 

Management and Public Works) and reconstructed 

model. 

 

Figure 6 illustrates the motorway interchange on an oblique 

photograph (left) and as reconstructed model (right). As the 

picture is taken in 1983, a few objects have changed over time. 

In figure 7 the reconstructed model of the test region is shown. 

All objects have kept their classification type of the 2D map (cf. 

figure 1). For simplicity reasons, we choose to assign all objects 

to four classes: road (grey), meadow (green), water (blue) and 

building (light grey). The focus is on the reconstruction of 

infrastructural objects and the connections to the terrain. In the 

upper left part of the scene two large spikes show up. The 

selection of suitable laser points for plane fitting for the height 

determination of the map points has failed there. The reason is 

that the laser data ends a few meters behind those map points.  
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Figure 7: Overview of reconstructed scene with complex 

infrastructural objects. 

 

In the next figures we will discuss this result in detail. Figure 8 

& 9 show results for our reconstruction method. Water objects 

are horizontal and the neighbouring meadow objects connect to 

the water boundaries. The upper road in figure 8 is 

reconstructed above the water and the other road and connects 

to terrain at the correct position. Note that the black objects 

underneath the flyovers are still holes in the model. These holes 

will be filled up in a later stage, either in an integration process 

with terrestrial laser scanner data or by adding other 

information to the model. This information can be in the form 

of object knowledge: most of the holes can be filled up by 

interpolation between the two neighbouring objects.   

 

 
Figure 8: Reconstructed interchange, together with water and 

meadow objects.  

 

 
Figure 9: Result for the reconstruction of the body of the 

flyover, and the flying roads. 

 

 
Figure 10: Holes due to hidden object parts and lack of suitable 

laser points. The white circles show the locations of 

three holes. 

 

Figure 10 shows that some road object parts are missing on the 

lower region of the flyover. For some parts the reason is that 

there is a reconstructed road object on an upper level of the 

flyover, resulting in gaps at all lower levels. Another reason for 

missing parts is that the number of laser points may become too 

small to reliably fit a plane through these laser points, as we 

already have seen in figure 5. This means that the boundaries of 

these object parts cannot be determined in 3D. We decided not 

to add those unreliable parts in the model. Additional 

knowledge has to be put into the reconstruction process to 

constrain the connectivity between object parts, which represent 

the same real world object. 

 

 

6. CONCLUSION & OUTLOOK 

We have presented a method that recognises and models height 

discontinuities between objects that are adjacent in a 2D 

topographic database. A segmentation algorithm has 

successfully been used to connect laser points on smooth 

surfaces and remove small segments. First, the 3D boundaries 

have been determined by fitting planes to neighbouring 

dominant laser segments. Several connection rules have been 

applied to get a tight model at object boundaries. Several 

conditions have been applied to get horizontal lakes and smooth 

roads. At interchanges and flyovers additional boundaries have 

automatically been reconstructed to allow the reconstruction of 

3D objects. 

 

In the near future we will focus on how to add missing 

polygons to hidden objects. Knowledge about semantics and 

topology will be integrated with reconstruction method in order 

to overcome the lack of laser points on hidden objects. Together 

with other research partners we are working on the modelling of 

volume objects in a TEN data structure. This gives the 

opportunity to reconstruct 3D models with 3D primitives 

instead of with 2D surfaces. Next, focus will be on the detailed 

reconstruction of buildings, by fusing higher point density laser 

data with large scale topographic maps. 
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ABSTRACT: 
 
The combination of photogrammetry (with its high geometric and radiometric resolution) and terrestrial laser scanning (allowing 
direct 3D measurement) is a very promising technique for object reconstruction, and has been applied for some time now, e.g. in the 
system Riegl LMS Z-420i. Nevertheless, the results presented from the combined laser-image-data very often are only coloured 
point clouds or textured meshes. Both object representations usually have erroneous representations of edges and corners (due to the 
characteristics of the laser measurement) and furthermore the amount of data to be handled in these “models” is typically enormous. 
In contrast to these object representations a surface model using a polyhedral compound would use only the relevant object points. 
However, the extraction of these modelling points from laser-image-data has not yet been fully automated. Especially the necessary 
generalization can only be accomplished by a human operator. Therefore, our aim is to support the operator in his work by speeding 
up the measurement of these modelling points. For this aim, this article presents a simple mono-plotting method that allows the 
human operator to identify each modelling point (on corners and edges) in the high-resolution images by a single mouse click. 
Subsequently, for this selected image ray, the missing distance is automatically determined from the associated laser data. This 
procedure starts by extracting the laser points in a cone around the image ray. Then these extracted points are tested for locally 
smooth surface patches (e.g. planar regions). Finally, the image ray is intersected with the foremost or hindmost of the extracted 
plane surface patches. Within this procedure the influence of erroneous laser measurements close to edges and corners can be 
avoided and furthermore, the distance from the scanner centre to the intersection point is determined with a better accuracy than the 
single laser point.  
 
 

1. MOTIVATION 

3D objects need to be represented for many applications, e.g. 
for visualization purposes, or for object analyses in order to 
derive certain object properties. The representation of a 3D 
object can be any of the following types (Rottensteiner 2001): 

• point cloud: the object is just described by the vertices 
• wire frame model: the object is described by vertices and 

edges 
• surface model: the object is described by vertices, edges 

and faces 
• volumetric model: the object is described by vertices, edges, 

faces and volumes, e.g. a set of volumetric primitives. 
 

The representation using a point cloud may only serve for 
visualization purposes, with the visualization quality depending 
on the point density. However, mathematical analyses such as 
computing the volume or the area of an object are very difficult 
to accomplish when using only a point cloud representation. 
Such analyses require a model representation. 

Of the three model representations, the surface model is the 
most applicable both for visualization and for mathematical 
analyses. Compared with wire frame models, surface models 
add the important definitions of faces, and compared with the 
volumetric models, surface models allow the representation of 
irregularly shaped objects in a much easier way. 

Independent of the sensor (digital camera or terrestrial laser 
scanner) used for surveying of an object, the whole modelling 

process can be divided into three phases: data acquisition, data 
orientation, and the actual modelling.    

In the context of this work we consider terrestrial objects, 
whose surface can be very well approximated by a polyhedral 
compound, e.g. facades of buildings, like the oriel window 
shown in fig. 1. Because of the large quantity of different object 
types that may appear in terrestrial scenes and the associated 
level of detail, it is very difficult to model such objects 
automatically – at least in a practical way. Usually the available 
data, e.g. images, provide a much higher resolution than 
required for the reconstruction of the object. The necessary 
generalization can only be accomplished by a human operator. 
Therefore, in the context of this work we consider the selection 
of the relevant object information for an adequate 
representation to be performed manually. A human operator 
digitizes the important object points, which make up the 
vertices of the surface model to be generated. These modelling 
points are placed at distinct positions of the object – usually on 
edges and at corners of the object.  

Terrestrial photogrammetry always has been a prime source for 
deriving surface models of 3D objects. This is due to the 
capability of very fast data acquisition and high image 
resolution both in a geo-metrical and a radio-metrical sense. 
The orientation and modelling phases, however, are much more 
time consuming. This is mainly due to the fact that images only 
record directions to the object points, thus the 3D reconstruction 
has to be done indirectly by spatial intersection using at least 
two images taken from different view points. In addition, 
terrestrial images are usually not taken in a regular pattern, so 
that the orientation of such images can only be automated in a 
limited way (at least up to now no commercial software 
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package provides a fully automated orientation procedure for 
general image arrangements), or special time consuming actions 
are required to take place on site (such as sticking markers on 
the object resp. providing many control points). Due to the 
indirect nature of photogrammetric object reconstruction, the 
modelling phase is slowed down as the human operator has to 
identify the modelling points in at least two images – very often 
only monoscopically. Overall, for the reasons mentioned above 
surface reconstruction from images is generally a rather time-
consuming process. 

   
(a)                                 (b)                                 (c) 

Fig. 1. a) Section of the original photo (pixel spacing 6mm), b) 
Section of the intensity image of the laser scanner (pixel 
spacing 1cm), c) Reconstructed object covered with the original 
texture from a). Data acquired with Riegl LMS Z420i and 
mounted Canon digital camera EOS 1Ds with a 20mm lens; 
mean object distance 14.5m. 

 
With the advent of terrestrial laser scanning, it seemed that the 
procedure of deriving surface models would be sped up and 
terrestrial photogrammetry would become less important. This 
expectation was due to the following features of laser scanning, 
which outperform photogrammetry: (i) It is an active and direct 
3D measuring principle, thus a ‘single’ measurement is 
sufficient to derive the 3D coordinates of an object point. (ii) 
The orientation of several overlapping laser scans can be 
automated to a very high degree. These tremendous advantages 
also compensate a slightly longer acquisition time on site 
(compared to taking images). However, it also became evident 
that laser scanning has its drawbacks: (i) Distances measured 
close to edges and corners are very unreliable; e.g. (Böhler et 
al. 2003). (ii) Compared with digital photogrammetry the 
laser’s object resolution is generally a little worse from a 
geometric viewpoint and dramatically worse from a radiometric 
viewpoint; cf. fig. 1b and 1a. Due to these drawbacks, 
modelling from terrestrial laser scanner data is not yet 
completely satisfactory: The human operator has problems in 
identifying the “important” points only from the laser intensity 
data (due to the bad geometric and radiometric resolution), and 
furthermore these important points are on edges and corners of 
the object – spots where the laser might return erroneous 
distances. Consequently, point clouds rather than surface 
models are presented usually as the result of terrestrial laser 
scanning. 

It also became clear that a combination of both photogrammetry 
(with its high geometric and radiometric resolution) and 
terrestrial laser scanning (allowing highly automated direct 3D 
measurement) would be promising. Additionally by mounting a 
digital camera directly on top of the laserscanner, e.g. the 
system Riegl LMS Z-420i (Riegl 2006) shown in fig. 2a, the 
orientation of the whole system can be determined very fast. 

Nevertheless, the results presented from the combined laser-
image-data very often are still only coloured point clouds or 
textured meshes – both with erroneous representations of edges 
and corners. Although meshes are specific surface models, they 
are not the best choice for representing objects with polyhedral 
compounds from a storage point of view. Further, they usually 
have no object interpretation and generalisation. 

In order to speed up manual modelling of objects by polyhedral 
compounds based on oriented image-laser-data, in this article 
we present a simple method that allows the human operator to 
identify each modelling point (at corners or edges) in the high-
resolution images by a single mouse click. With this selected 
image ray, the missing distance is determined from the 
associated laser-data automatically. This procedure starts by 
extracting the laser points in a certain cone around the image 
ray. The extracted points are tested for the occurrence of planes. 
Then, the intersection points between the image ray and the 
detected planes are calculated yielding candidates for the 
required object point. Candidates being too far away from the 
laser points defining its object plane are eliminated. Finally, one 
of the remaining candidate points is chosen as result according 
to an intersection option selected by the user (i.e. the foremost 
or the hindmost point). In this way, the erroneous laser 
measurements close to edges and corners are avoided and 
furthermore, the distance from the image centre to the 
intersection point is determined with a better accuracy than the 
single laser point. This technique works best for images from 
mounted cameras, such as for the Riegl LMS Z420i, but can 
also be applied to other images. 

The paper is structured in the following way: Section 2 gives an 
overview on related work. The detailed explanation of the 
proposed method is given in section 3, followed by two 
examples in section 4. An outlook in section 5 concludes the 
paper. 

2. RELATED WORK 

Our approach is closely related to mono-plotting in aerial 
photogrammetry, e.g. (Kraus 1996): From a single image the 
3D coordinates of object points are determined by intersecting 
the respective projection rays with a given surface model; i.e. 
the points are ‘plotted’ on the surface. In recent years related 
work on applying mono-plotting to combined laser-image-data 
was published in different papers.  

Perhaps one of the first approaches was the so-called ‘3D-
orthophoto’ (Forkert and Gaisecker 2002), later renamed to ‘Z-
coded true orthophoto’ (ZOP) (Jansa et al. 2004). Here the 
image-laser-data is used to derive a true orthophoto with respect 
to a predefined object plane and with a certain ground 
resolution. The transition from this usual orthophoto to the ZOP 
is established by also computing the depth values of the 
orthophoto pixels with respect to the predefined object plane 
and adding this information as fourth layer to the three colour 
layers (red, green, blue).  

Other authors apply the mono-plotting to the original images by 
mapping all laser points into the image and interpolating the 
object distance for all image pixels from these mapped points. 
Again, this distance information is stored as a fourth channel 
with the image. In (Bornaz and Dequal 2004) this resulting 
4-dimensional image is termed ‘solid image’, and in 
(Abdelhafiz et al. 2005) this result is termed ‘3D image’.  
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The idea behind these 4-dimensional images and the ZOP is 
that the human operator just views the respective image, clicks 
on the points of interest and immediately gets the corresponding 
3D coordinates. However, since here the original laser points 
are used for interpolating the distance of each image pixel either 
by nearest neighbour or by a simple average weighted method, 
the mentioned erroneous laser measurements close to edges and 
corners will to some extent remain in the results and may lead 
to unwanted smoothing effects. 

The approach presented by (Becker et al. 2004) is closer to our 
method. Here also the original images and the associated laser 
data are used and only selected image points are determined in 
3D space by intersecting image rays with 3D planes. The 
difference to our approach is that in (Becker et al. 2004) the 
operator first has to manually define the respective 3D plane in 
a view of the original image superimposed with the respective 
laser point cloud by selecting a certain area of supporting laser 
points. Afterwards the adjusting plane through that point set is 
determined, and from then on all further selected points in the 
original image will be mono-plotted with respect to this pre-
defined plane. In our approach the respective object plane is 
determined automatically for each selected point, thus a higher 
degree of automation and a better adaptation to the shape of the 
object is achieved. 

3. THE PROPOSED METHOD 

Of the three phases mentioned in section 1 we only deal with 
the modeling phase in the context of this paper. Thus we 
assume the acquisition and orientation phase to be 
accomplished in advance. Therefore we know the camera’s 
interior orientation, its relative orientation with respect to the 
scanner, and further the scanner’s absolute orientation.  

Consequently our problem is the following: Given the measured 
image co-ordinates of a point, we want to determine its 3D 
object coordinates using a raw, i.e. in no way pre-processed, 
laser scanner point cloud that covers the area of interest. With 
the known orientation, the image ray can be transformed to the 
co-ordinate system of the scanner.  

Since the direction to the object point is already very precisely 
determined by the image ray, only the distance information is 
missing. The simplest approach would be to use the measured 
distance dmeas of the laser point Pclose that is situated closest to 
the image ray and to intersect the image ray with the sphere 
with radius dmeas centred in the scanner’s origin. This approach, 
however, has two drawbacks:  

(i)  It is not robust and thus not reliable: If Pclose is near a 
depth discontinuity (i.e. close to an edge) the measured 
laser distance can be systematically wrong. A laser scan 
of an object of interest generally contains also points on 
non-interesting objects e.g. points on vegetation, on 
humans or cars passing by, etc. A scan may also contain 
blunders caused by failures of the measurement device. 
Consequently, if Pclose is accidentally on one of these 
mentioned objects or a blunder, the selected distance 
will be grossly wrong. 

(ii) It neglects possible accuracy improvements. Even if 
Pclose is a valid laser measurement, its distance is still 
affected by random errors. 

 

Both drawbacks can be eliminated if not only one point is 
considered but also its neighborhood. Consequently the task is 
to “intersect” the image ray with the point cloud. For this the 
following facts have to be considered: 

• The laser point cloud is discrete. Therefore the covered 
region in the neighbourhood of the object point has to 
be approximated by a proper surface in order to 
compute the intersection with the image ray. The 
simplest approximation is by a plane, although in 
principle surfaces of higher order are also applicable. 

• The laser measurements contain random, systematic and 
gross errors. In order to deal with the random errors the 
surface approximation has to be done using an 
adjustment and in order to deal with the systematic 
errors close to edges and gross errors in general this has 
to be done in a robust way. 

• If the point of interest is situated on an edge or in a 
corner the respective image ray will in general intersect 
more than one object plane. Consider e.g. the planes of 
the oriel in fig. 1, where the image ray of a point on an 
oriel’s edge will also intersect the plane of the façade of 
the house. The searched object point may be situated at 
the oriel’s edge as well as in the façade’s plane, since 
both possible 3D points are mapped to one and the same 
image point. In order to get a unique solution, the user 
has to specify which part of the object (the foremost or 
the hindmost) he or she is interested in. 

 

The proposed method consists of two steps. In the first step, we 
extract the laser points from the point cloud that are situated 
within a certain neighbourhood of the image ray. More exactly, 
we define a “cone of interest”. The axis of that cone coincides 
with the image ray, and its apex is the camera’s projection 
centre. Its apex angle is chosen depending on the scan’s angular 
step width. Only points inside this cone are considered for 
further analysis. 

In the second step, the 3D co-ordinates of the point of interest 
are determined by intersecting the respective image ray with an 
object plane. For this at first, we set up plane hypotheses using 
an extension of the RANSAC (random sample consensus) 
framework (Fischler and Bolles 1981). Then, the intersection 
points between the image ray and the detected planes are 
calculated yielding candidates for the required object point. 
Candidates being too far away from the laser points defining its 
object plane are eliminated. Finally, one of the remaining 
candidate points is chosen as result according to an intersection 
option selected by the user (i.e. the foremost or the hindmost 
point). 

3.1 Determination of the points inside the cone of interest 

Solving this task is simplified by using the laser points’ 
topological information, which is provided by most laser 
scanner systems. In case of the system Riegl LMS-Z420i, the 
measurements are arranged in a measurement matrix, where the 
column-row-index-space (c, r) and the direction-space (α, ζ) are 
related in the following way: 

                       and   0αα α +⋅Δ= c 0ζζ ζ +⋅Δ= r  (1) 
where α is the horizontal direction, ζ the vertical direction, Δα 
the horizontal angle step width and Δζ the vertical angle step 
width (usually Δα = Δζ = Δ), c the column index, r the row 
index, α0 the horizontal direction at c = 0, and ζ0 the vertical 
direction at r = 0. 
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Note that the directions α and ζ are only scheduled values. The 
actual direction measurement values (αmeas, ζmeas) may slightly 
differ from the scheduled ones. These measurements 
(αmeas, ζmeas) together with the measured distance and the 
intensity of the returned laser-pulse are stored in this matrix. 
Thus the measurement matrix actually contains 4 layers. Using 
only the intensity layer as grey value image, also called 
“intensity image” (cf. fig. 1b), the laser scanner data can be 
visualized in a simple way. Note, however, that only those cells 
in the data matrix are valid for which a distance measurement 
has been carried out successfully (cf. fig. 1b, where non-valid 
points appear blue). 

In order to have enough points inside the cone of interest 
(which we denote by C  ) we select a rather large apex angle of 
20 times the angle step width Δ. For determining the points 
inside C   we map C   into the measurement matrix. Therefore, 
we have to project C  first onto the unit sphere centred in the 
scanner’s origin O, and afterwards transform it from the 
direction space to the column-row-index space using equations 
(1). 

Apart from the cases where the image ray (which we denote by 
R ) contains the scanner’s centre, its projection onto unit sphere 
is a part of a great circle (fig. 2a). Hence, this great circle arc is 
also the projection of the cone’s axis. In order to get the whole 
spherical area of interest, we need the projection of the cone’s 
contour (as seen from the scanner’s centre O). The projections 
of the cone’s contour generators are also great circle arcs. The 
set G  of all generators’ points at infinity corresponds to the 
intersection curve of the unit sphere with the parallel congruent 
cone C  || having its apex in the scanner’s centre O. Hence, the 
image curve of G  on the unit sphere is a small circle (fig. 2b).    

   
          (a)                                                       (b) 

Fig. 2. (a): The laser scanner Riegl LMS-Z420i with mounted 
camera. An image ray R  starting at the camera’s projection 
centre Z is mapped onto unit sphere centered in the origin O of 
the scanner’s co-ordinate system. The resulting image of the ray 
is a great circle arc between the image Z’ of the projection 
centre and the vanishing point R∞’ of the ray’s direction. (b): 
Cone of interest C  around the ray R and its image on the unit 
sphere. E∞’ and F∞’ are the vanishing points of the cone’s 
contour generators seen from the scanner’s origin O. 
 
Using the equations of the two great circle arcs through E∞’ and 
F∞’ in fig. 2b and the small circle, and by applying the 
transformation from direction space to column-row-index 
space, we can determine the window of interest in the 
measurement matrix. Afterwards, we check for each pixel 
within this window, if it has a valid distance and if the 
respective laser point is actually inside the cone of interest 
(“point-inside-cone test”). Fig. 3 shows an example for a 

measured image point and the projection of the respective cone 
of interest in the scan’s intensity image. 

As result of this first step, we obtain a set of points near the 
image ray (represented by the green pixels in fig. 3b), which is 
the basis for further analyses.  

3.2 Detection of object planes and determination of the 3D 
co-ordinates of the point of interest 

In order to determine the 3D co-ordinates of the point of 
interest, we have to estimate a laser distance for the digitised 
image point using the obtained set of points inside the cone of 
interest. It was already argued in the beginning of section 3 that 
a reliable determination of such a distance by intersection with 
the respective image ray requires a surface approximation in the 
vicinity of the point of interest. The simplest approximation is 
by a plane, although in principle surfaces of higher order are 
also applicable. 

We assume that up to imax (e.g. imax = 5) planes are to be found 
in the vicinity of the point of interest (i.e. in the cone of 
interest). Our approach for detecting them is based on the 
RANSAC framework. At the beginning, all points are 
unclassified, i.e. none of them is assigned to any plane. Plane 
detection is done iteratively. In each step (i = 1, … imax), that 
plane πi is detected which has the highest support from the 
unclassified points. The supporting points are then classified as 
belonging to the detected plane.  

  
          (a)                                                   (b) 

Fig. 3. (a): Section of a photo with measured image point (green 
cross). (b): Section of the scan’s intensity image. The pixels 
inside the spherical image of the respective cone of interest are 
marked in yellow; those also fulfilling the point-inside-cone test 
are marked in green. 
 
Although in each step only one plane (the one with largest 
support) is detected, for finding this plane several plane 
hypotheses γk (k = 1, … kmax) are tested based on an adapted 
RANSAC approach. Finding planes using RANSAC in its 
original form would mean that we would have to randomly 
select the minimum number of three points and test the 
remaining points for incidence with this plane. However, we 
only select one seed point for each plane hypothesis. Then, we 
select all neighbouring points within a sphere of radius ε1, 
which is chosen dependent both on the angular step width Δ of 
the laser scan and the laser distance measured at the seed point 
dS as ε1 = 3dSΔ. Thus, 20-30 points will be selected. A plane 
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hypothesis γk is generated by calculating a least-squares plane 
through the seed point and the selected neighbours. This plane 
can also be considered as a tangential approximation to the laser 
points in the seed point. Summarizing, our modified RANSAC 
method differs from the classical one by the following: 

• Each of the n points inside the cone of interest could be 
used to create a plane hypothesis. Thus, the maximum 
number of possible hypotheses is n compared with “n 
choose 3” in classical RANSAC. kmax, the number of 
hypotheses that have to be checked in order to find at 
least one seed point in one of the up to imax possible 
planes with a probability of 99.9% is given by 
ln(0.001)/ln(1-1/imax) ~ 31. 

• The plane hypotheses are set up locally by least-squares 
adjustment compared to a direct solution through 3 
points at classical RANSAC. 

• This modified approach tends to suppress the generation 
of hypotheses merging two or more slightly different 
planes to a single one and therefore obtaining 
unjustifiably high support. In other words, our modified 
method provides more robustness against unjustified 
merging of planes. 

 
A point supports a plane hypothesis if its orthogonal distance to 
the plane is within ±ε2, which is the standard deviation (in 
direction of the plane-normal) derived from the seed point’s co-
variance matrix. The latter is derived from the accuracies of the 
laser scanner. Of all the plane hypotheses γk the plane πi having 
the highest support, i.e. the plane explaining most unclassified 
data points, is accepted. Afterwards, πi is re-adjusted using all 
its supporting points.  

The points in this supporting set, however, are not yet finally 
assigned to πi. The assignment of an unclassified data point to 
the plane πi is based on a statistical test (significance level e.g. 
5%). This test considers the points’ orthogonal distance to πi 
and the covariance matrices of πi and of the points (derived 
from the laser scanner accuracies). This is favoured over a 
simple (non-statistical) distance threshold criterion, because the 
accuracy of a laser point in Cartesian space may be rather 
anisotropic. Especially in case of short distances (< 10m), a 
point is significantly better determined perpendicularly to the 
laser beam than in radial direction. In other words, the noise 
perpendicular to the plane heavily depends on the angle 
between plane normal and laser beam. 

For the remaining unclassified points the next plane with 
maximum support πi+1 is detected, and so on. The process will 
stop after the maximum number of “best” planes πi (imax = 5) 
has been detected or if only a small percentage (e.g. 10%) of 
points is still unclassified. As result, we get a set of planes 
together with their associated data points. 

Each plane πi is intersected with the image ray yielding 
candidates Si for the desired intersection point. However, we 
can immediately reject those candidate-points that are situated 
far away from any data point assigned to the respective plane πi. 
Therefore, for each candidate point Si, we determine the closest 
data point Pi belonging to its underlying plane, and calculate the 
distance between Si and Pi. A candidate point is rejected if this 
distance exceeds a distance ε3, which depends on the distance 
dS of Si to the scanner’s origin and the scan’s angular step width 
Δ as ε3 = 2dSΔ. 

Finally, one of the remaining candidate-points is accepted 
according to the selected user option, which may be intersection 
with either the foremost or the hindmost plane. In this way we 
obtain the 3D co-ordinates of the object point measured in the 
photo in the beginning. If there are additional observations to 
the same point (e.g. in other photos), its calculated laser 
distance together with its image co-ordinates may be introduced 
as observations in a subsequent adjustment. 

4. EXAMPLES 

In this section, we give two typical examples in order to 
demonstrate our approach. In case of the first example, three 
planes were detected (fig. 4). Depending on the user option, 
either plane 2 or plane 1 is intersected with the ray. In this case 
plane 2 is used (i.e. the foremost plane) since the user is 
interested in the oriel’s corner. Note that our approach delivers 
a reasonable result, although the image ray runs through an area 
of erroneous laser points near distance discontinuities. 

Fig. 5 shows another example, where the maximum number of 
planes (Nmax = 5) was detected. Compared with the previous 
example, the proportion of erroneous points is relatively small. 
However, this is a good example in order to argue why we do 
not use the original RANSAC approach (generation of 
hypothesis by 3 random points) for plane detection: Due to the 
poor extension/noise ratio of plane 3, the original RANSAC 
approach tends to merge the points of plane 3 with some of 
those situated on the (parallel) front plane of the oriel’s corbel, 
which is about 5cm behind. Hence, the hypothesis having the 
highest support would deliver a tilted plane – and therefore a 
wrong intersection point. However, our adapted RANSAC 
approach is able to separate those two different planes, since it 
is more robust against merging of noisy similar planes. The 
desired point (the oriel’s corner) is obtained by intersecting the 
image ray either with plane 1 or plane 3. Note that the distance 
between the respective intersection points is only 5mm 
(compared with the distance measurement accuracy of ±1cm). 
Thus the error of choosing a wrong neighbouring plane is 
smaller than the original measurement accuracy. However, as 
this example shows a further improvement of the proposed 
method could be achieved by determining the object point of 
interest not only by intersecting the image ray with one plane 
but to include (if present in the laser data) up to two intersecting 
planes in case the point lies on an edge or up to three planes in 
case the point is a corner. Fig. 5 also shows an unwanted 
property of the current implementation of the RANSAC 
approach, that due to the “first come first serve” classification 
points, which would better fit to plane 4 are classified to the 
more dominant plane 1. Same holds for the planes 3 and 2. We 
will adapt this by region-based analyses in the next 
implementation. 

Anyway, the two examples show that our approach is able to 
deal with blunders, systematic errors and measurement noise. 
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Fig. 4. Laser points near image ray after classification (cf. fig. 
3). Top: Projection into photo. Bottom: Ground view. 
 

 
Fig. 5. Another example after classification of the laser points. 
Top: Projection into photo. Bottom: Ground view. 
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5. SUMMARY AND OUTLOOK 

We presented a concept for mono-plotting using combined 
image and laser data. The idea is that a human operator first 
selects the relevant modelling points manually in the high 
resolution images, thereby performing the necessary 
generalization. Then the 3D coordinates of the respective object 
points are obtained by intersecting the image ray with a surface 
patch. The latter is extracted by analyzing the laser points in a 
cone of interest around the image ray. We search for planes 
with the highest support from the laser points, which is 
motivated by considering primarily objects that can be 
represented by polyhedral compounds. Surface patches of 
higher order, however, could also be applied for other 
applications. 

The main properties of this approach are: (i) it is adaptive, in 
the sense that for each selected image point a well suited plane 
from the laser data is searched for, (ii) gross and systematic 
errors in the laser data are removed and due to the adjusting 
surface patch the distance to the object points is derived with a 
better accuracy than the single laser point measurement. 

Future work should be directed in two ways:                          
(i) Increase the automation of surface modelling using 
combined image and laser data. From a geometric point of view 
the redundancy in the image and laser data, especially 
concerning edges, which can be extracted automatically to a 
high degree in both data sets, is promising. From a semantic 
point of view this task, however, is rather challenging, as the 
rate and method of generalization is difficult to automate and 
will involve many aspects from artificial intelligence. Therefore 
this task will remain relevant within the respective communities 
(photogrammetry, computer vision, cartography …) for the 
coming years, perhaps even decades. 

(ii) In the meantime the proposed mono-plotting method is a 
promising tool to speed up object modelling. Therefore it is 
worth investigating the amount of time that can be saved using 
our method, e.g. by comparing the time required to model a 
certain large object by this mono-plotting method and by other 
methods. Also the accuracy achieved by the proposed method 
needs to be analyzed, although the term accuracy in the context 
of surface modelling also involves aspects of generalization. 
Further the method for deriving the (planar) patch of highest 
support from the laser data may have room for improvement 
(cf. sec. 4). An alternative to the already implemented 
RANSAC approach would be a Hough-transform-like approach 
(e.g. (Pottmann et al. 2002)), where for each laser point in the 
cone of interest its tangential plane is estimated using the 
neighbouring points. Afterwards in the parameter-room of these 
planes the clusters of planes are analyzed. We will work on 
theses issues in the future. 
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ABSTRACT:

Terrestrial laser scanning systems have become widely available during the past years. Raw data acquired by such systems typically
consists of separate overlapping datasets – each in its own local coordinate system. Applications that need data from more than a single
scan position therefore must be preceded by a registration of all scans into a common geometric reference frame.
In this paper, a novel method for the automatic and marker-free coarse registration of terrestrial laser scan data is presented. It is based
on matching planes in object space and is thus especially suitable for scenarios that are dominated by planar structures such as built-up
areas. First, suitable planes are extracted from the raw point cloud in a robust way. Then, the automatic coarse registration is carried
out based on correspondences of single plane pairs. Results are shown for test data constisting of 26 datasets of a small village.

1 INTRODUCTION

1.1 Motivation

In addition to airborne laser scanning, terrestrial LIDAR systems
have become widely available. While products from airborne
scanners cover larger areas and are often delivered as one geo-
referenced dataset, terrestrial systems are typically operated by
end-users and capture separate overlapping datasets – each in its
own local coordinate system. Any application that needs data
from more than a single scan position therefore must be preceded
by a registration of all scans into a common geometric reference
frame.

The state of the art in registration of terrestrial scan data is to
place artificial markers – either 2D or 3D targets – into the
scene before data acquisition. Registration software for (semi-)
automatic matching of the targets is commercially available.
In contrast to this, an automatic coarse registration of terres-
trial scan data in the absence of markers still is a topic of re-
search (Dold, 2005).

In this paper, a novel method for the automatic and marker-free
coarse registration of laser scan data is presented. It is based on
matching planes in object space and is thus especially suitable for
scenarios that are dominated by planar structures such as built-up
areas. A robust generation of planes from the 3D point cloud is
used as preprocessing. The registration algorithm comprises a
complete search that generates all possible solutions for single
plane matches and then chooses the best ones based on inlier
counts. The implementation turned out very fast for our test data
which is a set of 26 datasets of a small village. Results show that
a reliable coarse registration is possible even for such complex
scenarios and thereby proves the applicability of our algorithm to
real world tasks.

1.2 Related work

The basic algorithm often cited for registration of point clouds
is the ICP (iterative closest point) algorithm (Besl and McKay,
1992): Given an initial transformation, feature correspondences
are found and new transformation parameters are estimated
through a least squares adjustment. This procedure is iterated
until convergence. Extensions exist to enhance the radius of con-
vergence but ICP is mainly suitable for fine registration. One ex-
ample of an ICP derived method is presented in (Bae and Lichti,

2004). Matching is based on geometric curvature and change of
normal vector within a given neighborhood.

(Dold and Brenner, 2004) describe the principle of registration
based on three plane matches. A region growing method for the
estimation of planes from point clouds with known scan geome-
try is presented. Subsequently, the unknown rotation is recov-
ered through extended gaussian images (Dold, 2005): The nor-
mal vectors are all projeted onto a unit sphere and then clustered
through its tesselation. Matching the spheres at multiple resolu-
tion levels yields the rotation matrix but not the translation vector.

The adaption of the normal distribution transform (NDT) from
2D laser scanners used in robotics applications to the registration
of 3D point clouds is proposed by (Ripperda and Brenner, 2005).
Basically, the 3D data is sliced horizontally and then processed
as 2D data. Although the method yields good results, one has to
cope with convergence issues as well as some loss of information
through the reduction of dimensionality.

The complete sequence of segmentation, coarse and fine regis-
tration is also shown by (Liu and Hirzinger, 2005), introducing
the matching tree as a new search structure. The scene is seg-
mented based on changes of the normal vectors and stored in a
special graph structure which is then exploited for registration.

The methods reviewed here are all steps towards a generic solu-
tion, but each approach is improvable. Results for coarse regis-
tration presented are mainly – with the exception of (Ripperda
and Brenner, 2005) – applied to simple scenarios only, where a
single object dominates the scene and the overlap between the
datasets is large. The applicability to large and complex scenar-
ios had not been proven yet. Correspondence search algorithms
similar to the one presented in this paper have been applied to
2D matching problems in computer vision for a long time (Bal-
lard and Brown, 1982, Grimson, 1990).

2 METHODOLOGY

2.1 Overview

We will use the following terminology: The small and localized
planes generated directly from the point clouds are called surface
elements. Groups of coplanar and neighboring surface elements
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are planes. The term matching will be used to denote the estab-
lishment of a logical link between two planes of two different
datasets while the transformation of one dataset into the geome-
tric reference frame of the other is called registration. The algo-
rithms frequently require some thresholds for decisions – these
are always denoted by a Θ with the referenced entity as index.

This section describes the processing chain from the raw point
clouds to the final transformation parameters. The registration of
point clouds can be subdivided into two tasks. The first is a pre-
processing and feature generation step that converts the raw point
cloud into a representation suitable for the second task, which
is the matching of features in order to estimate the yet unknown
transformation parameters of the registration. The registration
can again be subdivided into a coarse and a fine registration.
This distinction is necessary as precise algorithms usually re-
quire good initialization values for the transformation parameters,
while robust methods that can handle large displacements usually
do not return a statistically optimal result. Here is a summary of
the steps of the method proposed in this paper:

Generation of surface elements Each point cloud is split into
3D raster cells. For each cell, the dominant plane is estimated
through a RANSAC scheme.

Grouping to planes Neighboring coplanar surface elements
are grouped to planes. These typically coincide with planar ob-
ject surfaces.

Coarse registration This step is the most difficult in the pro-
cessing chain and its solution is the main contribution of this pa-
per. An exhaustive search for matching planes of two datasets
is carried out. For each possible match, initial transformation
parameters are computed and the number of inliers is counted.
Those matches with a high inlier count are returned as correct
matches for the fine registration.

Fine registration As the coarse registration returns both a set
of plane matches and initial transformation parameters, the fine
registration is a least squares adjustment over all scan positions
to compute optimal parameters. A statistical test allows detection
and removal of outliers that may have remained in the data. The
fine registration is outside the scope of this paper.

2.2 Generation of surface elements

The planes that the registration algorithm requires as input will
be generated in a two step process. Surface elements will be gen-
erated in a robust way from the point cloud and then are grouped
to planes (see Sec. 2.3). We utilize a method that is described in
(von Hansen et al., 2006) and is shown here as Alg. 1.

The set of 3D points X is partitioned and assigned to 3D vol-
ume cells using a Cartesian raster. All points in one of the
raster cells are denoted by Xi. For each cell, the dominant plane
pi = (ni, di) – i. e. the one that has the biggest support from

Input: 3D point cloud X .
Output: 3D raster S with one surface element si per cell.

Divide X into regular raster cells Xi.
for all Xi do

Robustly estimate dominant plane pi = (ni, di)
from all points ξ ∈ Xi. {E. g. via RANSAC.}

Compute barycenter xi from those ξ̂ that support pi.
Add si := (ni,xi) to output S.

end for
Algorithm 1: Segment point cloud into surface elements.

Input: Surface elements S as output from Alg. 1.
Output: A set of planes P grouped from S.
{Build graph structure.}
Create empty graph G.
for all s ∈ S do

Insert s as vertex into G.
for all t ∈ G, t 6= s do

if s, t neighbors in 3D raster and s, t coplanar then
Insert (undirected) edge between s and t into G.

end if
end for

end for
{Extract planes from graph.}
{Connected components of G are groups of S.}
for all connected components C ⊆ G do

if |C| < ΘC then
{Omit small structures.}

else
Estimate p := (n̄, x̄) from all si = (ni,xi) ∈ C.
Add p to P .

end if
end for

Algorithm 2: Group surface elements to planes.

the 3D points ξ ∈ Xi – is robustly estimated. This has been im-
plemented using the well known RANSAC strategy (Fischler and
Bolles, 1981), yielding a set of inlier points X̂i.

A localization of the plane in space is also needed in order to be
able to recover the translation vector t with only one plane match.
The plane represented by the Hesse normal form

ax + by + cz + d = n>x + d = 0 (1)

has an infinite extent. We are interested in a small and delimited
plane representing the points X̂i only. Therefore, in addition to
the normal vector ni, the barycenter xi – i. e. the mean – of the
point cloud X̂i is stored as well. The distance di of the plane to
the origin need not be stored because it is determined by

di = −n>
i xi. (2)

The surface elements S are used for visualization instead of the
raw points. Their shape can be recognized easily in all figures
showing 3D data.

2.3 Grouping to planes

The input is a regular 3D raster S with each cell containing one
surface element si = (ni,xi) that rather precisely represents a
small planar region of an object surface. Obviously, many neigh-
boring surface elements describe exactly the same plane. The
grouping collects them into a single plane based on adjacency
and coplanarity as described in Alg. 2.

The basic structure used for this is a graph G. All surface ele-
ments s ∈ S are entered as nodes and then compared to all of
their 26 neighboring cells of the 3D raster. If two such surface el-
ements are coplanar, then an undirected edge is inserted between
the respective graph nodes. Since the order of these operations
does not matter, the resulting graph is determined uniquely.

The connected components of G are planes composed from the
surface elements. They are simply extracted from the graph by
computing a mean normal vector n̄ and a mean barycenter x̄
from each connected component and storing it as one plane in
the output set P . A threshold ΘC is applied to remove planes
that do not have enough support by the surface elements. This is
mainly done to reject planes induced by noise and to reduce the
amount of data in favor of larger and better planes.
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2.4 Coarse registration

The coarse registration of two datasets is a typical chicken and
egg problem. In order to compute transformation parameters,
matching entities must be identified first. On the other hand,
matching usually requires some knowlegde about the transforma-
tion parameters. We will solve the dilemma through a complete
search that generates all possible matches from which the correct
ones will be extracted based on inlier counts.

It is required that the scenario contains planar object surfaces as
these will be used for matching. The purely mathematical so-
lution such as proposed in (Dold and Brenner, 2004) needs two
plane matches for rotation and three for translation. Neither a
random nor a systematic generation of matches seems feasible
when only about 20–30% of the planes are in the overlapping
area. However, the situation can be improved when ancillary
knowledge is taken into account. For terrestrial laser scanners,
the zenith direction is usually known from restrictions in the sen-
sor setup. Hence, each dataset implicitly contains the horizontal
ground plane so that only one plane match is required to solve for
rotation.

This single plane match can already be exploited to get an ap-
proximate translation vector t = xj−xi via the known barycen-
ters. This will not yield a precise solution – because there might
be systematic shifts when different parts of a surface have been
visible in the two datasets – but this error will cancel out when
multiple matches are regarded.

The complete strategy for the coarse registration is presented
in Alg. 3. First, a complete search over all possible single plane
matches is carried out. As co-aligned zenith directions are as-
sumed, this knowledge can be applied to narrow the search. The
3D normal vector n of each plane is expressed in a spherical coor-
dinate system with inclination ϕ and azimuth α. Two planes can
only match when they have the same inclination. Then, the trans-
formation parameters rotation R and translation t from P2 to P1

are computed through the difference of azimuth and barycenter
respectively. The planes of P2 are transformed into the geome-
tric reference frame of P1 and denoted P ′′2 .

The next step is the count of inliers nij – the number of planes
matching for a particular set of parameters. If the transformation
is correct, then two matching planes must have similar parame-
ters. Each plane of the first dataset P1 is compared to all planes
of the second dataset P ′′2 and the number of matches with similar
inclination ϕ, azimuth α and barycenter x are counted. Finally,
the triggering match is entered into a list along with its transfor-
mation parameters and inlier count (Tab. 1).

Each generated match thereby is supported by other matches that
verify it. The list is sorted with respect to the inlier count nij and
the m best ones are picked for computation of the parameters.
There are several complementary possibilities to choose m:

1. The maximum number of inliers found nmax – i. e. the first
row of the sorted list – is an upper bound for m.

2. The median of the first nmax inlier counts is a robust esti-
mation for the inlier rate.

3. A large difference in n from one row to the next (e. g. ni+1−
ni > Θn = 1) indicates a possible end of the inlier list.

We have used the minimum of all three possibilities as m. The
transformation parameters are then estimated as a (robust) mean
from all inlier matches.

Input: Two sets of planes P1,P2 generated from two point
clouds as output from Alg. 2.

Output: Transformation parameters R, t from P2 to P1. List of
plane matches Ĉ = (nij , pi, pj ,Rij , tij), pi ∈ P1, pj ∈ P2.
{Compute additional plane attributes.}
for all p = (n,x) ∈ P1 ∪ P2 do

α← arctan(ny/nx) {Azimuth}
ϕ← arcsinnz {Inclination}
Add attributes α, ϕ to p.

end for
{Iterate through all possible correspondences.}
Create empty list of correspondences C.
for all pi ∈ P1 do

for all pj ∈ P2 do
if |ϕj − ϕi| < Θϕ then {New correspondence.}
{Transform P2 according to match (pi, pj).}
Rij ← Rotation by angle αj − αi around z-axis.
P ′2 ← Apply Rij to P2.
tij ← x′j − x′i
P ′′2 ← Translate P ′2 by tij .
{Count inliers.}
nij ← 0
for all pk ∈ P1 do

for all p′′` ∈ P ′′2 do
if |ϕ′′

` − ϕk| < Θϕ ∧ |α′′
` − αk| < Θα

∧ ‖x′′` − xk‖ < Θx then
nij ← nij + 1

end if
end for

end for
Insert (nij , pi, pj ,Rij , tij) into C.

end if
end for

end for
Sort C with respect to n.
Pick m correspondences Ĉ with most inliers from C.
Compute output R and t from all c ∈ Ĉ.

Algorithm 3: Automatic coarse registration.

3 EXPERIMENTS AND RESULTS

3.1 Available datasets

We dispose of 26 overlapping datasets from a Z+F Imager 5003
terrestrial laser scanner. It has an operation range of 50 m and
captured about 100 million valid 3D points per dataset. For each
3D point, the amount of reflected light is recorded and available
for surface textures.

The imaged scenario is a farming village, containing moderately
complex arrangements of small houses around many courtyards.
Buildings are typically two stories high and have inclined roofs.
The global layout of all scan positions is shown in Fig. 1.

3.2 Generation of surface elements

The raster size for the generation of surface elements has been
chosen as 1 m in order to describe façade and roof surfaces
through several surface elements but also to ignore small struc-
tures. Results for three selected positions are shown in Fig. 2. The
grid like texture of the plane boundaries originally stems from
unintended border effects in the visualization, but clearly shows
how the result is composed. The number of surface elements gen-
erated for each of the positions ranges from 2600 to 10000.
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Figure 1: Graph-like layout of all scanner positions, roughly in
their correct geometric place. Dashed lines denote rows of con-
secutive positions that have been left out in this illustration. Di-
rectly neighboring positions are connected, but distant datasets
may also overlap.

Rotation Translation
#Inliers pi pj α/rad tx/m ty/m tz/m

17 88 41 −0.2419 20.76 4.43 −1.71
16 95 55 −0.2527 20.56 2.85 −1.22
16 94 52 −0.2467 20.78 3.93 −0.54
16 91 45 −0.2406 21.00 2.99 −1.31
16 90 40 −0.2424 21.19 2.81 −1.68
16 89 43 −0.2435 20.38 2.85 −1.12
16 87 42 −0.2340 20.92 3.42 −1.27
16 86 33 −0.2282 21.14 2.85 −2.08
16 85 34 −0.2571 20.50 2.81 −1.30
16 67 26 −0.2512 21.89 3.17 −1.53
16 35 3 −0.2587 21.00 2.72 −1.97
16 31 5 −0.2411 21.01 3.18 −1.67
16 27 2 −0.2521 21.39 2.94 −1.25
15 79 29 −0.2408 21.96 2.57 −1.02
15 76 30 −0.2310 20.81 3.01 −0.75
13 93 52 −0.2481 20.80 3.52 −3.90
8 76 31 −0.2276 19.19 2.27 0.93
5 94 62 −0.2304 −3.70 −0.62 −0.80
5 49 55 1.2278 −3.44 −15.16 −2.69
5 28 59 1.2675 −3.14 −12.69 −3.01

Table 1: Twenty best matches from position 2 to 3. The horizontal
line indicates the end of the automatically chosen inlier set.

3.3 Grouping to planes

The grouping is a deterministic procedure that can be guided
through two thresholds – one for coplanarity and one to reject
too small planes. One result is shown in Fig. 3, where all planes
recovered from position 2 are shown in uniform colors. The
number of planes for each position ranges from 30 to 100.

Since only local comparisons are used for the creation of the
graph, it may happen that large resulting regions are not exactly
planar. While the surface elements are an oversegmentation of
object space, the planes are an undersegmentation for which the
streets in an outdoor scenario would be typical examples. For
the coarse registration this poses no real problem, since under-
segmentation results in only a few planes that are easily ignored
by robust algorithms.

3.4 Coarse registration

As the maximum deviation from the true zenith direction was
≤30 mrad, no prior rotation of the datasets was necessary. As a
typical example for the output of Alg. 3, the list of matches from
position 2 to 3 is shown in Tab. 1. Only the top twenty matches
are given – the actual list is much longer (cf. column “#Tests”
of Tab. 2). Column “#Inliers” contains the number of inliers for
the match of the two planes listed in the columns pi and pj . The

Figure 2: Datasets from positions 1 to 3 (from top to bottom).
The small square structures are the surface elements.

Figure 3: Result of the grouping for position 2.

last four columns show the transformation parameters valid for
this particular match. A horizontal line marks the automatically
defined end of the inlier set.

Results for all neighboring positions of the test data (cf. Fig. 1)
are shown in Tab. 2. Columns P1 and P2 are the position num-
bers, column n1n2 is the total number of tests that are possible,
while the next two columns show the number and percentage of
tests actually carried out because the inclination indicated a pos-
sible match. At least half of the generated correspondences could
be rejected early through this criteria.

The following columns are the results of the inlier tests. The
absolute number of inliers is given along with the inlier rate with
respect to min(n1, n2). The inlier rate of only 25% is low mainly
because of the limited overlap between the datasets. Not all
registrations have been successful. Filled circles mark success-
ful registrations while empty circles indicate failures.

In order to illustrate the results of the coarse registration, a color-
coded fusion of the individual datasets from positions 1 to 3 is
shown in Fig. 4.
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Figure 4: Resulting coarse registration of positions 1 (red), 2 (green), 3 (blue).

P1 P2 n1n2 #Tests #Inliers
1 2 7776 3191 41% 21 26% •
2 3 6240 1993 32% 15 23% •
3 4 3705 1431 39% 17 30% •
4 5 2337 980 42% 11 27% •
2 6 4512 1479 33% 13 28% •
6 7 2021 623 31% 4 9% ◦
7 8 2064 550 27% 12 28% •
8 11 2928 672 23% 6 12% •
11 10 2501 646 26% 4 10% ◦
10 9 2255 774 34% 8 20% •
9 1 4455 2042 46% 6 11% •
1 12 5346 2354 44% 17 26% •
12 13 5610 2300 41% 18 27% •
12 14 4620 1742 38% 5 8% •
14 15 6160 2364 38% 18 26% •
15 16 6336 2520 40% 19 26% •
16 17 6120 2377 39% 16 22% •
17 18 7395 2588 35% 20 24% •
18 19 7743 2531 33% 16 18% •
19 20 4272 1276 30% 10 21% •
20 21 1632 364 22% 3 9% ◦
1 22 6075 2910 48% 22 29% •
22 23 4575 1864 41% 10 16% •
23 24 3111 1162 37% 16 31% •
24 25 2091 727 35% 12 29% •
25 26 1681 555 33% 10 24% •

Table 2: The number of tests actually needed compared to the
total number of correspondences.

4 DISCUSSION

Robustness The robustness – i. e. outliers do not have an im-
pact on the result – of our method is achieved at multiple levels:

• Alg. 3 is superior to RANSAC: It is also a generate-and-
test scheme that uses the inlier count as quality measure,
but with the distinction that the random sampling has been
replaced by a complete search. RANSAC would return only
one of the first m rows of Tab. 1 as its result whereas we get
m valid rows.

• There exist several methods to determine m (Sec. 2.4).
Hence, the estimated size of the inlier set can be checked.

• Estimation of the transformation parameters from the m
rows can again be done through a robust scheme such as
RANSAC or a least squares adjustment with outlier detec-
tion.

Complexity Alg. 3 has a complexity of O(n4) with n being
the average number of planes in Pi: Both the generate loop and
the test loop nested inside compare all planes from P1 and P2

and thus each have complexity O(n2). Despite this, the imple-
mentation turned out very fast and finished within seconds even
on a slow computer (Pentium III Mobile CPU @ 750 MHz) for
multiple reasons:

• In practical applications, n is small. For the 26 datasets we
have n < 100 and therefore can expect less than 1004 =
100 million runs of the innermost loop.

• The test of matching inclinations reduces the number of
calls to the test loops. According to Tab. 2, less than half
of the generated matches actually have to be checked.

• The innermost loop only contains comparisons so that it
does not need much processing power. In fact, since there
exist only 2n data elements, it is likely that the innermost
loop will run entirely on the CPU cache.

Alternatively to the count of inliers one could also look for clus-
ters in parameter space. The complexity for the matching is
reduced to O(n2) as only the generation loop is needed, but
a Hough like clustering would require a four dimensional accu-
mulator for the parameters.

Execution times for the different stages are shown in Tab. 3. The
first two stages take considerably longer because they process the
complete cloud of about 100 million points so that I/O perfor-
mance is an issue as well. In contrast to this, grouping and regis-
tration run very fast as these steps operate only on plane repre-
sentations of the data.

Results Compared to the 100 million points of the raw point
cloud, the surface elements are a significant data reduction – es-
pecially near the laser scanner, where the point density of the raw
data is very high. As can be seen from Fig. 2, they describe the
scene very well. The results of the grouping are good, because
planes typically coincide with object surfaces.

As can be seen from the registration result in Tab. 1, every match
from the inlier list (and in fact also the next two rows) contain
similar transformation parameters. The final parameters for the
coarse registration can easily be obtained from this list – e. g. by
averaging over the automatically chosen inlier set. Additionally,
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Stage min avg max
Split point cloud into raster 249 307 343
Generate surface elements 136 215 563
Group to large planes 0.18 0.59 2.18
Coarse registration 0.17 0.57 1.29

Table 3: Minimum, average and maximum execution time in
seconds for all datasets and the different stages on a Pentium M
processor @ 1.7 GHz.

we thereby already dispose of a list of plane matches that could
be used as starting point for the fine registration.

In all cases of a failure in Tab. 2, the datasets did not have enough
matching planes in the overlapping area to get the inlier rate
above the noise. During data acquisition, the positions have only
been chosen to produce overlapping datasets that cover the com-
plete scenario, so that the failures are due to bad sensor position-
ing. However, it is possible to work around such cases by first
joining some datasets and then to try to match with this instead.

In Tab. 4, the ten best matches are shown for one of the failures.
It can be seen that the first m rows do not necessarily contain
only inliers. In order to detect a failure caused by a weak con-
figuration, the parameters of the first rows must be checked for
this.

Object features that belong together are overlayed very well
in Fig. 4. The quality of the fusion can be seen best from the two
nicely fitting blue-green and blue-red roofs in the middle of the
figure. Close inspection of the dataset reveals that the registration
is not perfect. While some surfaces actually coincide (these can
be identified by their multi-color pattern) others – like the blue
façade on the very left – are up to 1 m apart. A fine registration
can easily fix this, as valid plane correspondences are available.

Errors in zenith direction We do not explicitly take into ac-
count the errors in the zenith direction. From analysis of the data
we know that the absolute error is less than 30 mrad. However,
the rotational component is also compensated via a z-shift. Ac-
tually this should even decrease bending of large models because
the small rotations are not summed up.

5 CONCLUSIONS

We have presented a novel algorithm for the automatic marker-
free coarse registration of two point clouds from terrestrial laser
scanner – a task that is still considered difficult. The key idea was
to recover initial parameters for rotation and translation from sin-
gle plane correspondences only. As prerequisites it was required
that the scene contains planar surfaces and that the laser scanner
is set up with the local z-direction pointing upward. These condi-
tions are easily fulfilled for built-up areas and available systems.

We have shown results for 26 datasets covering large parts of a
moderately complex farming village. It has been shown that a
reliable coarse registration of such real world data with an overlap
of only 20–30% between neighboring positions is possible with
our method. Some failures occured, but these were always due to
an insufficient number of common planes in both datasets, caused
by bad sensor placement. It is possible to automatically detect
such bad configurations by analysis of the correspondence lists.

Current work is focussed on the extension of the approach to the
automatic determination of topology of multiple datasets. The
input shall be a number of datasets without any additional in-
formation and the output a neighborhood graph similar to Fig. 1
along with the complete set of transformation matrices for all
datasets. We also plan to test the applicability of this algorithm
to the mixed registration of terrestrial and airborne LIDAR data.

Rotation Translation
#Inliers pi pj α/rad tx/m ty/m tz/m

4 29 13 0.1898 −11.31 18.57 0.11
3 44 16 −2.9469 9.24 −5.62 −2.37
3 28 27 −1.3910 −11.21 −24.28 −2.65
3 18 19 −1.3633 18.64 −24.13 −1.79
3 18 3 0.2133 −12.23 −11.49 −2.58
3 11 3 0.1621 −12.66 18.36 0.21
3 4 13 0.2979 −32.38 30.89 3.82
3 4 3 −1.2788 −13.93 17.33 1.30
3 2 16 0.2951 −33.09 34.87 5.29
3 2 2 −1.2707 −14.62 20.61 1.54

Table 4: Ten best matches from position 20 to 21. The horizontal
line indicates the end of the automatically chosen inlier set.
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ABSTRACT:

This paper describes an algorithm in order to derive DTMs (Digital Terrain Models) from correlation DSMs (Digital Surface Models)
and above-ground (buildings and vegetation) masks in dense urban areas. Among all the methods found in literature, the Elastic Grid
method shows a good capability to reconstruct the topographic surface. This method consists in interpolating height values under
above-ground masks by minimizing an energy. Nevertheless, this method is ill-adapted to outliers in input data (above-ground points
out of above-ground masks). The main contribution of our study is the use of a method based on robust statistics in order to reject
outliers from calculation so that the �nal DTM �ts the �true� topographic surface for the best. For that purpose, the initial Elastic Grid
has been noticeably changed. The results of the new method for 2 test sites with a pixel ground size of 20 cm (the �rst one is relatively
�at and the second one is hilly) show the quality of the �nal DTM and the robustness of our method. Tests have been carried out with
lower resolution DSMs and without any mask and show the feasability of extending the method to a more general context.

1 INTRODUCTION

1.1 Background

In the past few years, DTMs (Digital Terrain Models) have in-
creasingly been used as an important tool for engineering works
or environmental applications (water over�owing control for ex-
ample).
In urban areas, especially in a change detection process, a DTM
can be very useful. As a matter of fact, using only the radiomet-
ric and texture information from RGB images or orthophotos are
generally not suf�cient to perform a good detection of buildings.
The buildings height, calculated by making the difference be-
tween a DSM and the corresponding DTM, is often necessary. A
lot of techniques exist to calculate DSMs (lidar scanning, stereo-
matching algorithms) but few techniques are available to calcu-
late a reliable DTM. It is sometimes possible to use a reference
DTM (generally built manually or semi-manually) but, especially
when working on high resolution data, such a reference is often
not as accurate as the corresponding DSM: that leads to classical
detection problems, typically a high underdetection rate (�False
Negative� rate) and a high overdetection rate (�False Positive�
rate). In order to make the underdetection rate tend towards 0 and
to have the overdetection rate as small as possible, a good DTM
i.e a good approximation of the topographic surface is necessary.
In this paper, a method for deriving a reliable DTM from a DSM,
a building mask (derived from a database) and a vegetation mask
is presented and evaluated.
In a DSM generation context, 2 families of techniques can be dis-
tinguished: lidar scanning and stereo-matching techniques. Lidar
scanning methods have an undeniable advantage in rural areas,
where they generally provide both DTMs and DSMs. In dense
urban areas, the DTM can not be so easily obtained. Image-based
DSM generation has then some advantages over lidar techniques.
On the one hand, as images are most of time necessary for pho-
togrammetric projects, generating a DSM with stereo-matching
techniques does not implie additionnal costs. On the other hand,
images provide a higher degree of internal geometric quality. The
main challenge when deriving a DTM from a stereo-matching

DSM is to �lter and to discard outliers (blunders), i.e points that
have too high an elevation compared with their surroundings (See
Subsection 2.4 for a list of several kinds of outliers that can be
found in a DSM). Almost all the methods found in literature try
to deal with this problem, as shown in the following subsection.

1.2 Related Works

Several methods to derive a DTM from a DSM have been consid-
ered.
The �rst method for estimating DTMs is based on morphologi-
cal operators. A description can be found in (Weidner, 1996).
This method is not robust when DSMs contain outliers. To solve
this problem, (Eckstein and Munkelt, 1995) introduces the �Dual
Rank Filter�. Unfortunately, the structuring element remains dif-
�cult to de�ne without any a priori knowledge about the study
area (urban / industrial . . . ). Moreover, the method can fail be-
cause of big aggregations of vegetation or big buildings (typically
a cathedral) in city centres. Eventually, such a tool generally re-
locates ridges and thalwegs.
An other strategy consists in using parametric methods in order
to reconstruct the topographic surface. The �nal DTM is sup-
posed to belong to a family of parameterized surfaces and these
parameters have to be derived from observations . Unfortunately,
as shown in (Jordan and Cord, 2004), all the kinds of surface can
not be reconstructed and the reconstruction is all the more dif�-
cult and inaccurate as the study area is big.
A large set of methods based on triangulation have been found in
literature (See (Baillard, 2003) for an example). The main chal-
lenge here is to choose ground points and then to triangulate them
in order to interpolate height in the whole scene. As the �nal sur-
face depends on this choice, �nding good criteria to select true
ground points (and not outliers!) is determinant. An other weak
point is that the �nal surface is not regular (i.e not differentiable)
and so not �natural�.
A good method that gives regular surfaces is the Elastic Grid.
Former works when producing the French Elevation Database
have shown its capability to represent the topographic surface
naturally and correctly (Masson d’Autume, 1978).
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1.3 Presentation

The Elastic Grid method has always been used in order to derive a
DTM from a set of extracted points (for example, contour lines).
There are no ouliers in input data in that case. Tests have shown
the limits of the algorithm in presence of outliers: when applied
too roughly, the algorithm creates arti�cial blobs (See �gure 3
in Section 4). The main goal of this study is also to show the
feasability of adapting the method to such a context.
In Section 2, input data are �rst described. In Section 3, our
method is detailed. In Section 4, the results of our method are
presented and qualitative and quantitative results are given. Even-
tually, forthcoming research axes are given in concluding remarks

2 INPUT DATA

The algorithm presented in Section 3 uses a DSM, a building
mask and a vegetation mask to estimate the �nal DTM.

2.1 DSM

In our study, 2 stereo-matching algorithms are used to compute
the initial DSM. The �rst one is described in (Baillard and Dis-
sart, 2000) and is based on cost minimization along epipolar lines.
This cost takes discontinuities in heights and radiometric similar-
ities into account. The second one is based on a multi-resolution
implementation of Cox and Roy optimal �ow image matching
algorithm. More details are given in (Pierrot-Deseilligny and
Paparoditis, 2006). DSMs have a resolution of 20 cm.

2.2 Buildings Masks

The buildings mask is directly derived from a cadastral database.
This database is a vector database where buildings ground foot-
prints are represented in 2D. As it is produced manually, it has
a good precision but contains some discrepancies (for example
demolished buildings), as shown in Subsection 2.4.

2.3 Vegetation Masks

The vegetation mask is produced by applying a threshold on NDVI
images (Normalized Difference Vegetation Index). This index is
high for vegetation due to the fact most of the visible light is ab-
sorbed and nearly all infrared light is re�ected.

NDV I =
NIR − Red

NIR + Red
(1)

This index is computed on orthophotos so that vegetation masks
can be easily superimposed on buildings masks and DSMs. RGB
and IR images used for orthophotos are calibrated but, to avoid
problems linked to the �hot-spot� phenomenon, source images
are corrected with an algorithm that performs a radiometric equal-
ization. The model used for this correction is a parameterized and
semi-empirical BRDF model. More details can be found in (Pa-
paroditis et al., 2006).

2.4 Comments

Three types of outliers can be distinguished in input data. Firstly,
some buildings are not represented in masks as the database is
not necessarily up-to-date (Case 1 in Figure 1). Secondly, some
above-ground points are out of them: cars, street furniture, news-
papers kiosks...(Case 2 in Figure 1). Eventually, a lot of outliers
are located at the edges of buildings (Case 3 in Figure 1). That
comes from the fact that buildings footprints are given by the out-
lines of the walls in the cadastral database and that the walls limits
do not necessarily �t the roof limits given in a DSM.
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Figure 1: Problems in buildings masks. Outliers (highlighted in
red boxes) in above-ground masks sumperimposed on DSMs (up-
per images) and corresponding orthophotos (bottom images)

3 METHOD

In this section, a short mathematical description of the Elastic
Grid method is given. This method is based on a functional
(that contains a regularization term and a data term) to minimize.
Firstly, the importance of the norm ρ to use in the data term is
shown. Secondly, the 3 parameters to be tuned (a tuning con-
stant c intrinsic to the norm ρ, the standard deviation σ and the
smoothing coef�cient λ) are introduced and justi�ed. Eventually,
the general strategy used for the process is detailed.

3.1 Theoretical Aspects

The Elastic Grid method estimates the reconstructed topographic
surface by �tting an elastic surface to a �nite sample of obser-
vation points (i.e points considered as ground points in the DSM
i.e points out of above-ground masks). Mathematically, this is
equivalent to the minimization of this functionnal:

E(z) = K(z) + λG(z, σ) (2)

• the Regularization Term K(z) corresponds to the discrete
approximation of the second derivative of the surface to re-
construct. This term minimizes the mean quadratic curva-
ture (i.e height variations) of the �nal DTM.

K(z) =
MX

l=1

NX

c=1

“∂2zc,l

∂c2

”2

+
MX

l=1

NX

c=1

“∂2zc,l

∂l2

”2

(3)

=

MX

l=1

N−1X

c=2

“
zc−1,l − 2zc,l + zc+1,l

”2

+

M−1X

l=2

NX

c=1

“
zc,l−1 − 2zc,l + zc,l+1

”2

(4)

• the Data Term G(z, σ) corresponds to the distance between
the model to estimate and observations.

G(z, σ) =

MX

l=1

NX

c=1

ρ
“zc,l − obsc,l

σ

”
(5)

where zc,l is the value of the estimated model at the (c,l)
pixel, obsc,l the corresponding observation value and ρ, the
norm used in order to calculate the distance.

• the factor λ is used in order to balance both terms. The
higher λ is, the better the model �ts observations. The smaller
λ is, the smoother the model is.
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3.2 Description of the grid parameters

The initial Elastic Grid method uses the Least-Squares method
to minimize the difference between the model to estimate and
observations. Therefore, a classical euclidean norm is introduced
in the data term.

MX

l=1

NX

c=1

“
zc,l − obsc,l

”2

Such an approach is not robust to outliers in input data and can
become very unstable. The method used in our work in order to
reject outliers from calculation is derived from the M-estimator
technique. This technique reduces the effect of outliers by re-
placing the sum of squared differences (residuals) by a certain
function ρ that is symmetric, positive-de�nite, with a minimum
at zero and less increasing than square.

MX

l=1

NX

c=1

ρ(zc,l − obsc,l)

Name of the Tested Norm Tested Norm ρ(x)

L1L2 2 × (
q

1 + x2

2
− 1)

Cauchy c2

2
× log

“
1 +

`
x
c

´2
”

Geman-McLure
x
2

2

1+x2

Huber


if |x| < c
if |x| ≥ c

x2

2

c × (|x| − c
2
)

Tukey


if |x| < c
if |x| ≥ c

c2

6
× (1 − (1 − ( x

c
)2)

3
)

c2

6

Table 1: Robust norms tested in our study

All the norms tested in our study are listed in Table 1. In most
norms, there is a tuning constant c. It is all the more important as
it determines points whose in�uence will be reduced in the pro-
cess. In (Zhang, 1997), the author considers that noise follows
a gaussian law N (0, 1) and gives, for each norm, the value for
the tuning constant c in order to reach the 95 percent asymptotic
ef�ciency on the standard normal distribution. (Zhang, 1997)
shows that c = 4.6851 for the Tukey’s norm for instance.
In our work, the difference zc,l − obsc,l is assumed to follow a
gaussian law but is not standardized (zc,l − obsc,l) ∼ N (0, σ),
what prevents us to apply the previously mentioned values di-
rectly. Therefore, a standard deviation σ must be calculated. It is
calculated with the classical estimator, in a clean and horizontal
area (typically a square without any tree, car. . . ) so that it is not
biased because of the presence of outliers.

σ =

vuut 1

n − 1

nX

i=1

(ri − ri)2 (6)

where n is the number of pixels in clean areas, ri = zi − obsi is
the difference between the estimated model and correponding ob-
servations and ri = 1

n
×P

i=1 ri is the mean value of differences
in clean areas.

3.3 General Strategy

As can be seen in Figure 2, several steps are necessary in order
to compute the �nal DTM. The process is divided into 4 steps:
Initialization, Paving, Elastic Grid and Mosaicking.

As the process to minimize E(z) is iterative, a good way to de-
crease the number of iterations is to calculate an initial solution.
This approximate solution is given by a method based on a dual
rank �lter. This tool has some imperfections mentioned in Sub-
section 1.2 but is fast and easy to implement. Moreover, as the
convergence is all the more long as the study area is big (the ra-
tio �calculation time� / �study area size� is not linear), a paving
strategy (with a 1000× 1000 tile) has been set up. A mosaicking
process is consequently necessary.
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Figure 2: General Strategy

4 RESULTS AND DISCUSSION

4.1 Test areas and data

2 test sites are presented:

• Amiens City Centre, France

– Pixel Ground Size = 20cm

– Area = 800m × 800m ' 0.64km2

– Terrain Type: relatively �at

– Land Cover Type: dense urban area

– Matching Algorithm: (Baillard and Dissart, 2000)

• Marseille City Centre, France

– Pixel Ground Size = 20cm

– Area = 950m × 950m ' 0.90km2

– Terrain Type: hilly
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– Land Cover Type: dense urban area

– Matching Algorithm: (Pierrot-Deseilligny and Papar-
oditis, 2006)

Several norms have been tested in our work. For each norm, the
tuning constant c is �rstly found in literature. Secondly, as our
data are not standardized, a standard deviation must be calcu-
lated in a clean area to standardize them and to be able to apply
the value of c found in literature. Once these 2 factors �xed, a
sensitivity study is carried out in a small area (typically, a 300 ×
300 area) to determine the best value to give to the smoothing co-
ef�cient λ. Results are assessed by visual inspection (difference
between the DSM and the DTM) and by editing pro�les along
lines in the DSM and corresponding lines in the DTM. Experi-
ments have shown the terrain is best reconstructed with a Tukey’s
norm. This norm has also been used with the 3 factors (c, σ and
λ) previously determined to process the whole area. The corre-
sponding results are given in the next subsection.

4.2 Results

As the process to minimize E(z) is long, an optimized numerical
library (GNU Scienti�c Library) is used. The calculation time
with a 1.8 GHz PC is about 30 hours in Amiens (size of the whole
scene: 4000 × 4000 / 36 tiles) and 40 hours in Marseille (size of
the whole scene: 4600 × 4600, 49 tiles). The qualitative and
quantitative results of our algorithm are now given.

4.2.1 Qualitative Results The bene�t of introducing a robust
norm (instead of the classical euclidean norm) is clearly shown
in Figure 3 where results in a small test area are presented. The
initial DSM is displayed on the upper left image. Above-ground
masks are sumperimposed on the initial DSM and are displayed
on the upper right image. Final DTMs are displayed on bottom
images (on the left, the one processed with the classical Elas-
tic Grid, on the right, with our algorithm). All the �gures are
displayed by using the same scale in height as the bottom right
DTM. In this way, readers can have a �rst visual idea of the qual-
ity of DTMs. In the bottom left DTM, arti�cial blobs are created.
That comes from outliers present in input data: as they are consid-
ered by the classical Elastic Grid algorithm as true ground points,
they have the same in�uence in the process and deviate the re-
constructed topographic surface upwards. As the new algorithm
introduces a robust norm in order to reject outliers, such a bad
effect does not occur.
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Figure 3: Comparison between the classical Elastic Grid algo-
rithm and the new algorithm. In white, points higher than 25.2m

The qualitative results when applying our algorithm are now given
in Figures 5 - 8 (Amiens) and Figures 9 - 12 (Marseille). As
detailed in the introduction, a good detection of above-ground
points implies a good reconstruction of the topographic surface.
Therefore, the difference DSM − DTM is a good indicator for
assessing the quality of �nal products and is given in Figure 8
(Amiens) and Figure 12 (Marseille).

4.2.2 Quantitative Results In order to assess results quan-
titatively, a statistical analysis is �rstly performed by manually
extracting ground points from initial DSMs and by comparing
them with corresponding points extracted from DTMs. A bias, a
standard deviation and a RMS are then calculated and are shown
in Table 2. Secondly, pro�les along arrows in DSMs and corre-
sponding arrows in DTMs are edited (See Figures 4 - 13 - 14).

Area Bias σ RMS Nb Pts
Amiens City Centre 0.424 0.447 0.616 1104

Marseille City Centre 0.307 2.606 2.604 886

Table 2: Stastistical Analysis

The topographic surface is well reconstructed in Amiens. The
bias is slightly positive. That means the reconstructed surface is
slightly disturbed by the presence of outliers. Nevertheless, as
shown in the pro�le (Figure 4) along the green arrow (Figures
5 and 7), the �nal DTM perfectly clings to points in streets and
courtyards and reconstructs all the small undulations of the ter-
rain.
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Figure 4: Pro�les in Amiens along the green arrow in the DSM
and DTM (See Figures 5 and 7). In red, the initial DSM. In black,
the result with the new algorithm. In light grey, the result of the
classical Elastic Grid. The blobs that correspond to buildings and
vegetation in the DSM are �ltered with the new method. Arti�cial
blobs are created when using the euclidean norm.

Some problems occur in Marseille. The bias is small and proves
that the computed DTM is a good approximation of the topo-
graphic surface. As shown in the pro�le (Figure 13) along the
green arrow in the DSM and DTM (Figures 9 and 11), the �-
nal DTM generally clings to true ground points and �lters blobs
corresponding to buildings. In that case, results are similar to
Amiens. Nevertheless, a high RMS outlines problems in speci�c
areas, especially in breaklines areas. For example, some prob-
lems occur in the pro�le along the red arrow (Figure 14). The
left breakline is well reconstructed, which proves the capability
of our algorithm to reconstruct such terrain types. Nevertheless,
the right breakline is completely eroded. This problem �rstly
comes from the terrain type (a 50m high cliff dif�cult to recon-
struct), secondly from the combination of using a robust norm and
a coarse initial solution: using a robust norm is an ef�cient means
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Figure 5: Amiens - Initial DSM (Top View)
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Figure 6: Amiens - Mask over DSM (Top View)
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Figure 7: Results in Amiens - DTM (Top View)
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Figure 8: Results in Amiens - DSM − DTM (Top View)
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Figure 9: Marseille - Initial DSM (Top View)
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Figure 10: Marseille - Mask over DSM (Top View)
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Figure 11: Results in Marseille - DTM (Top View)
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Figure 12: Results in Marseille - DSM − DTM (Top View)

115



PSfrag replacements

Height (in m)

DSM
DTM
with the
Tukey’s norm

DTM
with the
Euclidean norm

0m 840m
30

70

110

Figure 13: Pro�les in Marseille along the green arrow. In red,
the initial DSM. In black, the result of the new algorithm. In
light grey, the result of the classical Elastic Grid. The blobs that
correspond to buildings and vegetation in the DSM are �ltered
with the new method.
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Figure 14: Pro�les in Marseille along the red arrow. In red, the
initial DSM. In black, the result of the new algorithm. In light
grey, the result of the classical Elastic Grid. The left breakline is
well reconstructed. The right breakline is too eroded (Problems
in the initialization step).

to reject de�nitely outliers; problems occur when rejected points
are inliers (true ground points). In Marseille, the right breakline
is eroded in the initialization step (because of the use of a dual
rank �lter, see Subsection 1.2 for more explanations). As the
difference zc,l − obsc,l is then too big in that area, all the corre-
sponding points (even inliers) are considered outliers: the process
does not use these points to reconstruct the topographic surface
and the breakline is not modelled very well in the end. A multi-
resolution coarse-to-�ne approach is being considered to give our
algorithm a more precise initial solution.

5 CONCLUSIONS AND FUTURE WORK

Our goal was to compute a DTM from a DSM and above-ground
masks, in dense urban areas and in a dif�cult context (presence
of outliers in input data). The initial Elastic Grid has been re-
vised by introducing a robust norm (instead of the classical eu-
clidean norm) and by setting the grid parameters (the tuning con-
stant c, the standard deviation σ and the smoothing coef�cient λ)
suitably. The results presented in this paper and corresponding
to different con�gurations (high resolution DSM, relatively �at /
hilly city centres) show the robustness of our approach. In order
to make our method as generic as possible, tests have been car-
ried out with lower resolution DSMs (pixel ground size = 70cm
and 5m). First results are promising and show the feasability of
extending our method to such a resolution. An other research
axis is to adapt our method so that the initial above-ground mask
becomes optional. The challenge here is to reject above-ground

points rapidly. On the one hand, the points where the difference
between the model and observations is negative and that are also
closer to the model to estimate (typically ground points) must
have their in�uence in the calculation increased. On the other
hand, points with a positive difference (typically above-ground
points) must be rejected. In (Jordan et al., 2002), a dissymetric
norm is used for that purpose: the euclidean norm is used wher-
ever the difference zc,l − obsc,l is negative and the Tukey’s norm
is used wherever it is positive. As the euclidean norm is more
increasing than the Tukey’s norm, lowest points are advantaged.
The main idea is to introduce such a dissymetric norm (by re-
placing the non robust euclidean norm with the more robust L1L2
norm) in our grid data term.
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d’une surface par approximations successives: application aux modèles
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ABSTRACT  
Nowadays 3D modeling is generally performed using image or range data. Range sensors are getting a quite common source of data 
for modeling purposes due to their speed and ability to capture millions of points. In this paper we report about two surface 
measurement algorithms for precise and detailed object reconstruction from terrestrial images. Photogrammetry has all the 
potentialities to retrieve the same details of an object that range sensors can achieve. Using advanced measurement techniques, 
which combine area-based and feature-based matching algorithms we are able to generate dense point clouds of complex and free-
form objects, imaged in closely or widely separated images. Different examples are reported to show the potentiality of the methods 
and their applicability to different close-range data sets. 
 
 

1. INTRODUCTION 

Three-dimensional modeling from images is a great topic of 
investigation in the research community, even if range sensors 
are becoming more and more a common source and a good 
alternative for generating 3D information quickly and precisely. 
3D modeling of a scene should be meant as the complete 
process that starts with the data acquisition and ends with a 
virtual model in three dimensions visible interactively on a 
computer. The interest in 3D modeling is motivated by a wide 
spectrum of applications, such as animation, navigation of 
autonomous vehicles, object recognition, surveillance, 
visualization and documentation.  
In the last years different solutions for image-based 3D 
modeling have been developed. Most of the current reliable and 
precise approaches are based on semi-automated procedures, 
therefore the introduction of automated algorithms is a key goal 
in the photogrammetric and vision communities. 3D modeling 
methods can be classified according to the level of automation 
or the required input data while their strength is reflected by the 
variety of scene that can be processed and the level of detail 
that can be reconstructed. 
The common fully automated ‘shape from video’ framework 
[e.g. Fitzibbon & Zisserman, 1998; Nister, 2001; Pollefeys et 
al., 2004] requires good features in the images, very short 
baseline and large overlap between consecutive frames, 
requirements which are not always satisfied in practical 
situations, due to occlusions, illumination changes and lack of 
texture. So far, automated surface reconstruction methods, even 
if able to recover complete 3D geometry of an object, reported 
errors between 3% and 5% [Pollefeys et al., 1999], limiting 
their use for applications requiring only nice-looking 3D 
models. Furthermore, post-processing operations are generally 
required, which means that user interaction is still needed. 
Indeed the most impressive results are achieved with interactive 
methods and taking advantage of the environment constraints, 
in particular for architectural objects. For different applications, 
such as cultural heritage documentation, semi-automated 
methods are still preferred as smoothed results, missing details 
or lack of accuracy are not accepted. 
In this article we report about two surface matching algorithms 
developed for the precise and detailed measurement and 3D 

modeling of complex and free-form terrestrial objects, like pots, 
reliefs, statues, façades, etc. Commercial photogrammetric 
stations generally fail with tilted close-range images, therefore 
the topic still need some developments. We will concentrate 
only on the measurement of the object surface, assuming the 
calibration and orientation of the images already performed. As 
the network configurations that allow full and precise camera 
calibration are usually very different from those used for scene 
reconstruction, we generally first calibrate the camera using the 
most appropriate set of images and afterwards recover the 
orientation parameters of the scene’s images using the 
calibration results. The orientation is generally performed by 
means of a photogrammetric bundle adjustment, extracting the 
required tie points with automated approaches [Remondino & 
Ressl, 2006] or manual measurements.  
The first surface measurement algorithm presented afterwards 
matches the points in image-pairs, the second one works 
simultaneously with many images. Both methods require some 
seed points between the images at the beginning of the process, 
to initialize it and improve the performances near surface 
discontinuities. The seed points can be provided manually 
(stereo or monocular measurements) or extracted automatically, 
leading to a fully automated surface reconstruction method. The 
number of seed points depends on the set of images, their 
disparity and texture content. Starting from these seeds points, a 
dense and robust set of correspondences covering the area of 
interest is generated.  
Our research aims to combine area-based and feature-based 
matching techniques to recover complete and detailed 3D 
surfaces. The methods can cope with depth discontinuity, wide 
baselines, repeated pattern, occlusions and illumination 
changes.  
In the next sections, after an overview of image-based modeling 
works and matching strategies, the two matching strategies are 
described in details. Then some examples demonstrating the 
potentialities of the algorithms and their applicability to 
different close-range data sets are reported and discussed. 
Results in form of 3D point clouds, shaded and textured 3D 
models are shown. 
 
 

117



 
 

2. 3D MODELING FROM IMAGES 

Recovering a complete, detailed, accurate and realistic 3D 
model from images is still a difficult task, in particular if 
uncalibrated or widely separated images are used. Firstly 
because the wrong camera parameters lead to inaccurate or 
deformed results. Secondly because a wide baseline between 
the images generally requires the user interaction in the 
measurement phase.  
The research activities in terrestrial image-based modeling can 
be generally divided in area-based [e.g. Pollefeys et al., 2004] 
and feature-based [e.g. Schmid & Zisserman, 2000] methods. A 
more detailed classification of point-based methods is: 
1.  Approaches that try to get automatically a 3D model of the 

scene from uncalibrated images (also called ‘shape from 
video’ or ‘VHS to VRML’ or ‘Video-to-3D’). The fully 
automated procedure widely reported in the vision 
community [Fitzibbon & Zisserman, 1998; Pollefeys et al., 
1999; Nister 2001; Mayer, 2003] starts with a sequence of 
images taken with an uncalibrated camera. The system then 
extract interest points, sequentially match them across the 
view-pairs and compute the camera parameters as well as 
the 3D coordinates of the matched points using robust 
techniques. This is done in a projective geometry 
framework and is usually followed by a bundle adjustment. 
A self-calibration, to compute the interior camera 
parameters, is afterwards performed in order to obtain a 
metric reconstruction, up to a scale, from the projective one. 
The 3D surface model is then automatically generated by 
means of dense depth maps on image pairs. See [Scharstein 
& Szeliski, 2002] for a recent overview of dense stereo 
correspondence algorithms. The key to the success of these 
automated approaches is the very short interval between 
consecutive images. Some approaches have been also 
presented for the registration of widely separated views 
[Pritchett & Zisserman, 1998; Matas et al., 2002; Xiao & 
Shah, 2003; Lowe 2004] but their reliability and 
applicability for automated image-based modeling of 
complex objects is still not satisfactory, as they yield 
mainly a sparse set of matched feature points. Dense 
matching results under wide baseline conditions were 
instead reported in [Megyesi & Chetverikov, 2004; Strecha 
et al., 2004]. 

2.  Approaches that perform an automated 3D reconstruction of 
the scene from oriented images. The automated 3D 
reconstruction is generally based on object constraints, like 
verticality and perpendicularity [Werner & Zisserman, 
2002; Van den Heuvel, 2003; Wilczkowiak et al., 2003] or 
using the geometric epipolar constraint [Gruen et al., 2001]. 

3.  Approaches that perform a semi-automated 3D 
reconstruction of the scene from oriented images. The semi-
automated modeling rely on the human operator and 
produced so far the most impressive results, in particular for 
architectural objects [Debevec et al., 1996; El-Hakim, 2000, 
2002; Gibson et al., 2002]. The interactive work consists of 
the topology definition, segmentation, editing and 3D data 
post-processing. The degree of automation increases when 
certain assumptions about the object, such as 
perpendicularity or parallel surfaces, can be introduced.  

Manual measurements are also performed in some projects, 
generally for complex architectural objects or in cultural 
heritage documentations where highly precise and detailed 
results are required [Gruen et al., 2004]. Manual measurements 
are time consuming and provide for less dense 3D point clouds, 
but have higher reliability compared to automated procedures. 
  

3. MATCHING FOR SURFACE MEASUREMENTS 

Image matching represents the establishment of 
correspondences between primitives extracted from two or 
more images. In its oldest form, image matching involved 4 
transformation parameters (cross-correlation) and could already 
provide for successful results [Foerstner, 1982]. Further 
extensions considered a 6- and 8-parameters transformation, 
leading to the well known non-linear Least Squares Matching 
(LSM) estimation procedure [Gruen, 1985; Foerstner, 1986]. 
Gruen [1985] and Gruen & Baltsavias [1986] introduced the 
Multi-Photo Geometrical Constraints into the image matching 
procedure (MPGC) and integrated also the surface 
reconstruction into the process. Then from image space, the 
matching procedure was generalized to object space, 
introducing the concept of ‘groundel’ or ‘surfel’ [Wrobel, 1987; 
Helava, 1988]. 
Even if more than three decades have been devoted to the 
image matching problem, nowadays some important limiting 
factors still remain. A fully automated, precise and reliable 
image matching method, adaptable to different image sets and 
scene contents is not available, in particular for close-range 
images. The limits stay in the insufficient understanding and 
modeling of the undergoing processes (human stereo vision) 
and the lack of appropriate theoretical measures for self-tuning 
and quality control. The design of an image matcher should 
take into account the topology of the object, the primitives used 
in the process, the constraint used to restrict the search space, a 
strategy to control the matching results and finally optimization 
procedures to combine the image processing with the used 
constraints. The correspondences between images are matched 
starting from primitives (features and image intensity patterns) 
and using similarity measures. Ideally we would like to find the 
correspondences of every image pixel. But, in practice, 
coherent collection of pixels and features are generally 
matched.  
A part from simple points, the extraction of feature lines (see 
[Dhond & Aggarwal, 1989; Ziou & Tabbone, 1998] for a 
review) is also a crucial step in the surface generation 
procedure. Lines (edgel) provide more geometric information 
than single points and are also useful in the surface 
reconstruction (e.g. as breaklines) to avoid smoothing effects on 
the object edges. Edge matching [Vosselman, 1992; Gruen & 
Li, 1996; Schmid & Zisserman, 2000] establishes edge 
correspondences over images acquired at different standpoints. 
Similarity measures from the edges attributes (like length, 
orientation and absolute gradient magnitude) are a key point for 
the matching procedure. Unfortunately in close-range 
photogrammetry, the viewpoints might change consistently; 
therefore similarity measures are not always useful for edge 
matching. 
 
 

4. STEREO-PAIR SURFACE MEASUREMENT 

The first developed algorithm is a stereo matcher with the 
additional epipolar geometric constraint. The method was 
firstly developed for the measurement of human body parts 
[D’Apuzzo, 2003] and afterwards also applied to full human 
body reconstruction [Remondino, 2004] and rock slopes 
retrieval [Roncella et al., 2005]. It has been now extended to 
include also edge matching. The main steps of the process are: 
1.  Image pre-processing: the images are processed with the 

Wallis filter [Wallis, 1976] for radiometric equalization and 
especially contrast enhancement. The filter enables a strong 
enhancement of the local contrast by retaining edge details 
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and removing low-frequency information in the image. The 
filter parameters are automatically selected analyzing the 
image histogram. 

2.  Point matching: the goal is to produce a dense and robust set 
of corresponding points between image-pairs. Starting from 
few seed points well distributed in the images, the 
automated process establishes correspondences by means of 
LSM. The images are divided in polygonal regions 
according to which of the seed point is closest. Starting 
from the seed points, the automated process produce a 
dense set of image correspondences in each polygonal 
region by sequential horizontal and vertical shifts. One 
image is used as template and the other as search image. 
The algorithm matches correspondences in the 
neighborhood of a seed point in the search image 
(approximation point) by minimizing the sum of the squares 
differences of the gray value between the two image 
patches. If the orientation parameters of the cameras are 
available, the epipolar geometric constraints between the 
images can also be used in the matching process. Generally 
two stereo-pairs (i.e. a triplet) are used: the matcher 
searches the corresponding points in the two search images 
independently and at the end of the process, the data sets 
are merged to become triplets of matched 2D points. 

3.  Edge matching: the approach extracts line features based on 
the edge detection and linking proposed in [Canny, 1986] 
and [Henricsson & Heitger, 1994]. For each image, only the 
edges longer than a certain threshold are kept. Afterwards 
an edge matching is performed for each image pair of the 
set. Firstly the middle points of the edges are matched, 
providing a preliminary list of edge correspondences. 
Afterwards, starting from the matched middle point, the 
other points lying on the edge are matched in a propagative 
way. 

4.  3D Point cloud generation: the 2D matched points and edges 
are transformed in 3D data by forward ray intersection, 
using the camera exterior orientation parameters. 

 
The developed matching process works on image pairs and 
integrates the epipolar constraint in the least squares estimation, 
limiting the patch in the search image to move along the 
epipolar line. To evaluate the quality of the matching results, 
different indicators are used: a posteriori standard deviation of 
the least squares adjustment, standard deviation of the shift in x 
and y directions and displacement from the start position in x 
and y direction. Thresholds for these values are defined 
manually for different cases, according to the level of texture in 
image and to the type of template. The definition of the seed 
points is generally crucial, in particular if discontinuities are 
present on the surface. The matcher, working only with stereo-
pairs, is less robust than a multi-image strategy which takes into 
account all the available and overlapping images at the same 
time, but it is still able to provide for accurate and detailed 3D 
surfaces. 
 
 

5. MULTI-IMAGE SURFACE MEASUREMENT  

The multi-image matching approach was originally developed 
for the processing of the very high-resolution TLS Linear Array 
images [Gruen & Zhang, 2003] and afterwards modified to 
accommodate any linear array sensor [Zhang & Gruen, 2004; 
Zhang, 2005]. Now it has been extended to process other image 
data such as the traditional aerial photos or close-range images. 
The multi-image approach uses a coarse-to-fine hierarchical 
solution with an effective combination of several image 

matching algorithms and automatic quality control. Starting 
from the known calibration and orientation parameters, the 
approach (Figure 1) essentially performs three mutually 
connected steps: 
1.  Image pre-processing: the set of available images is proc-

essed combining an adaptive smoothing filter and the Wal-
lis filter [Wallis, 1976], in order to reduce the effects of the 
radiometric problems such as strong bright and dark regions 
and optimizes the images for subsequent feature extraction 
and image matching. Furthermore image pyramids are gen-
erated. 

2.  Multiple Primitive Multi-Image (MPM) matching: this part is 
the core of the all strategy for accurate and robust surface 
reconstruction, utilizing a coarse-to-fine hierarchical match-
ing strategy. Starting from the low-density features in the 
lowest resolution level of the image pyramid, the MPM 
matching is performed with the aid of multiple images (two 
or more), incorporating multiple matching primitives (fea-
ture points, grid points and edges) and integrating local and 
global image information. The MPM approach consists of 3 
integrated subsystems (Figure 1): the feature point extrac-
tion and matching, the edge extraction and matching (based 
on edge geometric and photometric attributes) and the re-
laxation based relational matching procedure. Within the 
pyramid levels, the matching is performed with an exten-
sion of the standard cross-correlation technique (Geometri-
cally Constrained Cross-Correlation -GC3-). The MPM 
matching part exploits the concept of multi-image matching 
guided from object space and allows reconstruction of 3D 
objects by matching all available images simultaneously, 
without having to match all individual stereo-pairs and 
merge the results. Moreover, at each pyramid level, a TIN 
is reconstructed from the matched features using the con-
strained Delauney triangulation method. The TIN is used in 
the subsequent pyramid level for derivation of approxima-
tions and adaptive computation of some matching parame-
ters.  

3.  Refined matching: a modified Multi-Photo Geometrically 
Constrained Matching (MPGC) and the Least Squares B-
Spline Snakes (LSB-Snakes) methods are used to achieve 
potentially sub-pixel accuracy matches and identify some 
inaccurate and possibly false matches. This is applied only 
at the original image resolution level. The surface derived 
from the previous MPM step provides well enough ap-
proximations for the two matching methods and increases 
the convergence rate.  

 
The main characteristics of the multi-image-based matching 
procedure are: 
• Truly multiple image matching: the approach does not aim at 

pure image-to-image matching but it directly seeks for im-
age-to-object correspondences. A point is matched simulta-
neously in all the images where it is visible and exploiting 
the collinearity constraint, the 3D coordinates are directly 
computed, together with their accuracy values.  

• Matching with multiple primitives: the method is a robust 
hybrid image matching algorithms which takes advantage 
of both area-based matching and feature-based matching 
techniques and uses both local and global image 
information. In particular, it combines an edge matching 
method with a point matching method through a probability 
relaxation based relational matching process. 

• Self-tuning matching parameters: they are automatically de-
termined by analyzing the results of the higher-level image 
pyramid matching and using them at the current pyramid 
level. These parameters include the size of the correlation 
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window, the search distance and the threshold values. The 
adaptive determination of the matching parameters results 
in higher success rate and less mismatches. 

• High matching redundancy: exploiting the multi-image con-
cept, highly redundant matching results are obtained. The 
high redundancy also allows automatic blunder detection. 
Mismatches can be detected and deleted through the analy-
sis and consistency checking within a small neighbourhood. 

 
More details of the matching approach are reported in Zhang 
[2005]. 

 
Figure 1: Workflow of the automated DSM generation approach. The 
approach consists of 3 mutually connected components: the image pre-
processing, the multiple primitive multi-image (MPM) matching and 
the refined matching procedure.   
 
 

6. EXPERIMENTS 

We have performed many tests on different close-range data 
sets with the two surface reconstruction approaches. So far the 
results are checked just visually, as no reference is available. In 
the future an accuracy test should be performed. In the next 
sections we report results from widely separated images, 
untextured surfaces and detailed heritage objects. More 
examples are reported in our homepage. 
 
Test1. Three images of the main door of the S. Marco church in 
Venice (Italy) are used. The image size is 2560x1920 pixels. 
The triplet is acquired under a wide baseline (base-to-distance 
ratio ~ 1:1.4) and very fine details are present on the object. 
Both methods could correctly retrieve the surface details, as 
shown in Figure 3. The stereo-pair strategy matched 
approximately 590 000 points between the two pairs while the 
multi-image matching recovered ca 700 000 points. 

   
Figure 2: The three images of the church’s façade acquired under a large 
baseline. 
 
Test2. A very small pot (ca 3x4 cm) is modeled with the two 
presented matching strategies. Six images, with a size of 1856 x 

1392 pixels are used. The detailed results are shown in Figure 4 
as textured and shaded surface model. 
 
Test 3. The data set consists of 6 images of a Maya relief in 
Edzna, Mexico. The object is approximately 4 meters long and 
2 meters high. The images have different light conditions and 
scales. Due to the frontal acquisition, the upper horizontal part 
of the relief is not visible in the images, leading to some gaps in 
the matching point results and some stretching effects in the 
meshed model. Both methods could reconstruct all the details 
of the heritage. The stereo-pairs approach (performed on 4 
pairs) generated ca 860 000 points and 7 900 edges while with 
the multi-image strategy a cloud of 1 940 000 points and 23 000 
edges was produced. The results are shown in Figure 5. 
 

  

  
Figure 3: Results of the stereo-pair matching method (above): recovered 
3D point cloud, displayed with pixel intensity values and a particular of 
the generated shaded model. Views of the shaded and textured surface 
generated with the multi-image method (below).  
 

   

  
Figure 4: Three (out of 6) image of the small pot (above). The surface 
reconstructed with the stereo-pair matching and with the multi-photo 
approach. 
 
 

7. CONCLUSIONS AND OUTLOOK 

We have presented two matching strategies for the precise 
surface measurement and 3D reconstruction of complex and 
detailed terrestrial objects. The stereo-pair approach constraints 
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the search of correspondences along the epipolar line while the 
3D coordinates of points and matched edges are computed in a 
second phase, using rejection criteria for the forward ray 
intersection. The multi-image approach is more reliable and 
precise but requires very accurate image orientation parameters 
to exploit the collinearity constraint within the least squares 
matching estimation. The maximum orientation errors in image 
space should be less than 2-3 pixels. 
The two approaches use points and edges to retrieve all the 
surface details and they have both advantages and 
disadvantages. They can be applied to short or wide baseline 
images and can cope with scale changes, different illumination 
conditions or repeated pattern. Employing the precise LSM 
algorithm, they can recover sub-pixel accuracy matches. They 
both need some seed points to initialize the matching procedure 
and the number of seed points is strictly related to the image 
texture and surface discontinuities.  
The results so far achieved are promising but more tests have to 
be performed as well as an accuracy assessment of the two 
strategies. Photogrammetry has all the potentiality to retrieve 
the same results (details) than range sensors. But to asses the 
accuracy of the systems is not an easy task. Assessment on the 
whole measured surface would require the two models to be in 
the same reference systems or to set one model as reference and 
transform the second one into the first reference system. 
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ABSTRACT:

In this contribution we describe an image-based framework for 3D surface reconstruction by a combined analysis of reflectance,
polarisation, and sparse depth data. An error functional consisting of several error terms related to the measured reflectance and
polarisation properties and the depth data is minimised in order to compute a dense surface gradient field and in a subsequent step a
dense 3D surface profile. The error terms related to reflectance and polarisation directly depend on the surface gradients, while the
depth-related error term describes the deviation between the 3D surface profile implied by the surface gradient field and the measured
depth points. Hence, we suggest an optimisation scheme that simultaneously adapts the surface gradients to the measured reflectance
and polarisation data and to the surface slopes implied by depth differences between pairs of depth points. To increase the robustness
of the optimisation scheme it is implemented as a multi-scale approach, thus providing a result largely independent of the provided
initialisation. In our system the sparse depth data are provided by a correlation-based stereo vision algorithm, but in principle arbitrary
sources of depth data are possible. We evaluate the algorithm based on synthetic ground truth data, demonstrating that the combined
approach increases the accuracy of 3D surface reconstruction, compared to the result obtained by applying either of the techniques
alone. Furthermore, we report 3D reconstruction results for a raw forged iron surface and compare them to ground truth depth data
obtained by means of a laser focus profilometer. This evaluation yields a depth accuracy (root-mean-square deviation) of our approach
of 62 µm, which is of the same order of magnitude as the intrinsic roughness of the metallic surface.

1 INTRODUCTION

Three-dimensional surface reconstruction is an important topic
in various application areas, such as quality inspection and re-
verse engineering. Many image-based reconstruction methods
have been proposed, based on photometric as well as geomet-
ric principles. Well known geometric approaches include stereo
and structure from motion (Faugeras, 1993), and projection of
structured light (Batlle et al., 1998). In practice, even passive
methods such as stereo and structure from motion often require
structured illumination to artificially produce texture required for
a dense reconstruction of the surface (Calow et al., 2002). Recon-
struction algorithms based on photometric methods include shape
from shading (SfS) and polarisation (Horn and Brooks, 1989;
d’Angelo and Wöhler, 2005a; Miyazaki et al., 2003). In con-
trast to the geometric approaches, they can be used to reconstruct
smooth, textureless surfaces without structured illumination.

A combined reconstruction based on geometric and photomet-
ric reconstruction methods is desirable, since both approaches
complement each other. A number of approaches to combine
stereo and shape from shading have been proposed in the lit-
erature. Cryer et al. (1995) fuse low-pass filtered stereo depth
data and high-pass filtered shape from shading depth data. Sama-
ras et al. (2000) introduce a surface reconstruction algorithm that
performs stereo analysis of a scene and uses a minimum de-
scription length metric to selectively apply SfS to regions with
weak texture. A related approach (Fassold et al., 2004) integrates
stereo depth measurements into a variational SfS algorithm and
estimates surface shape, light source direction, and diffuse re-
flectance map.

In this paper we propose a combination of shape from pho-
topolarimetric reflectance (SfPR) with 3D depth measurements
from arbitrary sources. Our approach extends a variational SfPR
framework (d’Angelo and Wöhler, 2005a) by adding an addi-
tional depth error term to the error function. A multi-scale ap-

proach is applied to reconstruct the surface gradient field. In
this framework we assume known reflectance functions and light
source positions.

2 SHAPE FROM PHOTOPOLARIMETRIC
REFLECTANCE

In our scenario, we will assume that the surface z(x, y) to be re-
constructed is illuminated by a point light source and viewed by a
camera, both situated at infinite distance in the directions ~s and ~v,
respectively. The xy plane is parallel to the image plane. Parallel
unpolarised incident light and an orthographic projection model
are assumed. For each pixel location (u, v) of the image we in-
tend to derive a depth value z(u, v). The surface normal is given
in the so-called gradient space by the vector ~n = (−p,−q, 1)T

with p = ∂z/∂x and q = ∂z/∂y. The incidence angle θi is
defined as the angle between surface normal ~n and illumination
direction ~s, the emission angle θe as the angle between surface
normal ~n and viewing direction ~v, and the phase angle α as the
angle between illumination direction ~s and viewing direction ~v.
A measure for the intrinsic reflectivity of the surface is given by
the surface albedo ρ(u, v).

In the framework of shape from photopolarimetric reflectance
(SfPR), the light reflected from a surface point located at the
world coordinates (x, y, z) with corresponding image coordi-
nates (u, v) is described by the observed pixel intensity I(u, v),
the polarisation angle Φ(u, v) (i. e. the direction in which the
light is linearly polarised), and the polarisation degree D(u, v).
Measurement of polarisation properties is thus limited to linear
polarisation while circular or elliptic polarisation is not taken into
account. It is assumed that models are available that express these
photopolarimetric properties in terms of the surface orientation ~n,
illumination direction ~s, and viewing direction ~v. These models
may either be physically motivated or empirical (cf. Section 2.2)
and are denoted in this paper by R (intensity reflectance), RΦ
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(polarisation angle reflectance), and RD (polarisation degree re-
flectance). The aim of surface reconstruction in the presented
framework is to determine for each pixel (u, v) the surface gra-
dients p(u, v) and q(u, v), given the illumination direction ~s and
the viewing direction ~v, such that the modelled photopolarimetric
properties of the pixel correspond to the measured values:

I(u, v) = R (p(u, v), q(u, v), ~s, ~v) (1)

Φ(u, v) = RΦ (p(u, v), q(u, v), ~s, ~v) (2)

D(u, v) = RD (p(u, v), q(u, v), ~s, ~v) (3)

The reflectance functions (1)–(3) may depend on further, e. g.
material-specific, parameters which possibly in turn depend on
the pixel coordinates (u, v), such as the surface albedo ρ(u, v)
which influences the intensity reflectance R. A local approach
to obtaining the surface gradients p(u, v) and q(u, v) consists of
solving the nonlinear system of Eqs. (1)–(3) individually for each
pixel location (u, v) either exactly or in the least-mean-squares
sense (d’Angelo and Wöhler, 2005b). For integration of large-
scale depth information, however, a global optimisation scheme
for determining the surface gradient field is more favourable,
since it is not straightforward to include global depth constraints
into the local approach to estimate p(u, v) and q(u, v).

2.1 Global optimisation scheme

In this section we describe a global approach to adapt the surface
gradients p(u, v) and q(u, v) to the observed photopolarimetric
properties I(u, v), Φ(u, v), and D(u, v) by solving the system
of equations (1)–(3) (d’Angelo and Wöhler, 2005a). The 3D sur-
face profile z(u, v) is then obtained by integration of the surface
gradient field by solving the Poisson equation ∆z = px + py

(Simchony et al., 1991).

2.1.1 Determination of surface gradients and relative depth
The solving technique is based on the optimisation of a global
error function (Horn, 1989; Jiang and Bunke, 1997; d’Angelo and
Wöhler, 2005a). One part of this error function is the intensity
error term

eI =
L

∑

l=1

∑

u,v

[

I(l)(u, v)−

R
(

ρ(u, v), p(u, v), q(u, v), ~s(l), ~v
) ]2

.

(4)

The number of light sources and thus of acquired images is given
by L. We assume orthographic projection, hence ~s(l) and ~v are
constants.

As the pixel intensity information alone is not necessarily suffi-
cient to provide an unambiguous solution for the surface gradi-
ents p(u, v) and q(u, v), a regularisation constraint es is intro-
duced which requires smoothness of the surface, i. e. for example
small absolute values of the directional derivatives of the surface
gradients. We will therefore make use of the error term

es =
∑

u,v

[

p2
x + p2

y + q2
x + q2

y

]

. (5)

(Horn, 1989; Jiang and Bunke, 1997). In the scenarios regarded
in this paper, the assumption of a smooth surface is realistic. For
wrinkled surfaces, where using Eq. (5) leads to an unsatisfactory
result, it can be replaced by the departure from integrability error
term described in detail by Horn (1989).

To integrate polarisation angle and degree into the 3D surface
reconstruction framework, we define two error terms eΦ and

eD which denote the deviations between the measured values
and those computed using the corresponding phenomenological
model:

eΦ =
L

∑

l=1

∑

u,v

[

Φ(l)(u, v) − RΦ

(

p(u, v), q(u, v), ~s(l), ~v
)]2

(6)

eD =

L
∑

l=1

∑

u,v

[

D(l)(u, v) − RD

(

p(u, v), q(u, v), ~s(l), ~v
)]2

.

(7)

Based on the feature-specific error terms eI , eΦ, and eD, a com-
bined error term e is defined which takes into account the re-
flectance and polarisation properties:

e = es + λeI + µeΦ + νeD. (8)

Minimising error term (8) yields the surface gradients p(u, v)
and q(u, v) that optimally correspond to the observed reflectance
and polarisation properties, where the Lagrange parameters λ, µ,
and ν denote the relative weights of the individual reflectance-
specific and polarisation-specific error terms. With the discrete
approximations px(u, v) = [p(u + 1, v) − p(u − 1, v)] /2 and
py(u, v) = [p(u, v + 1) − p(u, v − 1)] /2 for the second deriva-
tives of the surface and p̄(u, v) as the local average over the four
nearest neighbours of pixel (u, v) we obtain an iterative update
rule for the surface gradients by setting the derivatives of the er-
ror term e with respect to them to zero:

pn+1 = p̄n + λ
L

∑

l=1

(I − R(p̄n, q̄n))
∂R

∂p

∣

∣

∣

∣

p̄n,q̄n

+ µ

L
∑

l=1

(Φ − RΦ(p̄n, q̄n))
∂RΦ

∂p

∣

∣

∣

∣

p̄n,q̄n

+ ν
L

∑

l=1

(D − RD(p̄n, q̄n))
∂RD

∂p

∣

∣

∣

∣

p̄n,q̄n

.

(9)

A corresponding expression for q is obtained in an analogous
manner. This derivation is described in more detail in Jiang and
Bunke (1997). The initial values p0(u, v) and q0(u, v) must be
provided based on a-priori knowledge about the surface or on in-
dependently obtained depth data (cf. Section 3). The surface pro-
file z(u, v) is then derived from the resulting gradients p(u, v)
and q(u, v) by means of numerical integration of the gradient
field (Simchony et al., 1991).

The reconstruction is done in a multi-scale approach to speed up
convergence and avoid getting stuck in local minima. Recon-
struction of the gradient field starts at a low resolution and is re-
peated on the next pyramid level, using the gradients estimated at
the previous level as initial gradient values.

2.2 Determination of empirical photopolarimetric models

For the purpose of determination of empirical reflectance and po-
larisation models for the surface material the surface normal ~n
of a flat sample is adjusted by means of a goniometer, while the
illumination direction ~s and the viewing direction ~v are constant
over the image. Over a wide range of surface normals ~n, five im-
ages are acquired through a linear polarisation filter at orientation
angles ω of 0◦, 45◦, 90◦, 135◦, and 180◦. For each filter orienta-
tion ω, an average pixel intensity over an image area containing
a flat part of the sample surface is computed. To the measured
pixel intensities we fit a sinusoidal function of the form

I(ω) = Ic + Iv cos(ω − Φ) (10)
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Figure 1: (a) Plot of the three reflectance components. (b) Measured reflectance of a raw forged iron surface for α = 75◦.

using the linear method described by Rahmann (1999). The fil-
ter orientation Φ for which the maximum intensity Ic + Iv is
observed corresponds to the polarisation angle. The polarisation
degree amounts to D = Iv/Ic. In principle, three measurements
would be sufficient to determine the three parameters Ic, Iv, and
Φ, but the fit becomes less noise-sensitive and thus more accu-
rate when more measurements are used. The parameter Ic corre-
sponds to the intensity reflectance R of the surface.

According to Nayar et al. (1991), the reflectance of a typical
rough metallic surface consists of three components: a diffuse
(Lambertian) component, the specular lobe, and the specular
spike. We model these components by the phenomenological ap-
proach

R(θi, θe, α) = ρ

[

cos θi +
N

∑

n=1

σn · (cos θr)
mn

]

(11)

with cos θr = 2 cos θi cos θe − cos α describing the angle be-
tween the specular direction ~r and the viewing direction ~v (cf.
Fig. 1a). For θr > 90◦ only the diffuse component proportional
to cos θi is considered. The albedo ρ is assumed to be constant
over the image. The shapes of the two specular components are
expressed by N = 2 terms proportional to powers of cos θr,
where the coefficients {σn} denote the strength of the specular
components relative to the diffuse component and the parameters
{mn} their widths.

The polarisation angle Φ is phenomenologically modelled by an
incomplete third-degree polynomial in p and q according to

RΦ(p, q) = aΦpq + bΦq + cΦp2q + dΦq3. (12)

Without loss of generality we assume illumination in the xz plane
(zero y component of ~s) and a view along the z axis (~v =
(0, 0, 1)T ). Eq. (12) is antisymmetric in q, and RΦ(p, q) = 0
for q = 0, i. e. coplanar vectors ~n, ~s, and ~v. These properties are
required for geometrical symmetry reasons as long as an isotropic
interaction between the incident light and the surface material can
be assumed. The polarisation degree D is modelled by an incom-
plete second-degree polynomial in p and q according to

RD(p, q) = aD + bDp + cDp2 + dDq2. (13)

For rough metallic surfaces, RD is maximum near the direction
of specular reflection. Symmetry in q is imposed to account for
isotropic light-surface interaction.

3 INTEGRATION OF DEPTH INFORMATION

Since the obtained solution of SfS and, to a lesser extent, SfPR
may be ambiguous as long as single images are regarded, in-
tegrating additional information into the surface reconstruction
process improves the reconstruction result. For example, a sparse
set of 3D points of the object surface can be reconstructed by
stereo vision, laser triangulation, or shadow analysis. Previous
approaches either merge the results of stereo and SfS (Cryer et
al., 1995) or embed the SfS algorithm into stereo (Samaras et al.,
2000) or structure from motion algorithms (Lim et al., 2005). For
the examples in this paper, a stereo algorithm was used to extract
sparse depth information.

3.1 Description of the employed stereo algorithm

A block matching stereo algorithm is used in this paper. We as-
sume that the images are rectified to standard stereo geometry
with epipolar lines parallel to the horizontal image axis. The pro-
posed approach is not restricted to this choice since any other
source of relative depth information can be used instead.

For each pixel i at position (u, v) in the left image, a correspond-
ing point is searched along the epipolar line in the right image.
We use the normalized cross correlation coefficient (normxcorr)
as similarity measure. A square region of 7 by 7 pixels of the
left image (L) is correlated with regions on the corresponding
epipolar line in the right image (R) for all candidate dispari-
ties d, resulting in an array of correlation coefficients ci(d) =
normxcorr(Lu,v, Ru−d,v). The disparity with the maximum
correlation coefficient di = argmaxdci(d) is determined, and
a parabola P (d) = ad2 + bd + e is fitted to the local neighbour-
hood of the maxima. The dispartiy di is estimated at subpixel ac-
curacy according to di = −b/(2a). Only fits with ci(di) > 0.9
and ai < −0.1 are used. This ensures that only well localised
correspondences are considered for further processing. The co-
ordinates of a point (ui, vi) in the left stereo camera coordinate
system are then given by Zi = bf/di, Xi = uib/di, and
Yi = vib/di. The focal length f and base distance b between the
cameras are determined by binocular camera calibration (Krüger
et al., 2004).

3.2 Fusion of sparse depth information with SfPR

To incorporate the depth information into the global optimisation
scheme presented in Section 2.1, we define a depth error term
based on the depth difference between the sparse 3D points and
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the integrated gradient field. The depth difference between two
3D points i and j is given by

(∆z)ij = Zj − Zi. (14)

The corresponding depth difference of the reconstructed surface
gradient field is calculated by integration along a path Cij be-
tween the coordinates (uj , vj) and (ui, vi):

(∆z)ij
surf =

∫

Cij

(pdx + qdy) . (15)

In our implementation the path Cij is approximated by a list of
K discrete pixel positions (uk, vk) with k = 1, . . . , K. While in
principle any path Cij between the points i and j is possible, the
shortest integration path, a straight line between i and j, is used
here. Longer paths tend to produce larger depth difference errors
because the gradient field is not guaranteed to be integrable.

Using these depth differences, it is possible to extend the global
optimisation scheme introduced in Section 2.1 by adding an error
term which minimises the squared distance between all N depth
points:

ez =

N
∑

i=1

N
∑

j=i+1

(

(∆z)ij − (∆z)ij
surf

)2

‖(ui, vi) − (uj , vj)‖2

(16)

The iterative update rule Eq. (9) then becomes

pn+1(u, v) = p̄n(u, v) + λ
∂eI

∂p
+ µ

∂eΦ

∂p
+ ν

∂eD

∂p

+ 2χ
N

∑

i=1

N
∑

j=i+1

[

(∆z)ij − (∆z)ij
surf

‖(ui, vi) − (uj , vj)‖2

]

∂(∆z)ij
surf

∂p

∣

∣

∣

∣

∣

u,v

.

(17)

An analogous expression is obtained for q. The derivatives of
(∆z)ij

surf with respect to p and q may only be nonzero if the pixel
(uk, vk) belongs to the path Cij and are zero otherwise. They
are computed based on the discrete gradient field. The derivative
depends on the direction (du, dv) of the integration path at pixel
location (uk, vk) with du = uk+1 − uk and dv = vk+1 − vk:

∂(∆z)ij
surf

∂p

∣

∣

∣

∣

∣

u
k

,v
k

=dup(uk, vk)

∂(∆z)ij
surf

∂q

∣

∣

∣

∣

∣

u
k

,v
k

=dvq(uk, vk)

(18)

The update of the surface gradient at location (u, v) is then nor-
malised with the number of paths to which the corresponding
pixel belongs. Error term (16) will lead to the evaluation of
N(N −1)/2 lines at each update step and becomes prohibitively
expensive for a large number of depth measurements. Therefore
only a limited number of randomly chosen lines is used during
each update step.

An earlier approach by Wöhler and Hafezi (2005) fuses SfS and
shadow analysis using a similar depth difference error term. It is,
however, restricted to depth differences along the light source di-
rection. In contrast to the method by Fassold et al. (2004), which
directly imposes depth constraints selectively on the sparse set
of surface locations with known depth, our approach establishes
large-scale surface gradients by computing differences between
depth points. Effectively, our method transforms sparse depth
data into dense depth difference data as long as a sufficiently large
number of paths Cij is taken into account. The influence of the
depth error term is thus extended to a large number of pixels.

4 EXPERIMENTAL EVALUATION

To examine the accuracy of 3D reconstruction using the tech-
niques described in Section 3.2, we apply them to synthetically
generated surfaces in Section 4.1. In Section 4.2 we regard real-
world scenarios of 3D surface reconstruction of metallic surfaces
in the domain of industrial quality inspection.

4.1 Synthetic examples

To examine the behaviour of the global optimisation scheme de-
scribed in Section 3.2, we apply the developed algorithms to the
synthetically generated surface shown in Fig. 2a. We assume a
perpendicular view on the surface along the z axis, correspond-
ing to ~v = (0, 0, 1)T . The scene is illuminated by a single light
source from the positive x direction under an angle of 15◦ with
respect to the horizontal plane. This setting results in a phase an-
gle α = 75◦. A set of 100 random points has been extracted from
the ground truth and is used as depth data Z for the reconstruc-
tion.

The reflectance functions of the rough metallic surface measured
according to Section 2.2 were used to render the synthetic images
shown in Fig. 2c. The reconstruction was performed with syn-
thetic noisy data, where we used Gaussian noise with a standard
deviation of 0.001 for I (maximum grey value ∼ 0.06), 1◦ for
Φ and 1 pixel for the depth values. Only intensity I , polarisation
angle Φ and depth Z have been used during the reconstruction.
In the case of rough metallic surfaces, the polarisation degree D
contains similar information as the intensity I , has a higher mea-
surement error, and is strongly affected by small-scale variations
of the surface roughness (d’Angelo and Wöhler, 2005b), and is
therefore not used for reconstruction.

The weights for the error terms according to Eq. (17) were set to
λ = 50 (I in arbitrary units, with a maximum of ∼ 0.06), µ = 14
(Φ in radian), ν = 0, and χ = 0.5 (z between 0 and 50 pixels).
The surface gradients were initialised with zero values. The 3D
reconstruction results obtained with various combinations of er-
ror terms are shown in Fig. 2d-f. The reconstruction errors are
listed in Table 4.1. It is apparent that the shape from shading re-
construction fails to reconstruct the surface (Fig. 2d), while the
surface shape can be reconstructed approximately using inten-
sity and polarisation degree (Fig. 2e). The combined approach
(Fig. 2f) shows the smallest error. Table 4.1 also indicates that
using intensity, polarisation, and depth leads to better results than
either feature alone.

4.2 Real-world example: raw forged iron surface

We have applied our surface reconstruction algorithm to a raw
forged iron surface. For the stereo reconstruction of the surface
(cf. Section 3.1), we used a vergent stereo setup of two cam-
eras (1032 × 776 pixels image size, 10◦ horizontal field of view,
320 mm base distance, average object distance 450 mm). Stereo
calibration and image rectification to standard epipolar geometry
were performed using the method by Krüger et al. (2004). The
disparity values at object distance thus amount to approximately
4000 pixels. Experiments with synthetic data have shown that
the standard deviation of the disparity is 0.3 pixels, resulting in
an estimated standard error of 30 µm of the determined depth
values. One of the stereo cameras is equipped with a rotating lin-
ear polarisation filter and is used to acquire the images required
for SfPR (cf. Section 2.2). Fig. 3a shows the intensity and po-
larisation angle image, and Fig. 3b shows the triangulated stereo
reconstruction result. The stereo reconstruction is very sparse
due to the highly non-Lambertian metallic surface and does not
extend across the complete surface to be reconstructed.
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Figure 2: 3D reconstruction of a synthetically generated surface based on a photopolarimetric image and sparse depth values. (a)
Ground truth. (b) Noisy 3D data. (c) From the left: noisy intensity and polarisation angle images, based on measured reflectance
functions of a raw forged iron surface. The reconstruction result for noisy images of a surface with uniform albedo is shown in (d)
using intensity only and in (e) using intensity and polarisation angle. (f) Reconstruction result obtained using the combined SfPR and
depth approach.

Table 1: Results on the synthetic ground truth example shown in Fig. 2.

Method RMS error (without noise) RMS error (with noise)
z [pixels] p q z [pixels] p q

I 8.19 0.267 0.508 8.19 0.267 0.508
I , Φ 2.07 0.186 0.039 2.12 0.189 0.058
Z 1.20 0.137 0.102 1.16 0.135 0.136
I , Z 0.80 0.070 0.076 0.79 0.083 0.115
I , Φ, Z 0.46 0.050 0.026 0.50 0.075 0.063

The unknown albedo ρ was computed based on the specular re-
flections, which appear as regions of maximum intensity Ispec

and for which we have θr = 0◦ and θi = α/2. Eq. (11) then
directly yields the albedo ρ. The reconstructed surface shown
in Fig. 3c was computed using λ = 50, µ = 8, ν = 0, and
χ = 1 as error term weights, cf. Eq. (17). A cross-section of the
surface was measured with a scanning laser focus profilometer
and compared to the corresponding cross-section extracted from
the reconstructed 3D profile (Fig. 3d). Although the triangulated
depth data RMSE of 80 µm along the inspected profile of 14 mm
length is already quite low, no small-scale detail of the surface
is revealed. When all available photopolarimetric and depth in-
formation is used, the RMSE amounts to 62 µm. Without depth
information the SfPR method yields a RMSE of 65 µm, while
intensity information alone results in a much higher RMSE of
300 µm. If no polarimetric information is available (e.g. when in-
cident light is not polarised by reflection at the surface), the com-
bination between intensity and sparse depth data yields a RMSE
of 70 µm.

5 SUMMARY AND CONCLUSION

In this paper we have presented an image-based method for 3D
surface reconstruction relying on the simultaneous evaluation of
reflectance, polarisation, and sparse depth data. The reflectance
and polarisation properties of the surface material have been ob-

tained by means of a series of images acquired through a lin-
ear polarisation filter under different orientations. SfPR and
depth difference error terms are minimised using a variational
approach, resulting in a surface gradient field. A dense depth
map is obtained by numerical integration of the gradient field. A
multi-scale approach has been used to improve the convergence
behaviour. The proposed method transforms sparse depth data
into dense depth difference data. In contrast to previous methods,
the influence of the corresponding error term does not remain
restricted to a small number of pixels. The presented method
has been evaluated based on a synthetically generated surface,
and a high accuracy of surface reconstruction has been demon-
strated. Furthermore, we have successfully applied our method
to the difficult real-world scenario of 3D reconstruction of a sur-
face section of a raw forged iron part, yielding a very reasonable
accuracy of 62 µm along the inspected profile of 14 mm length.
A somewhat lower accuracy of 70 µm is obtained when polar-
isation information is neglected. These measurement errors are
of the same order of magnitude as the intrinsic roughness of the
metallic surface. We conclude that the suggested approach is a
favourable technique for industrial surface inspection systems.
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Wöhler, C., Hafezi, K., 2005. A general framework for three-
dimensional surface reconstruction by self-consistent fusion
of shading and shadow features. Pattern Recognition, 38(7),
pp. 965-983.

129



MCMC LINKED WITH IMPLICIT SHAPE MODELS AND PLANE SWEEPING FOR 3D
BUILDING FACADE INTERPRETATION IN IMAGE SEQUENCES

Helmut Mayer and Sergiy Reznik

Institute of Photogrammetry and Cartography, Bundeswehr University Munich, D-85577 Neubiberg, Germany
fHelmut.MayerjSergiy.Reznikg@unibw.de

KEY WORDS: Markov Chain Monte Carlo, Implicit Shape Models, Plane Sweeping, Facade Interpretation

ABSTRACT:

In this paper we propose to link Markov Chain Monte Carlo – MCMC in the spirit of (Dick, Torr, and Cipolla, 2004) with information
from Implicit Shape Models – ISM (Leibe and Schiele, 2004) and with Plane Sweeping (Werner and Zisserman, 2002) for the 3D
interpretation of building facades, particularly for determining windows and their 3D extent. The approach starts with a (possibly
uncalibrated) image sequence, from which the 3D structure and especially the vertical facades are determined. Windows are then
detected via ISM. The main novelty of our work lies in using the information learned by the ISM also to delineate the window extent.
Additionally, we determine the 3D position of the windows by plane sweeping in multiple images. Results show potentials and problems
of the proposed approach.

1. INTRODUCTION

Recently, there are – among others – two yet not contradicting
important directions in object extraction: Appearance based and
generative models. Prominent examples for the former are, e.g.,
(Lowe, 2004) and (Agarwal, Awan, and Roth, 2004). The ba-
sic idea of these two and similar approaches is that an object is
modeled by features computed from small characteristic image
patches and their spatial arrangement, both being learned more or
less automatically from given training data, i.e., images. While
this can also be seen as a discriminative model where a hypoth-
esis for an object is created bottom-up from the data, generative
models go the other way, i.e., top-down: From a given hypothesis
they generate a plausible instance of the data generatively, i.e.,
via computer graphics, and compare it with the given image data.
Usually this is done in a Bayesian framework. There are priors
for the parameters, the comparison with the data results into a
likelihood, and both are combined into the posterior. One partic-
ularly impressive example for an approach linking discriminative
and generative modeling tightly in a statistically sound manner
is (Tu, Chen, Yuille, and Zhu, 2005). In (Fei-Fei, Fergus, and
Perona, 2004) a generative appearance based model is employed
to learn 101 object categories from only a few training examples
for each class via incremental Bayesian learning.

We are aiming at the interpretation of building facades from
image sequences, particularly inspired by the generative model
based on Markov Chain Monte Carlo – MCMC, e.g., (Neal,
1993), put forward in (Dick, Torr, and Cipolla, 2004). To de-
tect objects, in our case windows, we follow (Mayer and Reznik,
2005) who use appearance based modeling in the form of an Im-
plicit Shape Model – ISM, as introduced by (Leibe and Schiele,
2004). Yet, and this is the main novelty of our approach, we addi-
tionally link ISM to MCMC for the determination of the window
extent. By this means we partly avoid the tedious manual gen-
eration of a model for the in our case sometimes complex struc-
tures of windows and also robustify the approach. Additionally,
we compute the three-dimensional (3D) extent of the windows
by means of plane sweeping proposed in (Werner and Zisser-
man, 2002). Opposed to (Werner and Zisserman, 2002) as well
as (Bauer, Karner, Schindler, Klaus, and Zach, 2003) we do not
detect windows as objects which are situated behind the facade
plane which makes us independent from the fact if the windows
are behind, on, or in even in front of the facade.

The basic idea of the generative model of (Dick, Torr, and

Cipolla, 2004), which is our main inspiration, is to construct the
building from parts, such as the facades and the windows, for
which parameters, e.g., the width, brightness, are changed statis-
tically to produce an appearance resembling the images after per-
spectively projecting the model with the given parameters. The
difference between the given and the generated image determines
the likelihood that the data fits to the model and is combined with
prior information describing typical characteristics of buildings.

Other work on facades is, e.g., (Früh and Zakhor, 2003), where
a laser-scanner and a camera mounted on a car are employed to
generate 3D models of facades (yet without information about
objects such as windows or doors) and together with aerial im-
ages and aerial laser-scanner data realistic models of areas of
cities. In photogrammetry as well as in computer vision semi-
automatic approaches have been proposed (van den Heuvel,
2001; Wilczkowiak, Sturm, and Boyer, 2005), where the latter
exploits special geometrical constraints of buildings for camera
calibration. (B̈ohm, 2004) shows how to eliminate visual arti-
facts from facades by mapping images from different view points
on the facade plane employing the robust median. The determina-
tion of fine 3D structure on facades via disparity estimation is pre-
sented by (von Hansen, Thönnessen, and Stilla, 2004). (Wang,
Totaro, Taillandier, Hanson, and Teller, 2002) take into account
the grid, i.e., row / column, structure of the windows on many fa-
cades. (Alegre and Dallaert, 2004) propose a more sophisticated
approach, where a stochastic context-free grammar is employed
to represent recursive regular structures of the windows. Both
papers only give results for one or two very regular high-rising
buildings.

In Section 2. we sketch our approach to generate a vertically ori-
ented Euclidean 3D model consisting of cameras and points from
(possibly uncalibrated) image sequences, from which we deter-
mine vertical facade planes. Section 3. describes the ISM and
as main contribution of this paper how we learn and use the seg-
mentation information to help delineate the windows via MCMC.
Finally, in Section 4. we show how the 3D extent of the windows
can be determined based on plane sweeping. The paper ends up
with conclusions.

2. 3D RECONSTRUCTION

Our approach is based on wide-baseline image sequences. After
projective reconstruction using fundamental matrices and trifocal
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tensors (Hartley and Zisserman, 2003) employing Random Sam-
ple Consensus – RANSAC (Fischler and Bolles, 1981) based
on Förstner points (F̈orstner and G̈ulch, 1987) which we match
via least squares matching, we calibrate the camera employing
the approach proposed in (Pollefeys, Van Gool, Vergauwen, Ver-
biest, Cornelis, and Tops, 2004). If calibration information is
available, we use (Nistér, 2004) to determine the Euclidean 3D
structure for image pairs. Our approach deals efficiently with
large images by using image pyramids and we obtain full covari-
ance matrices for the projection matrices and the 3D points by
means of bundle adjustment taking into account the covariance
matrices of the least squares matching of all employed images.

Having generated a 3D Euclidean model we orient it vertically
based on the vertical vanishing point derived from the vertical
lines on the facade and the given calibration parameters. The ver-
tical vanishing point is detected robustly again using RANSAC,
the user only providing the information if the camera has been
been very approximately held horizontally or vertically.

The vertically oriented model is the basis for the determination
of the facade planes using once again RANSAC. To make the de-
termination more robust and precise, we employ the covariance
information of the 3D points from the bundle adjustment by test-
ing the distances to a hypothesized plane based on the geometric
robust information criterion – GRIC (Torr, 1997). Additionally,
we check, if the planes are vertical and we allow only a limited
overlap of about five percent between the planes. The latter is
needed, because of the points possibly situated on intersection
lines between the planes.

Finally, as the position of the facade planes is often determined
in-between the plane defined by the real facade and the plane de-
fined by the windows, its depth is optimized via plane sweeping
(Baillard and Zisserman, 1999; Werner and Zisserman, 2002).
From the parameters for the facade planes as well as the projec-
tion matrices we compute homographies between the plane and
the images. We project all images a facade can be seen from
(this can be derived via the points that lead to the plane and from
which images they were determined) onto the facade plane and
compute an average image as well as the bias in brightness for
each projected image to it. Then, we move the facade plane in its
normal direction and determine for a larger number of distances
the squared differences of gray values to the average image for all
images after subtracting the bias in brightness determined above.
We finally take the position, where this difference is minimum.

The result of this step are projection matrices, 3D points, and op-
timized facade planes all in a vertically oriented Euclidean sys-
tem. The only additional information the user has to provide for
the further processing is the approximate scaling of the model so
that the images can be projected on the facade with a normal-
ized pixel-size. Therefore, for the next step of the delineation of
windows on the facade we can assume vertically oriented facade
planes with a standardized pixel size.

3. DETECTION AND DELINEATION OF WINDOWS
BASED ON MCMC AND ISM

An Implicit Shape Model – ISM (Leibe and Schiele, 2004) de-
scribes an object in the form of the spatial arrangement of char-
acteristic parts. As (Agarwal, Awan, and Roth, 2004) we use as
parts image patches (here of the empirically determined size9�9

pixels) around F̈orstner points. Training patches and patches in
an image to be analyzed are compared via the (normalized) cross
correlation coefficient (CCC). For the arrangement of the points

we employ as (Leibe and Schiele, 2004) the generalized Hough
transform.

Similarly as (Mayer and Reznik, 2005), we “learn” the model
for a window in a way that can be seen as a simplified version
of (Leibe and Schiele, 2004): We manually cut out image parts
containing training windows using in the range of about 100 win-
dows. In these (cf. Figure 1 for an example) we extract Förstner
points with a fixed set of parameters. Opposed to (Mayer and
Reznik, 2005), we manually mark the extent of the whole win-
dow including the frame and compute from it the center.

We “learn” only salient points at the corners of the manually
marked window extent (small yellow squares in Figure 1). For
these we store the gray values in the patches around the points,
their relation to the window center in the form of the difference
vector, and particularly their relation to the window extent. This
is done in the form of images of the edges of the window ex-
tent. The latter gives information which we use for the segmenta-
tion, i.e., the delineation of the window, the main novelty of our
approach. Figure 2 shows examples for image patches (left) to-
gether with the edges derived from the manually given window
extent (right). Please note that for many of our (training) windows
the window extent does not fit too well to the Förstner points as
they tend to be situated at the salient image corner between glass
and window frame.

Figure 1. Image part containing training window with Förstner
points (white crosses), manually marked window extent (yel-
low rectangle), window center (yellow diagonal cross), patches
around salient points at the corners of the window extent (small
yellow squares), and one of four difference vectors to center (blue
arrow)

To detect windows on a facade, we extract Förstner points with
the same set of parameters as above (cf., e.g., Figure 3, left) and
compare the patches of size9�9 centered at them with all salient
points learned above by means of CCC. If CCC is above an em-
pirically determined threshold of0:9, we write out the difference
vector learned for the corresponding point into an initially empty
evidence image, incrementing the corresponding pixel by one.
By this means, each match votes for the position of the window
center. The F̈orstner points as well as the evidence for the posi-
tion of the window centers are given for our running example in
Figure 3, right.

Figure 3, right, shows that the hypothesized window centers are
widely spread, because parts of windows can vote for different
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Figure 2. Set of patches (left) and set of edges (right) for window corners

Figure 3. Facade (left) and evidence for window centers (yellow dots, right) both with Förstner points (red crosses)

positions. A patch can look, e.g., similar to an upper right corner
of a whole window, but is actually situated at a transom (hori-
zontal bar) at the center of the window. To generate meaningful
hypotheses for window centers, we, therefore, integrate the ev-
idence by smoothing them with a Gaussian and then determine
all local maxima above a given threshold. The result for this is
shown in Figure 5, left. Please note that none of the windows used
for training stems from this scene as well as any of our examples
presented in this paper.

The information from the ISM is used for segmentation by insert-
ing it into the generative modeling based on MCMC. For this, the
patches voting for the respective centers need to be determined.
In Figure 5, right, all hypotheses and their difference vectors
for the areas around the local maxima for the window centers,
where the evidence is beyond0:9 of the local maximum value,
are shown. From these vectors only the vectors pointing diago-
nally are retained. Only they provide information about the win-
dow extent, because windows are assumed not to be extremely
narrow or low. The average vectors of these patches pointing to
the center are shown in Figure 4 together with the areas where the
evidence is locally above0:9 of its maximum.

Figure 4. Areas with a value beyond0:9 times of the local max-
ima (white) and average vectors of all hypotheses for corners
pointing diagonally to the maxima, i.e., hypotheses for the win-
dow centers (green lines)

Once the potential patches at the window corners are known, the

corresponding edges (cf. Figure 2, right) are summed up (cf. Fig-
ure 6, left). For guiding MCMC, the edges are thinned, normal-
ized and then blurred to extend the area of convergence. As the
likelihood is normalized in the MCMC process, it is important
that the ends of the straight segments are cut and not blurred in
the direction of the edge. The result is the window corner image
(cf. Figure 6, right).

To delineate the windows, we start with hypotheses constructed
from the centers of the diagonally most distant patches voting
for a particular window and a small inward offset of 8 pixels in
horizontal and vertical direction to avoid that the random search
starts outside the window extent. We then take up the basic idea
of (Dick, Torr, and Cipolla, 2004), i.e., we try to generate an
image which is similar to the actual image. Our basic model is
very simple, namely a rectangle brighter or darker than the back-
ground, i.e., with an edge to the background. The corresponding
edges for the windows are projected into the window corner im-
age and the normalized strength of all pixels above zero gives the
likelihood. As we found that for bright facades it is very helpful
that windows are in most cases darker than the facade plane, we
follow for them (Mayer and Reznik, 2005) and correlate a model
consisting of noisy dark rectangles on a bright background with
the facade image abstracted by gray-scale morphology. The re-
sult for this is then combined with the result based on ISM on a
half and half basis.

Figure 7, left, shows a hypothesis for the window extent, i.e., the
start position, and right the final position. Please note that we
have employed the half and half combination of correlation and
ISM for the running example with its bright facade. Therefore,
the final position in Figure 7, right, does not fit perfectly to the
distribution given by the ISM.

The parameters for the window extent are disturbed by Gaussian
noise taking into account the prior that the ratio of height to width
of a window lies in the majority of cases between0:25 to 5 mod-
eled by a mixture of Gaussians. For each iteration of MCMC, we
either change the width, the height, or the position of the rectan-
gle representing the window extent. For robustification we use
simulated annealing. I.e., the higher the number of iteration be-
comes, the lower becomes the probability to accept results which
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Figure 5. Evidence for window centers integrated with Gaussian together with maxima (diagonal red crosses – left) and hypotheses for
window corners pointing to the maxima (right)

Figure 6. Sum of edges describing window corners (left) and derived distribution to guide MCMC (window corner image, right)

Figure 7. Distribution from ISM used to guide MCMC with hy-
pothesis for window extent, i.e., start position (left) and final po-
sition (right).

are worse than for the preceding iteration. Figure 8 shows the
hypotheses in white and the final result in green.

Figure 8. Hypotheses for the window extent (white) and final
outcome (green)

4. DETERMINATION OF THE 3D EXTENT OF
WINDOWS VIA PLANE SWEEPING

As windows are often not lying on the facade plane, but mostly
behind it, their 3D position needs to be determined. This is done
again by means of plane sweeping, cf. Section 2., employing the
3D Euclidean reconstruction result by computing homographies
between planes and images. The bias in brightness of the im-
ages to an average image is computed for the whole facades as
it is too unreliable for the individual windows. To determine the
depth of a particular window, we move the rectangular part of
the facade plane determined above to correspond to a window in
the direction of the normal of the facade plane. We compute for
a larger number of reasonable distances from the facade plane
the squared differences of gray values from the individual images
it can be seen from to the average image and take the position,
where the difference is minimum.

Results for this are given in Figures 10 and 13. The first result, the
input images for which are given in Figure 9, shows that we are
actually dealing with a 3D setup where not only images of facade
planes, but also there 3D position and relations to the cameras
are known. For this bright facade again ISM and correlation have
been used on a half by half basis leading to a meaningful delin-
eation of the windows after detecting all windows on the facade.
Also plane sweeping was successful for all windows as can be
seen from the nearly constant offset. With our approach we are
able to determine different depths for individual windows as we
do not employ 3D information in the form of local maxima of
the whole plane to determine possible window hypotheses such
as (Werner and Zisserman, 2002). Yet, we have to note that a
combination of both ideas might be the best way to proceed to
deal with more complex situations.

For the second building in Figure 13 (input images cf. Figure 12,
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Figure 9. Four images used to generate the model given in Figure 10

Figure 10. Bright building seen from the back – the windows are marked in red on the facade and in green behind the facade; cameras
are given as green pyramids with the tip defining the projection center and the base the viewing direction

3D points and cameras, cf. Figure 11) the facades are rather dark.
Therefore, we could only use ISM for the delineation of the win-
dows. One can see from Figure 13, left, that for it all windows
have been detected, except for the upper left, where the resolu-
tion of the image is not good and which is disturbed by a bird
house. As we have not yet modeled doors, the door on the right
facade is interpreted as a window. Figure 13, right, shows that
in most cases there was a correct and consistent determination of
the depth of the windows. Here one has to note, that these are
mostly windows without mullions and transoms, where a deter-
mination of the depth is rather difficult, also because the windows
are partly reflecting the surroundings.

5. CONCLUSIONS

We have shown how by combining appearance based and gener-
ative modeling employing MCMC and ISM the extent of objects,
particularly windows, can be determined robustly based on auto-
matically learned models even if the structure of the object varies
or the contrast is weak. This can be seen as an extension of ap-
proaches such as (Dick, Torr, and Cipolla, 2004), where a less
adaptive object-wise modeling of the texture was employed. We
have also demonstrated how based on plane sweeping employing
homographies between the facade plane and the images it is pos-
sible to determine the 3D position of the planar hypotheses for
the windows.

Windows, but also other objects on the facade, can have sub-
structures of different sizes, e.g., mullions and transoms. To
model them and also other objects such as doors and architec-
tural details, we plan to integrate scale into ISM.

The homographies employed in the 3D determination could on
one hand help to identify 3D details not lying on the facade, but
could also be used to compute the 3D position of (partly) planar
objects far off, but parallel to the facade plane such as balconies.
For handling problems with different reflectivity we plan to intro-
duce a robust estimator.

Figure 11. 3D points and cameras (green pyramids) for dark
building

To be able to model rows or columns of windows or architectural
details and grids made up of them, it is essential that one can deal
with models of changing complexity. A means for this is Re-
versible Jump Markov Chain Monte Carlo – RJMCMC (Green,
1995), used, e.g., by (Dick, Torr, and Cipolla, 2004). It allows
to change the number of objects during processing, i.e., to in-
clude new windows, etc. To model rows, columns, and grids in
a principled way we want to employ a (context free) stochasti-
cal grammar describing the hierarchy of the objects on the facade
as well as of the different facades of a building in the spirit of
(Alegre and Dallaert, 2004).
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Figure 12. Four images used to generate the model given in Figures 13 and 11

Figure 13. Dark building seen from the outside (left) and from the top (right) – colors and cameras cf. Figure 10
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Image Sequences. InThe International Archives of the Photogrammetry,
Remote Sensing and Spatial Information Sciences, Volume (36) 3/W24,
pp. 55–60.

Neal, R., 1993. Probabilistic Inference Using Markov Chain Monte Carlo
Methods. Technical Report CRG-TR-93-1, Department of Computer Sci-
ence, University of Toronto.

Nistér, D., 2004. An Efficient Solution to the Five-Point Relative Pose
Problem. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence26(6), 756–770.

Pollefeys, M., Van Gool, L., Vergauwen, M., Verbiest, F., Cornelis, K.,
and Tops, J., 2004. Visual Modeling with a Hand-Held Camera.Interna-
tional Journal of Computer Vision59(3), 207–232.

Torr, P., 1997. An Assessment of Information Criteria for Motion Model
Selection. InComputer Vision and Pattern Recognition, pp. 47–53.

Tu, Z., Chen, X., Yuille, A., and Zhu, S.-C., 2005. Image Parsing: Uni-
fying Segmentation Detection and Recognition.International Journal of
Computer Vision63(2), 113–140.

van den Heuvel, F. A., 2001. Object Reconstruction from a Single Archi-
tectural Image Taken with an Uncalibrated Camera.Photogrammetrie –
Fernerkundung – Geoinformation4/01, 247–260.
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ABSTRACT:

In the context of 3D building model production or updating, the models have to be manually checked one by one by a human operator
in order to ensure their quality. In this paper, we investigate a new approach to perform a quality self-diagnosis of building models
in dense urban areas from high resolution aerial images. Hence, we aim at reliably identifying roof facets that do not comply with
quality specifications. The self-diagnosis process will highlight potential incorrect facets for their inspection by a human operator. A
set of calibrated aerial images enable us to collect positive or negative evidences of roof facet existence and consistency. A particular
attention has been paid to the definition of a set of low-level, complementary, robust and consistent image processing measures. Four
quality classes have been defined and are used to classify roof facet quality. A supervised classifier and robust decision rules are then
applied to perform an effective self-diagnosis according to the traffic light paradigm. Finally, the work in progress leads to a promising
quantitative and qualitative evaluation in the context of dense urban areas.

1. INTRODUCTION

1.1 Motivation
Many applications use 3D building models, such as urban
environment planning, telecommunications and natural disaster
simulations. Automation of 3D building reconstruction from
aerial images has been a very active field of research for the
two last decades, leading to a large number of automated or
semi-automated systems. Automated production of 3D building
models is now conceivable over entire cities, especially when
2D building footprints are available, from cadastral maps for
instance. Nevertheless, a verification stage is necessary to
control the quality of produced data, including shape description
correctness, topological consistency, geometrical accuracy and
completeness. This quality control is now a key issue to a greater
use and an easier maintenance of 3D building models, since it
has been done manually so far.

In this paper, we focus on the quality self-diagnosis of individual
roof facets, as a first step of the 3D building model assessment in
the context of data production, update or verification. In order
to produce useful information on this diagnosis, results should
be presented according to the traffic light paradigm (Förstner,
1996). It is based on three qualitative identified classes, namely
accepted (high quality verified facets), rejected (poor quality
verified facets) and undecided (intermediate quality facets).
Then, a verification stage completes the self-diagnosis process,
in which a human operator only checks the undecided and
rejected facets, in order to confirm, edit or delete them. The
self-diagnosis process of 3D roof facet quality is based on aerial
images and does not depend on the level of automation involved
in the reconstruction stage (none, semi or complete) or on the
specific algorithm used to produce the building models.

1.2 Related Work
Since intensive researches have been carried out on 3D building
model reconstruction from aerial imagery, quantitative and
qualitative evaluations have also been achieved (Henricsson and
Baltsavias, 1997, Rottensteiner and Schulze, 2003, Durupt and

Taillandier, 2006) using visual inspection and/or a high quality
ground truth reference. Avoiding the reference need, (Schuster
and Weidner, 2003, Meidow and Schuster, 2005) proposed to use
another reconstructed scene to compute either absolute or relative
quality measures. Quality criteria are based on completeness,
robustness, geometric accuracy, and shape similarity according
to the reference, in addition to those proposed in (McKeown et
al., 2000). These empirical evaluations showed the capabilities
of semi-automated and automated systems for the production of
3D building models.

Another approach of evaluation in computer vision is the
algorithm performance characterisation in terms of internal
evaluation and error propagation. (Förstner, 1994, Förstner,
1996, Thacker et al., 2005) give useful guidelines on this
topic. Nevertheless, the presented self-diagnosis process aims
at assessing data quality independently from the reconstruction
techniques or algorithms. Thus, self-diagnosis is based on obser-
vations of the reality and requires the definition of image-based
measures. Some examples can be found in the ”hypothesize and
verify” approach of 3D model reconstruction, such as (Suveg and
Vosselman, 2002, Jibrini et al., 2004, Taillandier and Deriche,
2004) where the best building model is selected among plausible
ones, or such as (Kim and Nevatia, 2004, Ameri, 2000) where the
building models are confirmed or discarded during a verification
stage. The authors generally take advantage of evidences
provided either by a Digital Elevation Model (DEM), correlation
scores, 3D feature extraction or shadow detection, according to
the initial hypothesis generating method. Finally, the decision
is taken by thresholding according to a prior knowledge, by
maximizing posterior probabilities or by using a supervised
classifier (Kim and Nevatia, 2003).

1.3 Overview
In this paper, quality self-diagnosis of 3D roof facets is per-
formed by using overlapping aerial images. The problem of
discriminating facets that comply or not with a set of quality
specifications results in a three-class solution, namely an ac-
cepted, an undecided and a rejected class. Hence, our problem
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is expressed as a classification problem. First, an overview of
building modelling errors is introduced in the section 2. Then,
a set of image coherence measures is defined (section 3.) in
order to prove the roof facet existence and to characterize its
consistency. Attention is paid to their robustness and their com-
plementarity. Their combination is performed in a supervised
classification stage (section 4.). Finally, the algorithm is applied
on two datasets in dense urban areas (section 5.), and evaluated
by comparing its results with manual labels of the roof facets.

2. 3D ROOF FACET QUALITY ANALYSIS

In this section, we introduce the input dataset which is consti-
tuted of 3D roof facets and aerial images. A succinct overview of
building modelling errors is provided.

2.1 Data
3D building models are described by a set of 3D planar poly-
gons (the facets) which represents building roofs without small
structure elements, such as chimneys or dormer-windows. Each
roof facet is described by geometrical properties (a set of 3D ver-
tices, 3D edges and a normal direction) and topological relations
(3D connexity and 2D planimetric connexity between the facets).
Their quality evaluation is performed by using multiple 25 cm
resolution aerial images. They are acquired by a high quality dig-
ital frame camera (SNR=300). Each roof is viewed by 8 to 11
images.

2.2 Building Model Error Causes
In dense urban areas, errors in building modelling may occur be-
cause of the complexity of roof shapes, the presence of occlu-
sions and vegetation. Besides, a lack of texture (along the roofs
or inside the shadow areas) or a low contrast (along the build-
ing ridges) may mislead the reconstruction process. Additional
external data which are often used, such as cadastral maps, are
also error prone. Moreover, as regards to building reconstruction,
some robust approaches do not manage some roof shapes while
other more general approaches, based on feature detection, pro-
duce less robust and unpredictable results. Finally, buildings may
have been destroyed, modified or extended between the database
production and new image acquisition.

2.3 Building Model Errors
We may consider three kinds of errors in building modelling:

- the non-existence of the corresponding building,
- the shape description incorrectness which corresponds to

under-modelling (Fig. 1) and over-modelling errors. It af-
fects the topological relations and the geometrical charac-
teristics of roof facets,

- the geometrical inaccuracy of a 3D facet, either in slope,
altimetric location, and/or planimetric delimitation.

In the following, we focus on the verification of individual roof
facet consistency including their existence, their shape descrip-
tion correctness and their geometrical accuracy.

3. CHARACTERIZATION OF THE COHERENCE
BETWEEN THE IMAGES

In this section, overlapping images are used in order to col-
lect positive or negative evidences of roof facet consistency.
Among several image coherence characterization techniques, we
use multi-image correlation and feature detection in order to de-
fine robust and complementary measures.

3.1 A Texture Coherence Analysis
Multi-image correlation techniques measure the similarity of tex-
tures over image-windows in order to get an estimation of the

Figure 1: An example of correct and uncorrect (under-modelled)
roof facets.

elevation such as in DEMs. Both the correlation scores and the
estimated elevations bring an evidence of facet consistency, or on
the contrary, find out a better solution.
The multi-image correlation function defined in (Paparoditis et
al., 2000) has been selected because it permits to compute ef-
ficiently DEMs in a multi-image context with a very low-level
analysis (3 × 3 window size). The image similarity is estimated
along the roof facet in the object space. The most probable eleva-
tion is estimated by maximizing the correlation function on a scan
of a tolerance bound of [−2m, 2m] along the vertical axis. Call-
ing vi the vector of intensity values, computed thanks to the im-
plicit homography defined between the images, the multi-image
correlation function (MIC) is defined by :

MIC =
Var
�Pn

i=1 vi

�
Pn

i=1 (Var (vi))
∈ [0, n] (1)

where Var is the variance and n the image number. A preliminary
image-window selection stage is performed in order to take into
account the occlusions predicted by the building model dataset.

Facet Elevation Consistency Analysis A first clue of roof
facet consistency is obtained by measuring the discrepancy be-
tween the expected elevation -predicted by the facet- and the es-
timated one. This difference is shown in Fig. 2.

2 m

− 2 m

0 m

Figure 2: Vertical axis difference between the expected eleva-
tion (predicted by the facets) and the estimated one (estimated by
maximizing the multi-image correlation function).

Although the under-modelled buildings can easily be identified,
it should be noted that occlusions still disturb the elevation es-
timation. Indeed, occlusion prediction intrinsically depends on
the geometric accuracy of the occluding buildings. Besides, ele-
vation estimation is disturbed by the unmodelled roof structures
such as chimneys or dormer-windows. Hence, a robust estimator
such as the following pseudo-median function is required :

med(Y ) = Y

„
min (SF ,S0)

2

«
(2)

where Y is a ranged vector, SF is the facet area and S0 is an area
threshold (500 m2) used to cope with large facets. Hence, a first
measure of facet consistency is based on the robust estimation of
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the distance between the estimated elevation points P̂ (x, y, ẑ) of
each ground pixel (x, y) and their projection onto the facet plane
PF . It leads us to define the Correlation Distance (CD) value by
:

CD = med
(x,y)∈F

�
DR3(P̂ (x, y, ẑ),PF )

�
(3)

where DR3 is the euclidean distance in R
3.

Correlation Function Profile Analysis Another clue assess-
ing the roof facet consistency is provided by the correlation
function profile. Correlation scores along the facets (Fig. 3, on
the left) are expected to be high for correct facets and higher than
those obtained along the vertical scan of the object space.

0


0.5

1 0.7

0.3

0

Figure 3: Multi-image correlation function (on the left) and cor-
relation profile function (on the right) applied on the facets.

Two issues linked to the correlation function have to be handled.
Firstly, homogeneous or periodic textures result in smoothed cor-
relation profiles or in local extrema. Such profile should not be
considered as reliable even if correlation scores are high. Sec-
ondly, since an image-window selection stage is carried out to
cope with occlusions, the number of images varies from one pixel
to another. Thus, a normalisation is required but linearity is not
fulfilled. Both of these issues have been getting through by defin-
ing a new consistency measure based on the shape of the cor-
relation profile (Fig. 3, on the right). It takes into account the
correlation score sF (x, y) obtained near the facet and its relative
differences with the scores s(x, y, z) obtained along the profile,
where (x, y) is a ground pixel. Applying the pseudo-mediane
function, we define the Correlation Profile (CP) value by:

CP = med
(x,y)∈F

 
sF

2(x, y)

MzX

z=−Mz

(sF (x, y) − s(x, y, z))

!

(4)
sF (x, y) = max

−δz≤z≤δz

(s(x, y, z)) (5)

where Mz is the tolerance bound (2m) and δz the z-step (0.25m).
Finally, the CP-value is higher when the correlation profile has
got a high (because of the square function) and unique peak
nearby the facet (because of the sum of the relative differences).

3.2 A Structured Feature Coherence Analysis
A complementary way to assess the roof facet consistency is to
take advantage of the high level of structuration of urban areas.
Extracting these structures from the images allows us to verify the
facet geometric characteristics and the shape description correct-
ness. Hence, 3D segments detected from images provide positive
clues when they overlap the facet edges or lay onto its plane, but
also negative ones when they are found in a corner, or far away.

Edgel Extraction First, the detected contours are matched
in order to produce robust, accurate and very low-level linear
feature elements (Fig. 4) by using the reconstruction technique
proposed in (Jung et al., 2002). These features, called “edgels”,
are 3D points with a 3D tangent direction. Here, the facet is
only used to determine the regions of interest in the images
and the matching process is performed with photogrammetrical
constraints. The corresponding contours are searched in a

reliable and adaptative tolerance bound estimated thanks to a
DEM. This bound is larger when the features are closer to the
DEM discontinuities. Thus, the main structures of the scene can
be extracted even if the facet is not correct.

Figure 4: Reconstruction of edgels applied on an under-modelled
facet. On the left, edgels projected on one image. On the right, a
3D view of the edgel set. The main structures of the roof build-
ing are well reconstructed wherever image contours have been
extracted.

3D Segment Detection A set of relevant 3D segments are ex-
tracted from the edgel set in order to compare them to the facet.
A filtering method enables to recover the segment direction and
location, applied firstly in planimmetry and secondly in altime-
try. Geometrical and filtering thresholds are required in order to
get robust segments, the main ones being a required minimum
number of edgels accumulated along the segment (linked to the
image number). The 3D segments are detected inside three spe-
cific zones which are defined according to the facet (Fig. 5). A
segment coherence value is defined for each zone.

Figure 5: 3D segments detected for the under-modelled facet
within three specific zones: near the edges (green), in the cor-
ners (yellow) and inside (cyan). Notice that a 3D inner segment
belongs to a neighbouring facet (on its left). The corner zones
are outlined in pink (on the left). In the 3D view (on the right), a
3D segment corresponding to a shadow boundary is occluded by
the 3D facet. Even if many segments are detected near the facet
edges, negative clues are collected by those detected in the corner
and inside the facet.

Facet Edge Analysis An edge zone is defined for each facet
edge with a distance and an angular deviation thresholds. The de-
tection of 3D segments overlapping the facet edges allow to ver-
ify the facet boundary consistency and to detect over-modelling
errors. An Edge Segment (ES) value is defined by the weigthed
coverage rate of the 3D segments {sj0 , .., sjn

} projected onto
their corresponding facet edge ej :

ES =

Pn
j=0 αjr(ej , {sj0 , .., sjn

})Pn
j=0 αj‖ej‖

(6)

where the function r computes the coverage length, αj is a weight
parameter (1/2 for edges belonging to several facets and 1 oth-
erwise) and ‖.‖ is the euclidean distance between the segment
end-points.

Facet Corner Analysis A corner zone is defined for each facet
vertice (pink polygons in Fig. 5, left) with a window width (5m)

138



and an angular deviation threshold (15◦). The corner segments
allow to verify the facet shape correctness and to detect under-
modelled roof (a missing hip roof structure for instance). A
Corner Segment (CS) value is defined by the maximum of the
summed length of the segment set {s0, .., sjn

} detected in each
corner zone j:

CS = max
j

jnX

i=0

‖si‖· (7)

Inner Facet Analysis The remaining edgels, that do not match
with the neighbouring facet edges and that are inside the ground
facet boundary, are selected in order to detect inner segments.
They allow to assess the facet shape correctness. Finding a seg-
ment onto the facet plane may indicate a well localisation (the
matched image contours may come from a two-material roof for
instance). On the contrary, finding a segment far away from
the facet plane, 2m above it for instance, may outline under-
modelling errors, such a saw-tooth roof modelled by a flat facet.
For each inner segment si, the area A(si,PF ) defined between
its end-points and their projection onto the facet plane is com-
puted. This area is normalised by the length of the facet in the
segment direction (‖F−→s

i

‖) in order to take into account the facet
shape variability. Then, a Inner Segment (IS) value is defined by
the sum of the normalised areas of all inner segments:

IS =

nX

i=0

A(si,PF )

‖F−→s
i

‖ · (8)

4. FACET QUALITY SELF-DIAGNOSIS

We introduce in this section how image coherence characteriza-
tion is used to classify the roof facet quality. First, four levels of
quality are defined. Afterwards, a learning and a supervised clas-
sification are performed in order to associate and predict facet
quality classes from the image coherence parameters.

4.1 Definition of quality classes
Four quality classes have been defined in order to value their level
of adequacy with reality from false to correct:

- false: the roof facet does not fit with the reality (Fig. 6(a));
- generalised : a part of the roof is not correctly modelled or

geometric deviations are observed (Fig. 6(c));
- acceptable: the roof is quite well modelled, but either un-

modelled hip roof ridge without geometric deviation or
small geometric deviations are observed (Fig. 6(d));

- correct : the roof is correctly modelled by the facet (Fig.
6(b)).

The self-diagnosis process should alert the false and generalised
facets and validate the acceptable and correct facets.

4.2 A Supervised Classification
The problem of self-diagnosing the quality of roof facets is ex-
pressed as a classification problem, whose inputs are the quality
classes and a parameter vector V = {CD,CP, ES,CS, IS}.
A simple classifier, the k-Nearest Neighbour (Duda et al., 2000),
has been used to evaluate the efficiency of the image coherence
measures. Each parameter is normalised by its standard devia-
tion computed on the training instances. The euclidean distance
between two normalised parameter vectors has been used.

Practically, 60 instances of each quality class have been learnt.
Fig. 7 shows parameter mean and standard deviation for each
quality class. Firstly, it shows that image coherence mean values
are compliant with the quality classes, as expected. Secondly,
even if the class false is quite well disjoined from the other ones,
the classes generalised and acceptable are really close from each
other. Indeed, these two labels are assigned whether a facet is

(a) class false (b) class cor-
rect

(c) class generalised

(d) class acceptable

Figure 6: Some facet instances of each quality class. The false
and generalised ones should be identified as not acceptable by
the self-diagnosis algorithm.

acceptable or not, based on its shape correctness and geometri-
cal accuracy. Finally, it shows that no measure alone is able to
reliably classify each quality class.

Figure 7: Image coherence parameter mean and standard devia-
tion for each quality class when applied on the training instances.

4.3 Robust Decision Rules
In the following, the neighbour number k has been fixed to 15
which is a good trade-off between overfitting and generalisation.
As the majority vote rule is not robust enough and does not re-
veal ambiguous classifications, the final decision is taken in or-
der to translate the self-diagnosis results into the three classes
of the traffic light paradigm. The decision is based on the num-
ber of neighbours NF , NG, NA, NC belonging to each class, the
distance d of the k neighbours, and follows selective rules for
acceptance:

- if (NF + NG ≥ k
2

or max(NF , NG) ≥ k
3

) :
if the majority vote says F or G, decide Rejected ;
otherwise, decide Undecided,

- if (NF + NG ≥ k
3

or d ≥ βk) : decide Undecided,
- otherwise: decide Accepted.
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Figure 8: Manually labelled roof facets of the realistic dataset.

Here, the maximum distance of all the neighbours has been fixed
with β = 1.2. Moreover, neighbours at a distance null have been
excluded, enabling to merge the results of the training and testing
examples in the next section.

5. RESULTS

5.1 3D Building Model Datasets
We have chosen two dense urban areas of Amiens, France.
The first one is composed of many similar buildings, mainly
with gable roofs, hip roofs and low slope garage roofs within
courtyards. The second area is composed of many different roof
materials and shapes, with a mix of industrial and very small
buildings.
Two building model datasets have been used for the self-
diagnosis evaluation. The first one, called realistic (Fig. 8),
has been produced semi-automatically by a platform containing
several algorithms (Flamanc and Maillet, 2005). The main
modelling errors (nearly 20% on 862 facets) are hip roof with
missed structures, industrial buildings simply modelled by a
flat roof and small buildings poorly modelled. In order to get
enough modelling errors for statistical evaluation, we complete
the first dataset with a second one simulating systematic errors
and containing only flat roof facets (80% incorrect facets on
251). They have been delimited by 2D vectorial building
footprints and are located at the median altitude given by a
DEM. As buildings have many different shapes, the simulated
discrepancies between the reality and the models are widespread.
All roof facets that are flat in the realistic dataset have been
removed from the flat roof dataset. This one provides all the
training instances of the class false and a few ones of the class
generalised, while the realistic dataset provides all the other ones.

5.2 Quantitative Results
As regards to the semi-automatic building model verification, an
operator will inspect the rejected and undecided facets. Thus,
the self-diagnosis process makes two erroneous decisions : a
False Acceptance (FA) error when a false or generalised facet is
classified as accepted, and a False Rejectance (FR) error when an

Figure 9: Correct (detected/validated) and incorrect (not de-
tected/to be checked) self-diagnosis decisions of the realistic
dataset.

acceptable or correct facet is classified as rejected or undecided.
It should be emphasis that minimizing the FA errors is the most
important because the accepted facets will not be inspected
anymore. FR errors only correspond to time lost for an opera-
tor to inspect facets while ideally it would not have been required.

The results of the self-diagnosis algorithm are provided in Table
1 merging all the facets of both datasets. The percentages are
computed according to the facet number of each quality class.
The self-diagnosis algorithm detects almost all the false mod-
elling errors (0.5% FA rate), but the results are mixed with the
class generalised (nearly 20% FA rate) which is confused with
the classes acceptable (11%) and correct (9%). As the decision
rule is selective for acceptance, only 52% and 80% of correct
acceptance rates are reached for the classes acceptable and cor-
rect respectively. Globally, the rates of correct rejectance (91%)
and correct acceptance (73.7%) are quite satisfying, especially
considering that an overall rate of 79.6% of correct decisions is
reached with only 3% of false acceptance errors on the whole
datasets (containing 1113 roof facets).

Decision Facet
Quality class Rejected Undecided Accepted number

Correct R. FA error
false 96.2% 3.3% 0.5% 209

generalised 63.5% 17.1% 19.4% 170
FR error Correct A.

acceptable 28.9% 19.1% 52% 173
correct 9.4% 10.2% 80.4% 561

Table 1: The statistics of the self-diagnosis decisions according
to the quality class on the whole datasets.
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5.3 Qualitative Results
An overview of the correct and incorrect self-diagnosis decisions
is provided on the realistic dataset (Fig. 9). It shows that many
facets are correctly classified. As regards to the false rejectance
decisions (Fig. 10), the facet quality estimation is generally
mislead either by occlusions, by the presence of shadows,
dormer-windows or a hip roof ridge without geometric deviation.
Even if these facets have been manually labelled as acceptable
or correct, their inspection by an operator may be well-founded -
for some of them at least-.

Figure 10: Examples of false rejectance decisions from the real-
istic dataset.

Let’s now focus on the analysis of the false acceptance decisions.
Considering the results presented in Fig. 9, only 4 false accep-
tance decisions have been made on 33 incorrect facets. In figure
11(a), the facet is geometrically accurate but a hip roof structure
is not modelled. This is not detected by corner segments because
the unmodelled roof ridge is not contrasted enough. Therefore,
no evidence of incorrectness shape description has been proved
(as for 13 FA errors on 34). In figure 11(b), a part of an overhang-
ing roof is modelled by the facet of interest. The roof slope and
location are correct, its boundary is covered at 44% by edge seg-
ments. As the corner segment directions do not fit with the roof
ridge, no corner segment has been detected. Therefore, using the
pseudo-median function and based on the detected segments, this
facet has been erroneously validated. In figure 11(c), a double
side roof is modelled by an horizontal facet. Even if the middle
ridge is detected by inner segments (IS = 2.6), fair geometric de-
viation measurement (CD = 50cm) and edge segment coverage
(ES = 50%) lead to its validation. In figure 11(d), the roof slope
is deviated by the neighbouring roof. While the CD value is quite
the same, smaller CP value and edge coverage (ES = 28%) are
balanced by a very small inner segment value (IS = 0.2). Finally,
based on 10 neighbours belonging to the class acceptable, this
facet has been validated.

(a) a miss-
ing hip roof
structure

(b) an
extended
roof

(c) an
under-
modelled
roof

(d) a
deviated
slope roof

Figure 11: Examples of false acceptance decisions (yellow out-
lined) from the realistic dataset.

6. CONCLUSION AND PERSPECTIVES

We have introduced a new approach for a quality self-diagnosis
of roof facets in dense urban areas. It is based on the definition
of robust and meaningful image-driven measures that aims at
characterizing individual roof facet existence and consistency.
The originality of our work is to take advantage of a set of very
low-level image observations and of a supervised learning in
order to classify roof facet quality. Although a simple classifier

is used, it has shown very promising results in the difficult
context of dense urban areas with the detection of almost all the
false modelling errors (99.5%). Considering also the generalised
modelling errors, which should be alerted, the evaluation shows
very satisfyingly that only 3% of false acceptance decision is
made on the whole datasets. Our efforts will be focused on the
improvement of the generalised facet detection (only 81%) while
keeping a good correct acceptance rate.

Future works will be carried out on the completion of the image
coherence measures by considering the radiometric changes
between the images and the change consistency with the facet
specular direction. It will allow us to assess the slope of the
roof facets when the roof material is not lambertian. Besides,
others classifiers could be used, as linear separation or neural
networks for instance, in order to improve the classification stage.
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ABSTRACT:

In this paper, we tackle the problem of automatic building reconstruction using digital elevation model and cadastral data. We aim
at massive production of 3D urban models and present thus an algorithm, that is an adaptation of a more general and semi-automatic
strategy to an operational context where robustness is essential. We present two approaches relying on two different techniques for non
vertical planes extraction using constraints inferred by cadastral limits. The first one consists in inferring planar primitives by estimating
only two parameters for each building : the height of gutter and the slope of roofs. The other idea is to extract planar primitives directly
from the cadastral limits and from the DEM, using a robust RANSAC estimation algorithm. The results of an evaluation carried out on
620 buildings on a dense urban centre are promising and enables to compare both approaches.

1 INTRODUCTION

1.1 Context and objectives

In this article, we deal with automatic building reconstruction
from aerial images to define a production line for massive pro-
duction of 3D urban models. Real time, robustness and automa-
tion are then essential criteria.
We propose here to adapt a generic reconstruction algorithm (Tail-
landier and Deriche, 2004) to an operational context. The general
algorithm implements a hypothesize-and-verify strategy where
buildings are modeled in a very general way as any polyhedral
shapes with no overhang. This algorithm only uses aerial im-
ages but some limitations prevent its direct use in a context of
massive production of 3D models where robustness of building
reconstructions is more important than generality. Especially, to
overcome the weakness of primitives detector, we now propose
to use cadastral limits where polygones define buildings outlines
and a digital elevation model. We will present the necessary adap-
tations to implement this algorithm using these data in the context
of an operational production line where real-time and automation
are key issues.

1.2 State of the art

Automatic building reconstruction has interested the community
for more than ten years and numerous works have focussed on
this subject. Several strategies in various context have appeared :
data-based or model-based approaches, in a stereoscopic context
or from multiple aerial images, with or without external data.
Stereoscopy allows to obtain a reliable 3D information but there
can be occlusions problems in a dense urban environment. Thus,
in this context, in order to overcome the lack of information,
methods often implement model-based approaches ( (Cord et al.,
2001), (Paparoditis et al., 1998)). They consequently suffer from
a lack of generality.
Multiscopy allows to avoid occlusions problems, therefore, meth-
ods are more general and implements data-based strategy. Most
of the developed approaches use only one kind of primitives (cor-
ners for example for (Heuel et al., 2000)). The major drawback
of these methods is their lack of robustness. In (Baillard and
Zisserman, 1999), for instance, the method described allows to
produce generic models from aerial images. It is based on the

detection of 3D segments and then on facets detection around
these segments by correlation. Planes intersection allows to de-
fine roofs. The main drawback of this method is the absence of
under-detection handling and its lack of robustness making it not
adapted to a massive production environment.
Cadastral limits allow to add strong information on structures and
have been studied for building reconstruction. (Flamanc et al.,
2003) developed a model approach using cadastral limits to de-
duce possible skeleton of the building and then a possible models
library. The principal disadvantage of this approach is its lack of
generality. In (Vosselman and Suveg, 2001), authors propose
to segment the cadastral parcel in elementar rectangles. Each
rectangle can represent an elementar form among three possible
shapes. The set of possible models is built from the collection of
possible segmentations of the parcel. This method can provide
robust models but it is not adapted to our context due to the high
number of generated hypotheses and therefore the induced com-
puting time for construction and evaluation of these hypothesis.
The approach of (Jibrini et al., 2000) utilizes cadastral limits so
as to constraint planes search by a Hough transform technique.
The enumeration algorithm is very interesting, the general strat-
egy of this article is an extension of it. However, planes extraction
with Hough transform gives a lot of over detections and leads to
a combinatory explosion and then to a lack of robustness of the
reconstructed models, which penalises this algorithm.

1.3 Structure of the article

We first describe a general algorithm of building reconstruction
(part 2.1). We then detail the adaptations for its use with cadas-
tral maps : on the one hand by simulating planar primitives (part
2.2.1), on the other hand, by extracting planar primitives with
RANSAC algorithm (part 2.2.2).
We will present the results of an evaluation of these two meth-
ods led on the urban center of Amiens. Finally, we conclude and
present future work.

2 BUILDING RECONSTRUCTION

2.1 Original algorithm : polyedral model without overhang

The complete description of this general algorithm can be found
in (Taillandier and Deriche, 2004).
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Reconstruction is performed solely from aerial images without
any cadastral information. However as it is shown afterwards,
user-interaction is still needed in the focusing step. A building is
modeled as a polyhedral form, without overhang and whose out-
line is constituted with vertical planes. This very generic model-
ing allows to represent almost all of the buildings in urban area.
We briefly sum up the general methodology. The main steps are
shown on an example on figure 1. For each building or group
of buildings, the operator manually selects a focusing area and a
ground altitude (the maximum altitude is automatically deduced),
therefore delineating a volume in which reconstruction should be
performed. Reconstruction is then achieved in a four-step algo-
rithm.
First, planar primitives (plane facets and oriented facades) and
3D segments are automatically detected in the volume.
In the second step, a 3D graph is generated from the intersec-
tion of all the detected planar primitives (facades and non-vertical
planes). After simplifications in this graph, it is proven that the
search for all possible shapes of buildings is equivalent to the
search for maximal cliques in an appropriate graph. All possible
models of buildings are thus enumerated in this second step lead-
ing to a set Γ of possible solutions.
In the third step, the best model cM is then chosen in the entire set
of possible solutions Γ by bayesian modeling (equation 1) by tak-
ing into account the adequation of the model with observations D
(P (D/M) term) and simplicity of the form (P (M) term).

cM = arg max
M∈Γ

(P (M/D)) = arg max
M∈Γ

{P (D/M) · P (M)}
(1)

The term related to the adequacy of the model with the data,
P (D/M), allows to take into account the adequation of the model
with external data (detected segments, over-ground mask, images
. . . ). The term related to complexity form probability, P (M), is
inspired by the Shannon relation and is linked to the description
length L(M) of the model (that takes into account for example
topological and geometrical informations).

P (M) = C · exp
−L(M)

β (2)

The parameter β allows to adjust the data term and the complex-
ity term, C is a normalization term common to all models and
then omitted afterwards.
The final step of the algorithm consists in automatic application
of geometrical constraints on the chosen model.
This general algorithm allows to reconstruct very complex build-
ings, buildings with internal facades and even several buildings
on the same focusing area. However, in an operational context
and in dense urban environment, some limitations are very re-
strictive : focusing on an area is a manual action and the exhaus-
tive exploration of all possible models can involve combinatory
problems since the maximal clique exploration is a NP problem.
Finally, even if the algorithm can manage errors of the primitives
detector, this primitives extraction is only made from images :
quality of primitives geometry strongly depends on images qual-
ity and errors of primitives extraction are mostly the cause of false
reconstructions.

2.2 Adaptation for an operational context

The objective is to adapt the former algorithm to integrate it in an
operational software. Whereas generality was previously favoured,
we now aim at more robustness with a real-time constraint.
In this context, cadastral data bring useful information. The out-
lines of the buildings are indeed essential to solve some problems:
focusing area delineation is automatic and primitives detection is
easier. Indeed, we have directly facades hypotheses and planar

Figure 1: Each step of the algorithm applied to an example. 1st

level : primitives detection (non vertical planes, 3D segments, fa-
cades, over-ground mask) ; 2nd level : resulting 3D graph before
and after simplifications ; 3rd level : enumeration of possible so-
lutions ; 4th level : superposition of the model chosen on a true
orthophoto, before and after constraints application.
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primitives detection can be restricted to some directions orthogo-
nal to principal directions given by the building outlines. As the
number of primitives is therefore reduced, we do not have any
combinatory problems for the maximal cliques enumeration. In
the following, we present two techniques for planes extraction
using cadastral outlines, the first one using strong constraints, the
second one relaxing these constraints.

2.2.1 Planes simulation The objective of planes simulation
is to introduce strong constraints on planar primitives in order to
improve robustness. This method is described in details in (Tail-
landier, 2005). From the cadastral maps, non vertical planes are
inferred with the following rules :
- From each segment of the cadastral outline a gutter segment of
zg m is deduced. Initially, zg is arbitrarily fixed at 0m.
- One plane is extracted for each gutter segment, orthogonally to
this segment.
- All planar primitives have a given slope p initially fixed at 45 ˚ .
From these plane primitives, we can then enumerate every possi-
ble reconstructions with the maximal cliques enumeration tech-
nique recalled in part 2.1. Some models are not however likely to
represent building roofs (figure 2). A pruning step is thus neces-
sary, in order to make the search for solutions more reliable. We
constrain each facet to pose on the segment that has generated
it, we impose a minimum angle between two edges (10 ˚ ) and a
minimum surface of the facets (1 m2).

Figure 2: 18 possible solutions on a total of 83

The resulting models are enough simple to consider them equipro-
bable (figure 3) and discard the complexity term in the choice
process. The solution is then chosen only on a criterion of ade-
quacy to the data. In our case, since we initially fixed arbitrary
altitude of gutter and slope, we use centered correlation on DEM
(figure 4) as adequacy term to be independent of these arbitrary
values.

Figure 3: The 15 remaining solutions after simplifications

The last step consists in estimating altitude of gutter and slope
of the planes. They are computed by minimization on the cor-
relation DEM. A point M on a plane generated by a segment of
gutter S and at the distance DM from S is at the altitude zM :

zM = zG + p · DM (3)

where zG is the altitude of gutter, p the slope of planes and DM

the orthogonal distance from the point P to the segment S. We
minimize with L1 norm the difference between this model and
the correlation DEM. This norm has been chosen because of its
robustness : it is useful to overcome errors of correlation in the
DEM and the non modeled superstructures of the roof.
Results obtained with this method are very good : 85% of the
reconstructions are acceptable (see part 3.3). The real time con-
straint is also respected : in the very large majority of the cases,
a result is obtained in less than 1 second.

Figure 4: We calculate an altitude map corresponding to each
model (2nd row) that is compared with the reference DEM (3rd

row). The last row is the result of centered correlation between
the 2 images (red : high correlation scores ; blue : low correlation
scores)

2.2.2 Direct extraction of planes In the method previously
described, constraints are very strong : there is only one slope of
roof and one height of gutter per building. The objective of this
second technique is to relax contraints in order to try to obtain
more generality while maintaining a high level of robustness and
then have more realistic reconstructions on buildings with irregu-
lar forms. In this case, to extract planes, we now exploit cadastral
limits and DEM.

Cadastral limits utilisation Outlines of the buildings allow us
to limit planes extraction. Indeed, most of the gutter being hor-
izontal, we impose to a plane extracted from a gutter G that the
horizontal component of its normal vector is perpendicular to G
(figure 5). This implies that only 2 3D points and one 2D di-
rection allow to define a plane. The first step of our approach
is therefore to extract these particular directions from the outline
of the building. The use of principal directions rather than the
original segments from the outline allows for example to impose
constraints of symmetry on the planes.
These principal directions allow to restrain the space of search of
the planes in the DEM. The strategy used for extracting planes in
the DEM is the robust algorithm of RANSAC.
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Figure 5: The horizontal component of a normale to a plane is
perpendicular to the segment that generated this plane

RANSAC algorithm The principle of RANSAC algorithm (Fis-
chler and Bolles, 1981) is to estimate parameters with the min-
imum necessary observations. These observations are selected
randomly among the set of observations and we count the num-
ber of observations compatible with the model deduced. These
steps are reiterated and the model chosen is the one that maxi-
mizes the consensus.
Two parameters have to be estimated : the error tolerance to de-
termine whether or not an observation is compatible with a model
and the number of tests to realize. The number of tests to realize
k is (see (Fischler and Bolles, 1981)) :

k =
log(1 − p)

log(1 − wm)
(4)

where p is the probability that at least one subset of observations
is correct, m is the number of necessary observations to estimate
the model and w the probability that any observation is compati-
ble with the model.
In our particular case, we want a plane equation and the set of
observations is the 3D points of the DEM included in the cadas-
tral parcel. We fix p at 99% and w is n

N
, where n is the minimal

number of observations to insure a plane presence (therefore n is
linked to a minimal surface of planes that we want to detect) and
N is the total number of points to consider. The other parameter
is the error tolerance, in our case, it is linked with the intrinsic
quality of the DEM used : σz . As we know the ratio B

H
of the

aerial images that have been used to compute the DEM, and the
resolution of these images, we can deduce σz :

σz =
resolution

B/H
(5)

In our case, we do not want to find only one model, but sev-
eral planes. Therefore we apply a few times this algorithm and
remove at each iteration the points that are compatible with the
plane detected. We stop the processus when there are not enough
points remaining (less than 5% of the total of points). We ex-
plicitely introduce the knowledge of the principal directions so as
to constraint the normal vector of the planes to extract but also
to reduce the number of attempts. Indeed, in formula 4, m is the
number of observations to define a plane. In general case, m = 3
(3 points define a plane), but since we have this additional data,
m = 2. Therefore, we will randomly choose k couple of obser-
vations for each principal direction and finally choose the planes
that maximize the set of consensus. For instance, for the building
in figure 6 (6387 points of the DEM are inside the parcel and it
is 27m large), the number of attempts is near 22 millions. With
the pincipal directions, this number reduces to 260000 (130000
per direction). The phase of tests is critical for the complexity
of our algorithm. So as to reduce it again, we make a realistic
hypothesis : we suppose that each plane is in contact with a gut-
ter. This will allow us to choose each couple of observations near

a gutter segment (and inside the cadastral parcel). This method
seems less precise, but we overcome this drawback by taking into
account all points inside the cadastral outline to compute the set
of consensus. For the same example, if the attempts are made in
a 2m large belt around each segment, the number of attempts is
reduced to 6200.

Figure 6: Example of a building

Choice of the best model After planes extraction, the 3D graph
is built and the possible models are then enumerated according to
the general algorithm. In order to choose the best model, we use
the bayesian formulation described in part 2.1. Indeed, we have
in general more models than with the method using simulated
planes, it is then essential to reintroduce the complexity term.
The adequacy to the data term is only computed in relation to the
reference DEM. For each facet f of a model, we compute a score
with the formula 6 :

score =
surf(f)

card(P )
P∈f

· 1

σz

X

P∈f

|DEMref(P ) − DEMf (P )| (6)

where surf(f) is the surface of the projected of the facet f in 2D,
card(P )

P∈f

is the number of points of the DEM that belong to the

facet f , DEMref(P ) is the altitude of the point P in the original
correlation DEM and DEMf (P ) is altitude of the point P pro-
jected vertically on the facet f . The score of a model is the sum
of the score for each facet. Eventually, to link this quantity to
equation 1 :

X

f∈M

score(f) = − ln(P (D/M)) (7)

hence (see equation 1) :

cM = arg min
M∈Γ

8
<
:

X

f∈M

score(f) +
L(M)

β

9
=
; (8)

We can adjust the adequacy term and the complexity term with
the parameter β.

Results After all these adaptations, 89% of the reconstructions
are acceptable (part 3.3). However, a few seconds are necessary
for planes extraction. For instance, for the building on figure 6,
the result is given in 4 seconds.

3 METHODS EVALUATION

3.1 Data

The evaluation was performed on 620 buildings of the urban cen-
ter of Amiens (France). We have a correlation DEM of 25cm
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resolution (Pierrot-Deseilligny and Paparoditis, 2006) and the
cadastral maps, preliminarily corrected so that each parcel corre-
sponds to a building.

3.2 Some results

We present here some results (figure 7 and figure 8) and differ-
ences that can appear between the methods exposed.

Figure 7: Comparison of the methods in the particular case of an
asymmetrical building. The solution given by the method using
simulated planes represents a symmetrical roof (on the left), the
one given by the method using RANSAC planes extracted can
represent this asymmetrical case.

Figure 8: Results obtained by the method using the first technique
on a part of the urban center of Amiens

3.3 Visual evaluation

We want here to determine for each reconstruction “up to what
point it corresponds to reality” ; only topological structure is ob-
served. In this test, we do not take into account geometrical preci-
sion of the reconstructions. Each reconstruction of the evaluated
area has been classified in one of these categories :

- correct : the reconstruction is in conformity with reality (we
still tolerate oversights like fanlights and chimneys).
- generalized : the reconstruction is an acceptable caricature of
the reality. We fix a limit that is the maximal size of details that
can be forgotten (level of generalization of 1,5m).
- surgeneralized : it deals with reconstruction that could have
been classified in the category “generalized” for a superior level
of generalization.
- false : the reconstruction cannot be accepted, whatever the level
of generalization chosen.
We present a synthesis of the results on the 620 buildings studied
(table 1). The column “simulation” sums up the results obtained
using simulated planes. The columns “β = 1000”, “β = 500”, “β
= 100” synthesize the results obtained with RANSAC extracted
planes and with different values for the parameter β. The best

Simulation β = 1000 β = 500 β = 100
correct 76.61% 73.71% 73.23% 61.61%
generalized 9.71% 13.71% 16.13 % 25.48%
surgen. 0.16% 3.06% 6.55% 5.97%
false 14.03% 8.87% 6.77% 6.29%
failure 0.48% 0.65% 0.32% 0.65%
Total 100% 100% 100% 100%

Table 1: Results of the evaluation expressed as percentages

value for the parameter β, in term of rate of acceptable recon-
structions (correct and generalized) among the three values tested
is β = 500.
The rate of acceptable reconstructions using simulated planes is
over 85%. Using RANSAC extracted planes and the parameter
β = 500, the rate of acceptable reconstructions is 89%. However,
we can notice that in term of exact reconstructions, the method
using simulated planes is more effective.
It is interesting to cross the results of these two methods to know
if a false reconstruction with one method is correct with the other
one (table 2). For RANSAC extracted planes, we consider the
parameter β = 500, the one that gives the best results.
We can read in table 2 that for 91 non acceptable reconstructions
with simulated planes, 66 are acceptable with the other method
(75%). We can then hope by stringing both methods together to
correctly reconstruct more than 95% of the buildings.

correct gener. surgen. false/fail. Total
correct 397 2 1 54 454
gener. 47 42 0 11 100
surgen. 12 5 0 5 22
false/fail. 19 5 0 20 44
Total 475 54 1 90 620

Table 2: The results for RANSAC extracted planes are in lines,
crossed with results obtained with simulated planes in colomns.
For instance, 54 false reconstructions with simulated planes are
correct with RANSAC extracted planes

4 CONCLUSION AND PERSPECTIVES

4.1 Conclusion

We have presented in this article two methods producing auto-
matically 3D models of buildings. The method using simulated
planes gives acceptable results in 85% of the cases. The method
using RANSAC planes extracted gives acceptable results in 89%
of the cases. In the case of planes simulation, the execution is real
time (less than 1 second) whereas a few seconds are necessary in
the case of RANSAC planes extraction.
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4.2 Perspectives

Three developments are envisaged. To be operational in a context
with data of lower resolution (50-70cm), it can be useful that an
operator can lead the algorithm to choose a general form of the
solution. For example the operator could impose that the final
reconstruction has a saddleback roof or a hip-roof. This is only
valid for the method using simulated planes.
Then we will carry on the relaxation of contraints and introduce
internal facades of buildings, this extension being possible in the
original general algorithm.
At last, we will implement an alert system. Indeed, in order to
make the process even faster, we can consider that in a massive
production context of 3D database, an operator launches the re-
construction algorithm using simulated planes on a large area and
only verifies the buildings whose reconstruction have given an
alert by the system. For these buildings, either he confirms the
reconstruction or he lauches the method using RANSAC planes
extracted. By this way, we could hope to semi-automatically re-
construct 95% of the buildings.
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ABSTRACT: 
 
As the use of building models are rapidly increased for various applications, many studies have been performed to develop a 
practical and nearly automatic method to extract such models from various sensory and GIS data. Nevertheless, it is still a difficult 
problem to extract the models of large-complex buildings in particular. The purpose of this study is thus to develop a fully automatic 
method to extract the detail models of buildings from LIDAR data and a digital map. This extraction consisting of primitive 
extraction and modeling is mainly based on robust segmentation of planar patches from numerous LIDAR points. These primary 
primitives are used as the references to generate secondary primitives such as edges and corners and then refined based on these 
secondary primitives to form a complete polyhedral model. The proposed method was successfully applied to extracting large-
complex buildings from real data in the test site. It can be a promising time- and cost-effective solution for a country to enhance 
their traditional map to include 3D models of buildings. 
 
 

                                                                 
* Corresponding author 

1. INTRODUCTION 

The need of detail and realistic building models is rapidly 
increasing because of their intensive uses for various 
applications not limited to urban planning and redevelopment, 
three-dimensional car navigation systems, video games, and 
others areas. 
 
To reconstruct 3D buildings, many studies based on various 
sensory data have been performed. For examples, using aerial 
images, Baillard and Zisserman [1] reconstructed polyhedral 
models using the edges between planar roof patches. The main 
idea is to obtain the half planes to the left and right of a 
detected dihedral line segment. The advantage is that only 
relatively local information is exploited (Brenner, 2003). In 
recent research, Suveg and Vosselman (2004) reconstructed 
buildings using aerial images and 2D ground plans. They 
generated the 3D volumetric primitives using the 3D corners 
extracted from 2D digital map and filtered by images. 75% of 
all objects were extracted using this method. 
 
Building reconstruction from LIDAR data are very active these 
days. Rottensteiner and Briese (2003) extracted roof faces from 
DSM and derived the intersection and step edges from the 
regularized DSM. Additionally, images were used to detect 
small buildings. In recent studies for extracting the roof faces, 
Lodha and Kumar (2005) applied K-Mean algorithm to refine 
LIDAR points and to detect the planar roof faces. Since users 
should assign the number K indicating the number of point 
clusters, this approach is a semi-automatic method. Vosselman 
(1999) extracted roof faces from LIDAR points using a Hough 
transform. Vosselman and Dijkman (2001) improved this 

method by using ground plans in addition to LIDAR data. 
Brenner (1998) generated building models from LIDAR data 
and 2D ground plan using a heuristic algorithm. 
 
Although many researchers have proposed semi-automatic (or 
automatic) methods, it is not yet solved to extract the detail 
models of large-complex buildings in particular in a fully 
automatic manner.  In most cases, the modeling processes still 
have involved intensive manual editing steps and thus been 
thought to be time and money consuming. 
 
The purpose of this study is thus to develop a fully automatic 
method to extract the detail models of buildings in particular 
with large-complex roof structure from LIDAR data and a 
digital map. This extraction includes two stages, primitive 
extraction and modeling. The most important step of this 
process is segmentation of planar patches. These primary 
primitives are used as the references to derive the secondary 
primitives such as edges and corners and refined to form each 
facet of the complex roof structure. 
 
 

2. OVERVIEW AND PREPROCESSING 

 
2.1 Overview of the Proposed Method 

As the framework shown in Figure 1, the proposed building 
modeling approach include three main stages, that is, 
preprocessing input data, extracting building primitives, and 
generating building models. The inputs are airborne LIDAR 
data and the building layers of a digital map covering the same 
area. During the preprocessing stage, the LIDAR data are 
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registered to the digital map and the LIDAR points around and 
inside each building boundary are extracted. From these points 
are extracted the building primitives such as surface patches, 
edges, and corners. These primitives are then refined and 
grouped into a complete polyhedral building model. 
 
 

 
 

Figure 1. Framework for the building modelling approach 
 
2.2 Input Data 

LIDAR data consist of numerous three-dimensional points 
sampled from the terrain. Although these data provide very 
accurate elevations of the surfaces, they hardly retain the exact 
locations of corners and edges of objects in general because of 
relatively lower sampling density than images. This is a main 
reason why we also use the building boundary of a large scale 
map. 
 
The test site is hilly district in Daejun Metropolitan city, Korea. 
As shown in an aerial image of Figure 2, the site includes many 
large buildings of various shapes and complex roof structures. 
The input LIDAR data of this site is shown in Figure 3. The 
point density is about 5.4 points/m2. The input digital map is 
published by National Geographic Information Institute, Korea 
and the scale is 1/5,000. Figure 4 presents the building layer of 
this map. The aerial image in Figure 2 has not been used for the 
input but only for the verification of the modeling results. 
 
 

 
 

Figure 2. Aerial image of the test site 
 

 
Figure 3. LIDAR data 

 

    
Figure 4. Digital map 

 
2.3 Data Preprocessing  

2.3.1 Calibration and outlier elimination: The LIDAR 
data were calibrated and verified to have better than the 
accuracy of ± 50 cm and ± 20 cm in horizontal and vertical 
positions, respectively. Some outliers in the data were 
detected and removed using the method based on the point 
density proposed by Moon et. al. (2005). The outlier ratio 
was found to be about 1 %. 
 
2.3.2 Registration: The LIDAR data were then 
geometrically registered with the digital map. This 
registration was performed using the tie points manually 
selected from both data sets. These tie points mostly locate at 
the corners of buildings. Since the digital map provides only 
horizontal coordinates of the corners, only horizontal 
registration was possible using the 2D similarity 
transformation. Both data were registered with the precision 
of about ± 50 cm. 
 
2.3.3 Points Extraction: Two sets of LIDAR points are 
extracted for each building boundary. One includes the points 
inside the boundary. We use these inside points to model the 
roof structure. The other includes the points locating outside 
the boundary with a distance of less than 5 m from it. The 
ground along the building can be derived from these outside 
points. Figure 5 shows the points extracted for all the 
buildings, where the blue and magenta dots indicates the 
inside and outside points, respectively. 
 

LIDAR Data Digital Map 

Data Preprocessing 

Primitive Extraction 

Modelling 

3D Building Model 
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Figure 5. Result of points extraction 

 
 

3. PRIMITIVE EXTRACTION 

The primitives such as planar patches, edges and corners are 
extracted from the inside and outside points for each building. 
Planar patches are the primary primitives and the others are the 
secondary primitives that can be derived using the primary ones. 
  
 

 
 

Figure 6. Primitive extraction process 
 
3.1 Patch Adjacency and Connectivity Graph (PACG) 

The adjacency and connectivity between all the primitives are 
examined and the results are stored into a graph structure called 
patch adjacency and connectivity graph (PACG). This graph 
incorporates each primitive into a node and any identified 
adjacency between two primitives is stored into an arc between 
them. Three types of adjacency are defined. The first one is 2D 
adjacency created between two primitives if the horizontal 
distance between their boundaries is less than a given threshold, 
which is set to 2 m in this study. If the 2D adjacent primitives 
are also sufficiently close in 3D, 3D adjacency is established 
between them. Otherwise, 2D only adjacency is established. If 
any two adjacent primitives are verified to be actually 
connected, connectivity is additionally assigned. For example, if 
a patch is the nearest primitive adjacent to another patch and the 

intersection edge between them is adjacent to their boundary, 
they are confirmed to be connected. 
 
3.2 Segmentation of Planar Patches 

Planar patches are segmented from the inside and outside 
LIDAR points, respectively. This segmentation can be 
performed using the algorithm based on perceptual organization 
of numerous 3D points. This algorithm was originally proposed 
by Lee (2002) and summarized as follows: 
 
The segmentation process starts with establishing the adjacency 
among the LIDAR point irregularly distributed in 3D space. A 
point cluster is constructed for every point by gathering a small 
number of points adjacent to the point. Each cluster is 
approximated to a plane. The clusters with relatively small 
fitting errors are selected as seed clusters, from each of which a 
planar patch is then growing with the adjacent points added to 
the cluster. 
 
During the growing step, every adjacent point to the growing 
patch is tested about whether the point is statistically consistent 
with the patch. This growing process for a patch continues until 
no more adjacent point can pass this test. This grown point 
cluster called a patch is then verified by checking the size of the 
cluster and the fitting errors. For the verified patch, its 
boundaries are computed by determining the outlines of the 
point cluster using the alpha-shape algorithm (Edelsbrunner, 
1983). 
 
After segmentation, the set of points is converted into a set of 
patches, where each patch is expressed with the plane 
parameters, the boundary, and the fitting error considered as the 
roughness. 
 
3.3 Selection of Planar Patches 

Some of the patches from the inside points may be 
unreasonable to be parts of the roof structures. We thus selected 
as the roof patches only the patches satisfied with the following 
conditions: 
1. The patch size is enough large.  
2. Roughness of the patch is relatively low. 
3. The shape of the patch is geometrically suitable. 
 
In a similar way, we also select the ground patch among the 
patches segmented from the outside patches. The selection 
criteria are as follows: 
1. The size of the patch is larger than any other patches. 
2. The height of the patch is lower than any other patches. 
3. The roughness of the patch is smaller than any other patches. 
 
The adjacency between all the selected roof and ground patches 
are then examined by checking the distance between any pair of 
patches. All the patches with the identified adjacency are stored 
into the PACG. 
 
For example, Figure 7 shows the roof and ground patches 
selected from the segmented patches for a building (ID: 2). As 
compared with its representation given in the aerial image and 
the LIDAR plots in Figure 2 and 3, the segmented and selected 
patches reasonably describe the roof structure and the ground 
around the building. 
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Figure 7. Roof and ground patches 

 
3.4 Intersection Edges 

Intersection edge can be derived from two 3D adjacent patches 
using the algorithm as follows: 
1. Select a pair of adjacent patches identified from PACG. 
2. Compute a straight line intersected by the planes. 
3. Compute the distance between this line and the boundary of 

each patch. 
4. If the distances become greater than a given threshold, 

discard the line. 
5. Otherwise, determine the two ending points limiting the 

straight line. 
 
To determine the ending points, we first identify the parts of the 
boundaries that are adjacent to the straight line and then project 
them to the straight line. The extreme two points of the range 
on the straight line in which the parts of boundaries are actually 
projected are selected as the ending points. The straight 
segment limited by these points is called intersection edge. This 
edge is also stored into the PACG with the connectivity 
assigned to the two adjacent patches. Examples of these edges 
are shown in Figure 8. 
 

 
Figure 8. Intersection edges 

 
3.5 Corners 

If three patches are identified to be adjacent each other based on 
the PACG, a corner can be derived from them. With the three 
planes, an intersection point is computed. If this point is also 
adjacent to the three patches, it is confirmed as a corner. This 
corner is also stored into the PACG with the connectivity 
assigned to the three adjacent patches. Figure 9 shows the 
derived corners. 
 

 
Figure 9. Corners 

3.6 Step Edges 

Step edges mean the parts of building outlines showing abrupt 
change in elevation across the edges, for examples, the outlines 
of vertical walls. These edges are mainly observed along the 
building boundary provided by the digital map but sometimes 
inside the roof structure within the boundary. The edges along 
the boundary are derived by projecting the 2D building 
boundary to the nearest adjacent roof patches and ground 
patches. In addition, we derive the edges within the roof 
structure from any pair of 2D only adjacent patches identified 
from PACG. The derived step edges are also stored into the 
PACG with proper connectivity and adjacency assigned. Figure 
10 shows examples of the derived step edges. 
 

 
Figure 10. Step edges 

 
 

4. MODELING 

The derived roof patches as the primary primitives has also 
important roles in the modeling process shown in Figure 11. 
Their boundaries are refined using the secondary primitives 
such as the corners, the intersection edges, and the step edges. 
The refined roof patches are then called roof facets. The space 
between each pair of the step edges connected in 2D can be 
filled with a vertical planar patch, dedicated to wall facets. The 
roof and wall facets constitute the final polyhedral model. 
 

 
 

Figure 11. Modelling process 
 
4.1 Roof Facets 

Since the boundary of each roof patch is formed by the outer 
points of the patch, it is so rough that the patch could not be 
used as a roof facet directly. It is thus necessary to refine the 
boundaries of roof patches using the secondary primitives 
located with better accuracy in general. 
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This refining algorithm is illustrated with a simple example in 
Figure 12 and summarized as follows: 
1. Select a roof patch. 
2. Select an edge forming the boundary called a boundary 

edge. 
3. Find the nearest one among the secondary primitives to be 

connected to this edge from the PACG. 
4. If this is a corner, then the nearest point on the boundary 

edge is changed to the corner. 
5. If this is an intersection or step edge, then project the 

boundary edge to the edge. 
6. Repeat 2 to 5 until all the boundary edges will be refined. 
7. Repeat 1 to 6 until all the patches will be refined. 
 

 
 

Figure 12. Refining roof patch with an edge 
 
4.2 Wall Facets 

Wall facets should be generated hypothetically because the 
vertical faces of an object are hardly observed from LIDAR 
data. Only the horizontal locations of the building outlines are 
accurately provided by the digital map. The step edges 
regardless of being derived from the building boundary of a 
map or from the patches connected in 2D indicates the 
existence of vertical facets of themselves. We thus derive a 
vertical patch between a pair of step edges to fill the gap 
between them with this patch. Figure 13 shows examples of the 
wall facets generated based on this method.  

 
Figure 13. Wall facets 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.3 Polyhedral Model 

The derived roof and wall facets are grouped into a polyhedral 
model. Among these facets, those connected to each other in 
particular share some edges and corners. Such redundant shared 
edges and corners are unified. Finally, the polyhedral model is 
examined with a topological test to check the completeness of 
the model. Inconsistency found among the facet, edges, and 
corners of a model indicates the existence of gaps in the model. 
These gaps are just identified so that they can be later edited if 
necessary. Figure 14 shows an example of the final polyhedral 
model (building 2). 

 
Figure 14. Polyhedral model 

 
 

5. EXPERIMENTAL RESULTS 

The proposed extraction approach was implemented as a 
program coded using C++ with standard template library. This 
program was applied to extracting building models from the 
input data of the test site mentioned in Section  2.2. The 
modeling results from the 13 buildings existing in this site are 
presented in Figure 15. They are the results from fully 
automatic processes without any manual intervention during 
this process or any manual editing after it. All the buildings 
presented from the map mainly retaining large and complex 
roof structures were verified to be reasonably modeled with 
visual inspection. 
 
We inspected each building model based on its appearance in 
the aerial image, the LIDAR point plot, and the digital map. 
The inspection results of three buildings (ID: 4, 12, 10) are 
presented as follows. 
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Figure 15. All the extracted building models in test site 
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Figure 16 shows the model of building 4 retaining the width of 
about 125 m, the length of about 56 m, and the height of 18 m. 
The generated model represents the winding of the wall around 
position A, which indicates the modeling process recovers 
narrow vertical facets. 
 

Figure 16. Extracted model of building (ID: 11) 
 
The next building (ID: 2) is the most complicated shape. This 
building has many step edges and intersection edges on the roof. 
In addition, the ground plan is also irregular. Although the 
shape of the building is so peculiar that it might be difficult to 
apply a traditional model-based approach, the extracted model 
completely describes the shape in detail, as shown in Figure 17. 
 

 
 Figure 17. Extracted model of building (ID: 2) 

 
Building 5 also has very complex roof structure in which many 
step edges are observed. The roof structure is modeled with 16 
patches of various shape and size. The size of the smallest one 
is just 4 m2, indicating how detail the proposed process can 
model a building. 
 

 
Figure 18. Extracted model of building (ID: 5) 

 
 

6. CONCLUSION 

We proposed an automatic method to extract three-dimensional 
detail models of buildings in particular with large-complex roof 
structure from LIDAR data and a digital map. From the 
modeling results of 13 buildings in the test site, the proposed 
method is verified to successfully extract the detail polyhedral 
models. 
 
Most countries have already constructed large-scale maps 
including building layers. If they improve these maps to include 
3D models of buildings for various applications such as 3D car 
navigation, the proposed method can be a time- and cost-
effective solution. 
 
Buildings newly built after a map being generated cannot be 
identified from the map. In order to model them in addition, we 
are studying a method to identify the existence of building and 
generate the step edges along the building only from LIDAR 
data. 
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KEY WORDS: Markov Chain, constraint equations, façade modelling, building extraction, least squares adjustment.

ABSTRACT:

Today’s processes to extract man-made objects from measurement data are quite traditional. Often, they are still point based, with the
exception of a few systems which allow to automatically fit simple primitives to measurement data. At the same time, demands on the
data are steadily growing. The need to be able to automatically transform object representations, for example, in order to generalize their
geometry, enforces a structurally rich object description. Likewise, the trend towards more and more detailed representations requires
to exploit structurally repetitive and symmetric patterns present in man-made objects, in order to make extraction cost-effective. In
this paper, we address the extraction of building façades in terms of a structural description. As has been described previously by
other authors, we use a formal grammar to derive a structural façade description in the form of a derivation tree. We introduce two new
concepts. First, we use a process based on reversible jump Markov Chain Monte Carlo (rjMCMC) to guide the application of derivation
steps during the construction of the tree. Second, we attach variables and constraint equations to the symbols of the grammar, so that
the derivation tree automatically leads to a constraint equation system. This equation system can then be used to optimally fit the entire
façade description to given measurement data.

1 INTRODUCTION

The extraction of man-made objects from sensor data has a long
history in research (Baltsavias, 2004). Especially for the mod-
elling of 3D buildings, numerous approaches have been reported,
based on monoscopic, stereoscopic, multi-image, and laser scan
techniques (Brenner, 2005). While most of the effort has gone
into sensor-specific extraction procedures, very little work has
been done on the structural description of objects.

Nowadays, in extraction systems, one can choose between
boundary representation (BRep) and constructive solid geometry
(CSG) modelling. BRep modelling is inspired by traditional pho-
togrammetric point measurement, with subsequent topology def-
inition to obtain lines, surfaces, and volumes. CSG, on the other
hand, models objects by combining predefined volumetric primi-
tives using Boolean operations. Thus, it has the intrinsic potential
to attach meaning to the primitives and to obtain a structural de-
scription in terms of a CSG modelling tree. However, primitives
usually reduce to simple geometric shapes such as planar patches,
cylinders and spheres, and the CSG tree is often derived accord-
ing to the modelling process and the desired 3D shape rather than
with a semantic modelling of the building structure in mind.

Modelling structure though is very important for downstream
usability of the data, especially for the automatic derivation of
coarser levels of detail (LoD) from detailed models (a process
called generalization). Being able to deliver different LoDs tai-
lored to different customers needs, to context-adapted visualiza-
tions, such as on mobile displays, or simply to cut down rendering
time of large models is essential for 3D models to enter the mar-
ket. The Sig3D group has defined five levels of detail for building
models (Kolbe et al., 2005). However, the definition of discrete
LoDs alone does not imply any path to derive one level from the
other in an automated way. Experience from 2D map general-
ization in cartography shows that generalization purely based on
geometric information is indeed a hard problem, which becomes
even worse in 3D.

Representing structure is not only important for the later usability

of the derived data, but also as a means to support the extraction
process itself. A fixed set of structural patterns allows to span
a certain subspace of all possible object patterns, thus forms the
model required to interpret the scene. Patterns can also guide
the measurement process (taking place after the interpretation).
Especially for man-made structures such as building façades, a
large number of regularity conditions hold, which can be intro-
duced into the measurement process as constraints. In interactive
measurement processes, introducing structural descriptions can
cut down acquisition time, since repeated or mirrored parts can
be introduced in one step.

This paper elaborates on the grammar-based extraction of façade
descriptions. The grammar is used in two places. First, it guides
the generation of possible façade layouts using a reversible jump
Markov Chain Monte Carlo (rjMCMC) process to explore solu-
tion space. Second, the obtained derivation tree is used for the
automatic setup of constraint equation systems during the fine
matching of the generated façade layout to measurement data.

2 RELATED WORK

2.1 Extraction of objects using constraints

The extraction of objects from measurement data is different from
computer aided design (CAD) construction. In CAD, the general
problem is to derive an instance (a geometrical instantiation) of
an object, given a sketch (or just an idea), annotated with dimen-
sional information. Algebraically, sketch annotations are con-
straints and the sketch defines a constraint graph, out of which a
constraint equation system

f(x) = 0 (1)

results, where x is the parameter vector describing the (geometry
of the) solution. Finding x, given (1), is termed geometric con-
straint solving. In order to obtain a finite set of solutions, f must
be well constrained or consistently overconstrained. In contrast,
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when objects are reconstructed using measurements, the task can
typically be formulated as

‖g(b, x)‖
!
= min, subject to

f(x) = 0, (2)

where g subsumes the (possibly contradictory) constraints im-
posed by some measurement data b, whereas f represents the
“hard” constraints imposed by the model. As opposed to the case
in CAD, f will be normally underconstrained (as else the mea-
surements will have no effect on the solution), whereas g will
be typically overconstrained (since redundant measurement data
is used), which leads to a system which is both locally overcon-
strained and globally well- or underconstrained.

There are no extraction tools which implement (2) rigorously.
For example, modelling of objects from close range scan data
is usually carried out using CAD-based systems which combine
CAD modelling functionality with the ability to fit CAD objects
to point clouds (e.g., (Leica Geosystems, 2006)). In this case, the
first part of (2) is implemented, but not the second one. For a
practical example, assume that four best-fit planar patches have
been extracted from laser scan data. Then, it is not possible to
make them meet in a single point except by manual modifica-
tion (usually, a “snap” operation) of one of the planes – which
destroys the initial best-fit property.

The need to introduce constraints into the reconstruction process
of man-made objects has been recognized early. For example,
Weidner extracts roof faces using a DSM segmentation and pro-
poses to automatically derive mutual relationships between the
extracted faces, such as ‘same slope’, ‘symmetry’, and ‘antisym-
metry’, in order to insert them as constraints into a global robust
adjustment (Weidner, 1997). Although this has been proposed by
several authors, constraint-based extraction does not play a role
nowadays, except for research systems (Ermes, 2000).

The major problems with constraint-based modelling are (i) to
insert the constraints in a meaningful manner, (ii) to manage, in-
trospect, and debug large constraint equation systems, and (iii) to
solve constraint equation systems. As opposed to the classical
geometric constraint solving problem, which attempts to build a
solution “from scratch”, in reconstruction, initial values are usu-
ally available, so that linearization and iterative estimation can
be used for solving the equation system. Thus, the main task
lies in the structured insertion and management of constraints.
To facilitate this in interactive environments, “weak primitives”
have been proposed in (Brenner, 2004). The concept has been
extended later to include hierarchical structures using containers
(Brenner and Sester, 2005).

2.2 Generalization and incremental modelling

Automation of (manual) map generalization procedures has been
a topic in cartography for several decades. There are now first
operational systems available, which usually start from a scene
description in form of 2D primitives like polygons or polylines.
From this, implicit relationships are discovered, such as adja-
cency, parallel and rectangular structures, distances, protrusions,
etc., which are to be modified or preserved during generalization.
The final outcome is again a description of the objects in terms of
their geometry only. Since the discovered structures are not being
made explicit, they cannot be modified, which frequently leads to
the need to check and correct the outcome of the automatic gen-
eralization step manually.

Recently, in cartography methods are being investigated and de-
veloped which aim at the recognition of important structures that

are needed as a basis for generalization, e.g. parallelism, lin-
ear arrangement, clusters (Christophe and Ruas, 2002, Anders
and Sester, 2000). Furthermore, there are approaches which try
to separate generalization processes related to different objects
in different hierarchical levels, e.g. when defining generalization
modules that can be handled independently (Kilpeläinen and Sar-
jakoski, 1995). A first attempt to explicitly model these structures
has been done in the AGENT project, where different hierarchical
levels of objects have been specified that can act independently
with a specific dedicated behavior (Lamy et al., 1999).

In (Brenner and Sester, 2005), the previously mentioned approach
of primitives and containers has been extended to include discrete
behavior. Primitives are defined as the combination of geometric
description (e.g., polygons), sets of constraints (e.g., all line seg-
ments aligned horizontally or vertically), and discrete behavior
(e.g., boundary simplification rules). Containers provide the abil-
ity to spatially layout primitives, with dedicated interface slots
which allow to connect primitives to containers. This leads to a
simple hierarchical description scheme, which is extended in this
paper to a grammar-based description.

2.3 Modelling of architectural patterns

Grammars have been extensively used to model structures. For
modelling plants, Lindenmayer systems were developed by the
biologist Aristid Lindenmayer (Prusinkiewicz and Lindenmayer,
1990). They have also been used for modelling streets and build-
ings (Parish and Müller, 2001, Marvie et al., 2005). However,
Lindenmayer systems are not necessarily appropriate for mod-
elling façades. Façades differ in structure from plants and streets,
since they don’t grow in free space and modelling is more a par-
tition of space than a growth-like process.

For this reason, other types of grammars have been proposed for
architectural objects. Stiny introduced shape grammars which
operate on shapes directly (Stiny and Gips, 1972). The rules re-
place patterns at a point marked by a special symbol. Mitchell de-
scribes how grammars are used in architecture (Mitchell, 1990).
The derivation is usually done manually, which is why the gram-
mars are not readily applicable for automatic modelling tools.

Wonka et al. developed a method for automatic modelling which
allows to reconstruct different kinds of buildings using one rule
set (Wonka et al., 2003). The approach is composed of a split
grammar, a large set of rules which divide the building in parts,
and a control grammar which guides the propagation and distri-
bution of attributes. During construction, a stochastic process
selects among all applicable rules.

Dick et al. introduce a method which generates building models
from measured data, i.e. several images (Dick et al., 2004). This
approach is also based on the rjMCMC method. In a stochastic
process, 3D models with semantic information are built.

3 GRAMMAR-BASED FAÇADE RECONSTRUCTION

In this section, the basic concept of our method is described. As
in the approaches outlined in the previous section, we use a gram-
mar to define façade layout. However, we do not want to gener-
ate artificial façade descriptions, but rather derivation trees which
correspond to measurement data. Two major tasks can be identi-
fied:

1. the recognition of the façade structure, i.e., building of a
structural description in the form of a derivation tree, to-
gether with a first instantiation of all (geometric) parame-
ters, and
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2. measurement, i.e., fine-matching the geometry of this initial
structure to the measurement data.

The first task is the interpretation step, for which we describe an
approach that uses rjMCMC to explore different derivation trees.
As for the second task, we propose to attach constraint equation
systems to the derivation rules such that a complete derivation
tree not only defines the structure and initial layout, but also a set
of constraints which allow to precisely match the structure to the
measurement data.

For our experiments, we use terrestrial laser scan data and im-
ages. For the moment, we concentrate on façades, i.e., the mea-
surement data consists of point clouds and orthorectified images
of single façades.

3.1 Façade grammar

The façade model is described in terms of a recursive partition of
space. Each part is represented by one of the symbols listed in
table 1 and 2. There are two kinds of symbols, the first one being
nonterminals (table 1). Geometrically, nonterminals do not repre-
sent façade geometry directly but serve as containers which hold
other objects, represented in the derivation tree by nonterminal or
terminal children. The second group contains the terminal sym-
bols, which represent façade geometry and cannot be subdivided
further (table 2).

ABOVEDOOR IDENTICALFAÇADEARRAY
ABOVEWINDOW PARTFAÇADE
FAÇADE STAIRCASECOLUMN
FAÇADEARRAY SYMMETRICPARTFAÇADE
FAÇADECOLUMN SYMMETRICPARTFAÇADEMIDDLE
FAÇADEELEMENT SYMMETRICPARTFAÇADESIDE
FAÇADEROW SYMMETRICFAÇADE
GABLE SYMMETRICFAÇADEMIDDLE
GROUNDFLOOR SYMMETRICFAÇADESIDE

Table 1: Nonterminal symbols corresponding to containers.

DOOR WALL
DOORARCH WINDOW
STAIRCASEWINDOW WINDOWARCH

Table 2: Terminal symbols corresponding to façade geometry.

The start symbol is the symbol FAÇADE. Starting from it, the
model can be expressed as a derivation tree with FAÇADE as
root. The subdivision is made by rules similar to the ones in-
troduced by (Wonka et al., 2003). Figure 1 shows an example
façade. The FAÇADE can be partitioned into GROUNDFLOOR
and upper parts of the building, modelled as PARTFAÇADE.
PARTFAÇADE shows symmetry and therefore only one side
is modelled as SYMMETRICPARTFAÇADESIDE. In this part
the windows are arranged in a regular grid modelled by an
IDENTICALFAÇADEARRAY. This array can be instantiated with
a single WINDOW which is placed at each grid position. The
GROUNDFLOOR doesn’t show any regularities which is why it
is subdivided into FAÇADEELEMENTs which can contain WIN-
DOWs or DOORs. Each rule has a left side which consists of one
symbol and a right side which may comprise several symbols in
a certain spatial layout. The result of the method is a derivation
tree which describes the model of the façade.

3.2 Exploration of the derivation tree using rjMCMC

We use rjMCMC for the construction of the derivation tree. The
tree is encoded in a vector θ, which holds all parameters which
are present in the derivation tree, e.g. positions and sizes of

Figure 1: Example partition of a façade.

terminal symbols. The task is to find the optimum value for
θ, given measurement data. In terms of a distribution, we are
therefore looking for the maximum (mode) of the distribution
P (θ|DSDI), i.e., the conditional distribution of θ, given scan
data DS and image data DI . Finding this maximum by an ex-
haustive search is not feasible, due to the dimension of θ. There-
fore, we use a stochastic method to instantiate the value of θ
randomly. The overall approach is thus of the type hypothesize-
and-test, where the hypotheses are generated randomly and tested
afterwards, using measurement (scan and image) data. In or-
der to be feasible, the samples θ are drawn from the distribution
P (θ|DSDI), so that more samples are in the vicinity of high
distribution values (i.e., close to probable façade layouts). The
problem with this is that first, P (θ|DSDI) usually has a highly
complex shape, far from a standard distribution, so drawing sam-
ples is nontrivial. Second, P (θ|DSDI) is not analytically avail-
able. The first problem is solved using Markov Chain Monte
Carlo (MCMC, see e.g. (Gilks et al., 1996)). Basically, using
the algorithm of Metropolis-Hastings, a Markov chain is obtained
which converges to the desired distribution. Thus, after an initial
phase, the algorithm delivers samples drawn from the distribu-
tion P (θ|DSDI). As for the second problem, using Bayes’ law,
P (θ|DSDI) ∝ P (θ)P (DSDI |θ). The first term (prior) is eval-
uated using plausibility functions, which are set up manually. For
example, one part of P (θ) describes assumptions about window
sizes (by assuming a distribution). The second term (likelihood
function) is evaluated by a score function based on the model
(defined by θ) and scan and image data. The realization of both
terms is described in more detail below. Thus, to summarize, the
method explores the solution space by drawing samples from a
(posterior) distribution, without the need to know this distribu-
tion analytically. Since the derivation tree changes during the
process, the dimension of θ changes as well, and MCMC is not
directly applicable. To resolve this, rjMCMC is used, which al-
lows jumps between spaces of different dimension (Green, 1995).
Our approach is described in more detail in (Ripperda and Bren-
ner, 2006).

During the exploration of the derivation tree, any state change can
be assigned to one of the following categories:

• Application of a split rule from the grammar. Façade ele-
ments are divided horizontally, vertically or in both direc-
tions and each part becomes a new symbol (see Fig. 2). In
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fact, one grammar rule comprises a set of changes to the pa-
rameter vector θ, since the associated attributes have to be
chosen, such as the number and size of children. Figure 3
shows an example where one rule splits the symbol FAÇADE
into FAÇADECOLUMNs. The number of columns and their
width is determined randomly. If a FAÇADE can be divided
into several FAÇADECOLUMNs the general rule stands for
all rules of this kind with different number of columns and
different positions.

SymmetricFaçade Symmetric
FaçadeSide

Symmetric
FaçadeSide

Symmetric
FaçadeMiddle

Façade
FaçadeRow
FaçadeRow
FaçadeRow

SymmetricFaçade Symmetric
FaçadeSide

Symmetric
FaçadeSide

Symmetric
FaçadeMiddle

Façade
FaçadeRow
FaçadeRow
FaçadeRow

FaçadeRow
FaçadeRow
FaçadeRow

Figure 2: Split rules.

Façade

FC  FC FC   FC   FC FC  FC      FC

Façade

FC  FC FC   FC   FC FC  FC      FC

Figure 3: Different applications of a split rule.

• Changes in structure. Even after derivation of new con-
tainers according to the previous step, a second set of
state changes allows to modify parameters, e.g. the num-
ber of columns or the position of the parting lines between
columns (see Fig. 4). The same can be done starting from a
child symbol. In this case, the neighbor symbols which are
involved in the change have to be changed as well.

Symmetric
FaçadeSide

Symmetric
FaçadeSide

Symmetric
FaçadeMiddle

Symmetric
FaçadeSide

Symmetric
FaçadeSide

Symmetric
FaçadeMiddle

FaçadeRow
FaçadeRow
FaçadeRow

FaçadeRow
FaçadeRow
FaçadeRow

FaçadeRow
FaçadeRow
FaçadeRow

Figure 4: Changes which modify splits.

• Replacement of symbols. This allows to interchange one
symbol in the derivation tree by another symbol. In
this case, the geometry stays the same, but the denota-
tion changes. This is especially used in the case of the
symbols ABOVEDOOR and ABOVEWINDOW. For exam-
ple, the space above a window is modelled by the symbol
ABOVEWINDOW. The rules

ABOVEWINDOW → WINDOWARCH
ABOVEWINDOW → WALL

allow to replace this symbol.

The control is done by the rjMCMC method. To ensure the re-
versibility, each change can be applied from left to right and vice
versa. This is a difference to the way split grammars are used,
but is a requirement for the rjMCMC approach. A change is pro-
posed depending on the jumping distribution Jt(θt|θt−1) which
expresses the likelihood for each change.

For the evaluation of changes, we use different methods which
can be divided into two groups. The first group contains methods
which test the general plausibility of the model of the façade.

In the group there are methods which test how good the model
fits the data. This group subdivides in methods working with
range data and methods working with image data. In any case, the
evaluation functions return a probability which is used to decide
if the change is accepted or rejected.

The general plausibility depends on the alignment, the extent and
the position of the façade elements. Windows are usually ar-
ranged in rows and columns. Therefore, such layouts are assigned
a high acceptance probability. We consider the size and the as-
pect ratio of façade elements to rate their probability. We also
use the size for the rating of the subdivision into rows, columns
or arrays. A row which is five meters high is not very likely and
thus has a low acceptance probability. The last general criterion
is the position of the elements. A door in the third floor is not
very likely, so only doors in the ground floor are assigned a high
probability.

To evaluate the match of the data to the model, scan and image
data are used. In the first case, the fact that window points typi-
cally lie behind the façade is exploited. In the second case, color
difference has been used since windows typically appear darker
than the surrounding façade. In both cases, the information is
used for the subdivision into rows, columns, and arrays as well.
For example, upon division into rows, the resulting row strips are
correlated to obtain an acceptance probability. Additionally, in
image data a color change may indicate a changeover of ground
floor and first floor.

Fig. 5 and 6 show the partition of a symmetric façade and the
corresponding derivation tree. The symbol FAÇADE is replaced
by SYMMETRICFAÇADE. SYMMETRICFAÇADE is split into
SYMMETRICFAÇADESIDE and SYMMETRICFAÇADEMIDDLE.
Each one is further subdivided into IDENTICALFAÇADEARRAY
and FAÇADEELEMENTs, respectively. WINDOW and DOOR are
on the leaf level.

Figure 5: Resulting partition of a façade.

SymmetricFaçade

SymmetricFaçadeSide SymmetricFaçadeMiddle

IdenticalFaçadeArray

Window Door

FaçadeElement FaçadeElement

Window

Figure 6: Derivation tree of the façade shown in figure 5.

3.3 Introduction of constraints

In 2D, with points represented by p = (x1, y1)
T, q =

(x2, y2)
T ∈ IR2 and lines by l = (a1, b1, c1)

T, m =

(a2, b2, c2)
T (in Hesse normal form ax + by + c = 0), typi-

cal logic constraint equations are a2
1 + b2

1 − 1 = 0 (l having a
unit length normal vector), a1x1 + b1y1 + c1 = 0 (p incident
l), a1a2 + b1b2 = 0 (l perpendicular m), a1b2 − a2b1 = 0
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(l parallel m), whereas dimensional equations include a1x1 +
b1y1 + c1 − d = 0 (p having (signed) distance d from l),
(x1−x2)

2 +(y1−y2)
2−d = 0 (p having Euclidean distance d

from q), a1a2 + b1b2 − cos % = 0 and a1b2 − a2b1 − sin % = 0
(two oriented lines l and m enclosing the fixed angle %). Thus,
constraints between objects often result in bilinear equations. For
solving those constraints, linearization and least squares estima-
tion can be used. As noted earlier, the main problem is to intro-
duce constraints in a sensible way so that they are manageable
and constraint dependencies are minimized.

We use the derivation tree to define the set of constraints auto-
matically. Two types of constraints can be generated from this
tree. Terminal symbols represent geometry, which is fitted to
measurement data. Thus, terminal symbols can generate fitting
constraints, depending on the measurement data type, e.g. least
squares fitting of surfaces to laser scanner data, or fitting of edges
to the orthorectified image. Nonterminal symbols, on the other
hand, can introduce constraints between their children, such as
alignment, size, or orientation.

As an example, Fig. 7 shows a derivation tree (as ob-
tained by the grammar), the corresponding geometric rep-
resentation, and the generated unknowns and constraints.
IDENTICALFAÇADEARRAY, as seen by the grammar, subdivides
space into a regular array (depicted here as 2x3 array). From
a unknowns/ constraints viewpoint, IDENTICALFAÇADEARRAY
introduces column alignment lines at x1, x2, x3 and row align-
ment lines at y1, y2. As IDENTICALFAÇADEARRAY enforces
a regular column spacing, a constant distance ∆x together with
constraint equations xi+1 − xi = ∆x is introduced. Since
IDENTICALFAÇADEARRAY enforces identical sizes as well,
width w and height h variables are introduced. All variables
are inherited, i.e., the FAÇADEELEMENT shown in the figure re-
ceives the relevant alignment variables x3 and y1 as well as w
and h. WINDOW is a weak primitive p and thus consists of ge-
ometry and internal constraints. To the outside, it offers variables
p.cx, p.cy (the center), p.w (width), p.h (height) in the form of
fields (slots). Those fields are connected to the inherited variables
x3, y1, w, h by the addition of four constraints. Being a terminal
symbol, WINDOW represents a “real” geometry. Thus, additional
constraints are added which match the geometry of WINDOW to
the measurement data.

In contrast to the approach in (Wonka et al., 2003), the distinc-
tive feature of our approach is that we do not “copy” attribute
values down the derivation tree, but rather distribute (symbolic)
variables. These variables can be used by children in arbitrary
complex ways by introducing constraint equations. By the dis-
tribution of variables and the link by constraints, the geometric
representation of the tree is “alive” in the sense that changes in
one place can propagate across the entire tree. Finally, mapping
the tree to a constraint equation system and subsequent solution
of that system in the least squares sense allows a mathematically
thorough, well-defined solution, which seamlessly integrates ob-
servations and constraints. To experiment with constraint equa-
tion systems in 2D, we have developed an environment which
allows the interactive modification of geometric items while ge-
ometric constraints are enforced using least squares estimation
(Fig. 8).

4 CONCLUSIONS AND OUTLOOK

In this paper, we have proposed to use grammars for the extrac-
tion of façade descriptions from measurement data. We intro-
duced two major concepts. First, the use of rjMCMC to guide

Figure 8: Snapshot of the interactive tool for evaluation of con-
straint equations.

the construction of the derivation tree, in conjunction with eval-
uation functions which rate possible changes based on measure-
ment data. Second, the use of the hierarchic derivation tree struc-
ture as a means to automatically establish constraint equations for
a subsequent least-squares fitting of the façade description to the
measurement data. For the future, we plan to enlarge our set of
derivation rules as well as to improve our evaluation functions.
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ABSTRACT:

GOODSAC is a paradigm for estimation of model parameters given measurements that are contaminated by outliers. Thus, it is an
alternative to the well known RANSAC strategy. GOODSAC’s search for a proper set of inliers does not only maximize the sheer size of
this set, but also takes other assessments for the utility into account. Assessments can be used on many levels of the process to control
the search and foster precision and proper utilization of the computational resources. This contribution discusses and compares the two
methods. In particular, the estimation of essential matrices is used as example. The comparison is performed on synthetic and real data
and is based on standard statistical methods, where GOODSAC achieves higher precision than RANSAC.

1 INTRODUCTION

1.1 Motivation

One of the basic tasks for many computer vision applications is to
describe a set of measurements by a mathematical model. Often
this model is overdetermined because the number of measure-
ments is much higher than the number of unknown sought model
parameters. Different methods to find an optimal solution de-
spite the presence of noise and outliers have been devised during
the years. The techniques used for robust estimation include ran-
dom sampling (RANSAC), a complete search to test all possible
inlier sets, clustering such as the Hough transform and maximum-
likelihood-type estimation (McGlone et al., 2004, p. 103 ff). Even
though they vary greatly in detail, their common property is to
reduce the influence of outliers on initial solutions thus allowing
their detection and removal.

RANSAC is often used when the outlier rate is high. The approach
to its solution is to detect an inlier set of maximal size, while the
precision of the resulting parameters is not taken into account.
Better results can be achieved, when some of the often redundant
inlier samples are traded in for others that have more impact on
the parameters.

For real-time applications the computation time constraints are
hard. Methods where the overall processing time is data-depen-
dent and not guaranteed to be within a given bound cannot be
accepted. In particular, it is desirable to have a method that can be
terminated by external requirements. On the other hand, it should
utilize the given resources properly, i. e. it should also not be
ready long before the requirement for a result arrives and keep
the resources idling for the rest of the time. For the experiments
in this contribution, methods are chosen that have this anytime
capability.

1.2 Our approach

In this paper, we propose the GOODSAC (good sample consensus)
paradigm as an alternative to RANSAC (random sample consen-
sus) (Fischler and Bolles, 1981). RANSAC uses a blind generate-
and-test strategy that treats all samples equally regardless of their
quality and requires a large number of tests to find an optimal
solution. Furthermore, RANSAC is nondeterministic so that two
runs on the same dataset will return different results.

In contrast to this, GOODSAC replaces the random sampling with
an assessment driven selection of good samples. Good samples
are those that possess a high degree of confidence and advanta-
geous geometry so that the model parameters computed are well
defined. Appropriate utility functions can usually be derived from
the mathematical, geometric model in order to produce a sorted
list of samples which features the most promising ones in the
leading positions. Multiple abstraction stages from the measure-
ments to the samples evade the complete search through all com-
binatorial possibilities.

A second enhancement is the replacement of tedious inlier tests
by a clustering in parameter space. While RANSAC defines the
best result as the one which has the largest inlier set, GOODSAC
looks for solutions that turn up often. The concept of the inlier
set is still present in GOODSAC through the set of predecessors –
those samples who lead to the cluster in parameter space.

This contribution focuses on the application of GOODSAC to the
estimation of essential matrix constraints between two images
and in particular on the special case of nonuniform distributed
interest points. Its performance is evaluated by comparing it to
RANSAC with respect to robustness and accuracy. The experi-
mental setup is chosen to resemble a situation frequently encoun-
tered in forward looking aerial thermal videos.

1.3 Related work

RANSAC (Fischler and Bolles, 1981) had been introduced to the
scientific community 25 years ago and is widely used for its ro-
bustness in the presence of many outliers (25 Years of RANSAC,
2006). Documented enhancements of RANSAC based estimation
mainly focus on the reduction of the required number of ran-
dom samples in order to decrease processing time. (Matas et al.,
2002) replaced the seven point correspondences required for the
estimation of a fundamental matrix with three matching affine re-
gions. Many implementations contain additions to the original
RANSAC – typically constraints that bail out early on bad random
samples.

A major recent improvement on the method itself is the preemp-
tive RANSAC scheme (Nistér, 2005). While the original algorithm
generates and tests one hypothesis at a time, preemptive RANSAC
first generates a number of hypotheses and then tests them in par-
allel, discarding bad hypotheses early in order to speed up pro-
cessing.
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Another variant more along the lines of our work is PROSAC (pro-
gressive RANSAC) (Chum and Matas, 2005). PROSAC introduces
an assessment component to narrow the set of samples to draw
from. If successful, this achieves a higher inlier rate so that fewer
runs are needed. In contrast, GOODSAC eliminates the random
sampling process completely and introduces additional assess-
ment components to achieve robustness.

GOODSAC has already been used for completely different recog-
nition tasks in the past (Michaelsen et al., 2006).

2 METHOD AND TEST SETUP

2.1 The GOODSAC Paradigm

The good sample consensus principle has been designed for tasks
where an assessment on the quality of the samples and of their
parts can be provided (Michaelsen and Stilla, 2003). In this case
the random search for a sample that maximizes consensus can be
replaced by a controlled search. It is intended to capture sensi-
ble heuristics or proven utilities in a more systematic way and
use them to prevent waste of computational resources and foster
precision.

Let F (m,x) = 0 denote an implicitly defined functional model,
where m is a k-tuple of parameters and x is an n-tuple of mea-
surements. Only a subset {xi} with i ∈ I ⊆ {1, . . . , n}
fulfills the model. The task is to estimate m from x. If the
set I were known, the solution would be found by minimizing∑

i∈I F (m, xi)
2 under variation of m. Systematical complete

search in the power set 2n for an optimal set I is usually not fea-
sible. It is assumed that there exists ` < n minimally such that
m can be determined from an `-sample {xi1 , . . . , xi`}.

Whereas the RANSAC method draws samples at random,
GOODSAC regards them as objects. Each object is assessed ac-
cording to its presumed utility for the estimation task at hand.
Furthermore, it exploits part-of hierarchies: intermediate ob-
jects are introduced between the single measurements and the
`-samples, which are smaller sub-sample objects (e. g. pairs or
triples). Thus, the way is open for a better control on the search.
Badly composed sub-sample objects can be neglected, while pre-
sumably well suited ones can be preferred – `-sample objects vote
for specific settings of the parameters m of the model. `-sample
objects with consistent votes – according to a metric and thresh-
old inM 3 m – are parts of a cluster object, which represents
the highest level of the object hierarchy. The best cluster object
is the result.

2.2 Assessment Driven Control

GOODSAC uses a general control approach. A part-of hierarchy
is formulated as finite production system:{

pι; pι = oκ ← (oλ, oµ) ∨ oκ ← {oλ, . . . , oλ}
}
, (1)

where pι denotes the productions and oκ, oλ or oµ respectively
denote object types. Note that the productions may be of two
forms – either a more complex object is formed from an ordered
pair of simpler objects of possibly different kinds or it is formed
from a set of objects of the same kind. Associated with each pro-
duction pι there is a predicate πι that the right side must fulfill
for the production to be appropriate, a function that determines
the object instances attribute values on the left side from the val-
ues found in the right side and in particular an assessment func-
tion αι for the newly constructed object instance. A proper as-
sessment driven control cycle for production systems has already
been given by (Stilla et al., 1995):

1. Form working elements (α0, oλ, ξ, nil) from a given set of
primitive object instances, where ξ is a pointer to the object
instance and α0 its initial assessment.

2. Sort the set of working elements according to the assess-
ments α.

3. Pick a fixed number of elements from the “good end” of the
sorted working set and proceed with all of them.

4. Let (α0, oλ, ξ, χ):

(a) If χ = nil, then clone (α0, oλ, ξ, χ) with χ = ι for
each production pι in which oλ occurs on the right
side.

(b) Else query the database for partner object instances
that fulfill πι together with the object oλ to which ξ
points; generate all new objects oκ that are obtained
using these combinations and insert new working ele-
ments (αι, oκ, η, nil) for each of these with η pointing
to them.

5. If the set of working elements is still not empty and no
external break criterion holds continue at step 2.

After breaking the control cycle the best object of the highest hi-
erarchical type is chosen as result. Using this control scheme for
GOODSAC is achieved by taking the measurements x as primitive
objects and larger samples as intermediate non-primitive objects
up to the minimal `-samples required for calculating F . Thus
these objects can be attributed with parameter estimations for F .
A single cluster production for these minimal `-sample objects is
added (of the type oκ ← {oλ, . . . , oλ}) that demands adjacency
in the parameter space of F . It constructs non-minimal sample
objects that are the result of the process.

The assessment functions used in this process must not only be
capable of comparing the presumed utility of objects of the same
type and hierarchy level, they must also be valid between objects
of all different types, because all these objects constantly com-
pete for the same computational resources. There are no random
choices in a GOODSAC search run. It is completely determined by
F , x, the object hierarchy and the assessment functions. Its suc-
cess depends on the care of the designer of the latter structures.
It is particularly appropriate where utility assessment criteria can
be given in a mathematically sound way. Sect. 2.3 gives an ex-
ample for the estimation of essential matrix constraints.

2.3 An Example: Estimating Essential Matrices

GOODSAC is particularly suitable for essential matrix estima-
tion. The minimal sample for this task is five correspondences
(x, y, x′, y′)> giving one constraint each, so that the five param-
eters of an essential matrix E can be obtained by evaluating the
roots of a polynomial of 10th degree (Nistér, 2004). GOODSAC
clusters each of the up to ten hypotheses computed from one sam-
ple. This independent treatment of the hypotheses is similar to a
straightforward RANSAC implementation.

The hierarchy of the corresponding GOODSAC system consists of
five object types: Correspondences K, pairs P , quadruples Q,
quintuples R and essential matrix clusters C. The following
attributes and assessment functions are assigned to these objects:

1. Objects K are obtained from image pairs taken from a
video stream. Therefore they are attributed with the loca-
tions of the corresponding item in the first and second image
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(x, y, x′, y′)>. It will be most useful if objects K with high
assessment have a small expected error or outlier probabil-
ity. There are extraction methods that provide these mea-
sures, and they have proven very useful for RANSAC accel-
eration (Chum and Matas, 2005). In our comparison uni-
form distributed random assessments have been used in the
experiments in sect. 3 because emphasis is on exploitation
of the geometric configurations. Random assessments are
the worst possible choice apart from using the sequence in
which the objects have been generated.

2. Objects P ← KK are pairs of correspondence pairs.
A similarity transform with four degrees of freedom may be
calculated from an object P . The expected deviation of this
transform from the correct value would inversely depend on
the Euclidean distance d between the objects K preceding it
(in one or the other image). This motivates heuristically that
the assessment is obtained from this distance. It is directly
and linearly transformed to the assessment interval [0, 1] by
a(P ) = d/dmax where dmax is the maximal possible dis-
tance in the image.

3. Objects Q ← PP are quadruple of correspondence ob-
jects. For their assessment the area a of the smallest of the
four triangles formed from the four locations is used. This
motivation is based on the fact that from an object Q, a pla-
nar projective transform with eight degrees of freedom may
be calculated. The expected deviation of this transform from
the correct value would be highly correlated to this assess-
ment value a/amax, where amax is the area of the largest
possible triangle in the image bounds. It can at most be
equal to one, but usually it is much smaller. In order to
balance between different object types, (a/amax)

e is used
for the assessments of objects Q with an appropriate value
0 < e < 1.

4. Objects R ← QK are a quintuple of correspondence ob-
jects. Given an object Q, partners K that are not co-linear
with two of the four locations of this object are searched.
The assessment is again obtained from the area of the small-
est triangle. Also this assessment must be properly normed
to be bounded by one and balanced with the other assess-
ments as described above.

5. Objects C ← {R; mutually consistent} are clusters of es-
sential matrices very similar to each other. All objects K
preceding them are again entered into the same procedure
– this time in its overdetermined version – resulting in a new
more precise estimation of E. For assessment, the convex
hull of all preceding objects K in the image is determined.
The assessment value is formed as product of the number
of correspondences k and the area of the convex hull. This
assessment is neither balanced with respect to the other as-
sessments nor bounded by one. It is not used for control
purposes. Objects C do not compete for computational re-
sources. This assessment is only used for picking the best
result after termination of the GOODSAC search run.

If a very precise result is needed, a concluding consensus set
may be formed from all objects K being consistent with the
result, followed by least squares optimization. This last step is
also proposed for RANSAC search. It is well known as “guided
matching” (Hartley and Zisserman, 2000, p. 125).

2.4 Performance Evaluation

In this section we evaluate the performance of the proposed es-
timations with respect to the robustness of the procedures and

Figure 1: White displacements are inlier correspondences, black
displacements outliers, the white aircraft symbol indicates the
epipole.

the accuracies of the individual results. Whereas the ability of
detecting outliers is specified by an error rate in terms of a bi-
nary classification, the results of the parameter estimations will
be evaluated using statistical tests and results from adjustment
theory, cf. (Mikhail, 1976, Förstner, 1994) for instance. For the
real data set we do not have the true projection matrices and we
are also not sure of the presence of possible non-projective dis-
tortions. Therefore we will describe qualitatively the result on a
particular example.

2.4.1 Robustness

Outlier detection: Error rate. We consider the procedures to
be a binary classifier indicating inliers and outliers with the help
of a threshold. Competing classifiers can be evaluated based on
their empirical confusion matrices. The rate of missed outlier de-
tections is of interest beside the error rate being the ultimate mea-
sure of the classification performance (Jain et al., 2000). Since
these measures are random variables, they have an associated dis-
tribution permitting hypothesis testing.

Self-diagnosis. In automatic analysis there is a demand for reli-
able self-diagnostics. Concerning the detectability of errors eval-
uation quantities can be derived from the stochastic model within
general least squares adjustment models:

An initial covariance matrix Qxx of the observations x is as-
sumed to be known and related to the true covariance matrix Cxx

by Cxx = σ2
0Qxx with the possibly unknown scale factor σ2

0 ,
also called variance factor. If the initial covariance matrix cor-
rectly reflects the uncertainties of the observations, this factor is
σ2

0 = 1. The estimated parameters are independent with respect
to scaling of this covariance matrix, therefore only the ratios of
the variances and covariances have to be known in advance.

The variance factor can be estimated from the estimated correc-
tions v̂ for the observations x via

σ̂2
0 =

v̂>Q−1
xx v̂

R
(2)

with the redundancy R of the system.

If the mathematical model actually holds and the observations are
normally distributed, the estimated variance factor will be Fisher
distributed with R and ∞ degrees of freedom (McGlone et al.,
2004)

T1 =
σ̂2

0

σ2
0

∼ FR,∞ (3)

with the test statistic T1 having the expectation value one.
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Figure 2: Left: Typical RANSAC result, right: Typical GOODSAC result. RANSAC maximizes the size of the inlier set, while GOODSAC
returns correspondences that allow better precision of the estimated parameters.

If the test (3) is accepted, the data and model will fit. In the case
of deviations there is no evidence for the reasons. In particular,
small errors in the assumptions concerning the precision of the
observations lead to a rejection of the test. But, for synthetic
data σ2

0 is known and the mathematical model holds. Therefore
this test checks indirectly the robustness, since gross errors or
blunders lead to a rejection.

2.4.2 Precision and Accuracy

Acceptability of the empirical precision. The empirical pre-
cision indicates the effect of random errors onto the estimated
parameters, taking the estimated variance factor σ2

0 into account.
The empirically estimated covariance matrix for the estimated pa-
rameters m is

Ĉm̂m̂ = σ̂2
0Qm̂m̂ (4)

where the covariance matrix of the estimated parameters results
from Qm̂m̂ = (J>Q−1

xx J)−1 if the observations can be ex-
pressed explicit in terms of the parameters, where J denotes the
Jacobian of the equations with respect to the parameters.

If a certain precision of the parameters is required, the individual
values can be compared with some pre-specified tolerances for
the specific application.

Empirical Accuracy. The evaluation of the covariance matri-
ces, as discussed so far, is only an internal evaluation relying on
the internal redundancy of the observation process. Systematic
errors, which may not have an influence on the residuals but may
deteriorate the estimated parameters, are not taken into account.
Evaluating the empirical accuracy of the estimated parameters
therefore requires reference values mr for the parameters.

The Mahalanobis distance is useful for checking the complete set

T2 = (m̂−mr)
> (

Crr + Ĉm̂m̂

)−1
(m̂−mr) ∼ χ2

u (5)

within a combined statistical test with u degrees of freedom being
the number of parameters. If the test (5) has been rejected it can
be concluded that the accuracy potential of the observations is
not exploited, provided that the reference data mr actually are
correct and thus m ∼ N(mr,Crr).

3 EXPERIMENTS

3.1 Experiments with Synthetic Data

Optimal statistical analysis can only be accomplished with syn-
thetic data because exact measure of the noise is required. A time

constraint has been introduced by limiting the number of sam-
ple objects R to 2,000. The same number of samples was then
permitted to the RANSAC search runs. This is almost two orders
of magnitude larger than the standard textbook literature recom-
mends for quintuple samples at 95% probability for an inlier-only
sample with our 33% outlier rate (Hartley and Zisserman, 2000).
For correspondences uniform distributed all over the image both
methods will yield robust results. In order to elaborate the dif-
ference in the behavior a critical situation was simulated in the
following way: 90% of the correspondences are located within
a small region of the image. Only 10% are uniform distributed
over the entire image (Fig. 1). For the synthetic data the scene
is assumed to be flat. Therefore the correspondences result from
a planar projective homography constraint. While a planar scene
cannot be used for fundamental matrix estimation it should not
pose a problem to essential matrix estimation following (Nistér,
2004).

Fig. 1 shows the generated frame-to-frame point correspon-
dences. The camera motion has no rotational component. Thus
the epipole – sketched as aircraft symbol – is a fixed point giv-
ing the flight direction and the horizon is a straight line of fixed
points. 67% of the data are disturbed by an additive normally dis-
tributed shift error on the position in the second image. 33% of
the data are disturbed by a much larger additive shift error on the
position in the second image. This error is distributed uniformly
within a squared search window eight times larger than the stan-
dard deviation of the inliers. GOODSAC requires assessment val-
ues for the correspondences. In this example, they were chosen
randomly and independent of the outlier property and displace-
ment error. Because the result of the search depends on these ini-
tial assessments the outcome is nondeterministic (as it normally
would be with real assessments), allowing a statistical evaluation.
Therefore the GOODSAC run was repeated 20 times with indepen-
dently drawn assessments.

One GOODSAC result on the particular data set given in Fig. 1 is
displayed in Fig. 2, left. The GOODSAC estimation is based on
a fairly small number of objects K with some outliers included.
These correspondences, however, are well spread over the image,
so that the resulting estimation fits the ground truth neatly. The
epipole is again displayed as aircraft symbol. Almost no rotation
is left. Yaw and pitch rotations are indicated by a line inside the
center of the aircraft symbol showing the resulting displacement
and the roll is indicated by fins on the wingtips. RANSAC is a
non-deterministic method. Therefore we repeated the experiment
20 times for each particular setting of correspondences. Among
these runs there were also examples, where the outcome was
superior to the GOODSAC result. To make our point clearly we
decided to show an example result in Fig. 2 which comes up with
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Figure 3: Empirical distributions for the false positives rates.
Left: RANSAC, right: GOODSAC. For the peak at 33% see text.
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Figure 4: Empirical distribution of the variance ratios (3).
Left: RANSAC, right: GOODSAC.
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Figure 5: Empirical distribution of the Mahalanobis distances
with the χ2

5 distribution. Left: RANSAC, right: GOODSAC.

a fairly low false positive rate but with an unpleasant deviation
of the essential matrix. There are only few black lines visible.
But the estimation is based on a small image region. Thus the
epipole can be displaced considerably from the true position. To
compensate for this a considerable rotation – even in roll angle –
is “invented”.

The quantitative evaluation is based on 40 different settings of
correspondences with 20 GOODSAC searches and 20 RANSAC
searches performed on each. RANSAC always finds the vast
majority of the consensus set inside densely populated areas.
GOODSAC typically spreads the hypothesis generating samples
across the entire image. Fig. 3 shows the distributions of the false
positives rates for the GOODSAC and the RANSAC approach with
a similar shape. The expectation value of 0.12 is caused by the
fact that even in the optimal case about 30% of the outliers fit to
the essential matrix and therefore are not detectable at this stage.
There are rare situations, where almost all correspondence ob-
jects K closest to the image margin are actually outliers. This
may cause the GOODSAC search to fail completely. Even after
2,000 quintuple objects R have been constructed no cluster may
be found at all. Then the procedure falls back on using all corre-
spondences as inliers. These cases lead to a small peak at 33%
false positive rate for the GOODSAC method.

The empirical distribution of test statistics (Eq. (3)) is plotted
in Fig. 4. Note that these values stem from different Fisher distri-
butions since the degrees of freedom are varying with the number
of inliers. The values obviously do not exceed the expectation
value one for both estimation methods. Thus, the outliers have
been removed successfully.

Figure 6: Frame from a forward-looking thermal video captured
from a helicopter.

The empirical distributions of the Mahalanobis distances (5)
shown in Fig. 5 reveal some deviation from the expected (analyt-
ical) probability density function. It can be seen that GOODSAC
is closer to the theoretical distribution than RANSAC. This is be-
cause for a given sample and a corresponding essential matrix,
the essential matrix is extrapolated outside the convex hull of this
sample. While RANSAC maximizes the size of the sample as ex-
pected, this extrapolation leads to lower accuracy in the essential
matrix.

3.2 An Experiment with Real Data

GOODSAC has been designed for applications where non-uniform
distributed features are a common phenomenon. In particular,
aerial forward-looking thermal videos often exhibit large uniform
areas and strongly textured or structured regions often are quite
sparse and small. An example frame is presented in Fig. 6.

Correspondences were obtained from a pair of frames with a suf-
ficient baseline length, so that the displacements allow essential
matrix estimation. Then GOODSAC and RANSAC were applied
to these data under the same conditions that were also used for
the synthetic setup. Quantitative evaluation of this experiment
would need manual labeling of outliers, acquisition of ground
truth, e. g. by an inertial navigation system, and repetition with
a considerable number of image pairs. This has not yet been un-
dertaken. Instead, in this contribution only the tendency of the
outcome can be shown by example results in Fig. 7.

Note that while the sample found as consensus set by RANSAC
has a larger size than the consensus set found by GOODSAC.
However, some correspondences on the margin of the correspon-
dence point cloud are missing in the RANSAC set, but appear in
the set found by GOODSAC. This confirms the tendency found by
the investigations with the synthetic data.

4 DISCUSSION AND OUTLOOK

Concerning the false positive rates on the synthetic dataset
GOODSAC is only a little better than RANSAC. However, the Ma-
halanobis distance plots of the essential matrices resulting from
the same experiments indicate that higher accuracy can be ex-
pected from GOODSAC. This can be explained by the fact that
RANSAC simply tries to maximize the number of inliers which
will only be directly related to the accuracy, if they are uniformly

165



Figure 7: Typical result of the generated samples. Left: RANSAC, right: GOODSAC.

distributed over the entire image. GOODSAC tries to back the es-
timation by a stable geometric base and trades the sheer number
of measurements for it.

The part-of hierarchy used for essential matrix estimation over-
laps highly with that suitable for planar homography estimation
(Michaelsen and Stilla, 2003). We may just add attributes to the
quadruple objects Q, add a clustering production and balance the
assessment functions accordingly. If the scene is planar, the ho-
mography results will usually be more reliable, else the essen-
tial matrix solution will be better, while both calculations may be
based on the same partial sub-calculations.

An open research problem with respect to this multiple use of
intermediate objects is the choice of the assessment functions.
We did not use any meaningful assessments on the elementary
correspondence objects K here – for reason of fair competition.
But in a real application we would of course use something rea-
sonable: The quality of the match between the first and second
image gives a good criterion related to both the outlier probability
and the expected displacement error of an inlier correspondence.
Or the length of displacement between the two images, because
this estimation will fail on a set of stationary correspondences.

Further research is also needed to compare the two methods on
real data with real inliers and outliers. The used assumptions
on which the distributions of both kinds of correspondences are
based must be verified. Here, we presume the normal distribu-
tion of the inliers to be the smaller problem. The distribution
of real inliers may be deviating due to the pixel structure of the
detector or properties of the matching algorithm, but the devia-
tion may well be tolerable. The distribution of outliers, however,
is probably a more severe problem. Real outliers do not occur
randomly with equal probability anywhere. They are caused by
unpredictable clutter effects. Some of these (e. g. moving objects,
partial occlusions) may be foreseeable but a quantitative predic-
tion is hard. They will, however, have a bias, and the influence
of outliers on either method remains to be studied. However, the
presented statistics based on the simplified assumption on the out-
liers still indicate potential usefulness of the presented method.
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ABSTRACT: 
 
In this paper we address the problem of estimating the horizontal vanishing line, making use of motion statistics derived from a 
video sequence. The computation requires the satisfying of a number of corresponding object’s height measurement; and in our 
approach these are extracted using motion statistics. These easy-to-compute statistics enable accurate determination of average shape 
of every point in the image. Thanks to the use of motion statistics and error propagation formulas in the intermediate steps, our 
approach gives robust results. The outcomes show that our approach gives accurate results in the context of different environments. 
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1. INTRODUCTION 

In recent years there has been a dramatic increase in the number 
of video surveillance systems in use; and these have in turn 
generated a large quantity of archived video recordings, which 
are usually stored without any image-processing. In most cases 
for such recordings one does not know the relative and global 
geometrical properties of the surveillance cameras.  
Despite this, there is a striking lack of publications concerning 
the extraction of geometric characteristics from images 
contained in video recordings. We may note that this task is 
much simplified in the case where some known test object is 
used during system calibration. In this paper however a 
statistical framework is introduced which allows us, without 
such calibration to derive the horizontal vanishing line (VL). 
The vanishing line is useful for camera orientation and extrinsic 
parameter determination (Lu et al., 2002). For still images 
(Criminisi et al., 1999), it can be successfully determined only 
when there are detectable parallel lines; and in image-
sequences, only when certain assumptions are satisfied which 
enable us to detect and track known objects (Lu et al., 2002). In 
summary, most of the published still-image based methods are 
unsuitable for processing the images of a typical surveillance 
scene. Furthermore, in typical surveillance scenes of public 
places the assumptions on which the video-based methods are 
posited are not satisfied. 
The main practical advantage of our proposed method is that 
there is no need for any time-consuming processing steps. 
Furthermore because of the statistical method employed it is a 
robust procedure, and sub-pixel accuracy may be achieved. 
These properties are especially important in the analysis of 
outdoor surveillance videos. In videos captured by analog 
surveillance cameras the contrast and focus are often badly 
adjusted, and thus precise measurements are not possible in 
individual frames. This consideration led to our concept of 
summarizing the information from a sequence of a number of 
frames (as many as possible) in order to achieve higher 
accuracy in the averaged retrieved information. The paper 
introduces a parameter-optimization approach which is 

appropriate to this statistical feature-extraction method; and 
thus we establish a framework for estimation of the parameters 
in a slightly different way to other parameter optimization 
methods (Nguyen et al., 2005; Ji and Xie, 2003). 
 
The parameter estimation method we introduce here applies 
simple outlier rejection step prior to the nonlinear optimisation. 
Another advantage of the method is that it is capable of working 
on low frame-rate videos, since the relevant parameter for the 
statistical information extraction is not the refresh rate itself, but 
rather the total frame-count of the processed sequence. 
 

2. PROBLEM DESCRIPTION 

Parallel planes in a 3-dimensional space intersect a plane at 
infinity in a common line, and the image of this line is the 
horizontal vanishing line, or horizon. The vanishing line (VL) 
depends only on the orientation of the camera (Hartley and 
Zisserman, 2000). In the paper we describe the VL with the 
parameters of the line. 
In summary, the determination of the vanishing line is possible 
with knowledge of at least two vanishing points (these lie in the 
VL); thus three corresponding line segments (e.g. derived from 
the height of a given person in the image), or else known 
parallel lines in the same plane, are necessary. 
These line segments can be computed from the apparent height 
of the same object as seen at different positions (depths) on the 
ground-plane. The objects may for instance be pedestrians (Lu 
et al., 2002), and the line segments denote their height. 
However, the precise detection of such non-rigid objects is a 
challenging task in outdoor images. 
 

3. PROPOSED METHOD 

In this section we introduce a novel solution based on our 
previous results on motion statistics to derive shape information 
from videos. The statistical properties of uncertainty of 
extracted information have been successfully used for accurate 
parameter estimation. 
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3.1 Extraction of Shape Properties 

Our feature-detection method is based on the use of so-called 
co-motion statistics (Szlávik et al., 2004). These statistics have 
been successfully used for image registration in the case of 
wide-baseline camera pairs and for vanishing point 
determination in camera-mirror settings (Havasi and Szirányi, 
2006). Briefly, these statistics are a numerical estimation of the 
concurrent motion probability of different pixels in the camera 
plane  
A straightforward step is that the input is some motion mask 
which is extracted using a suitable algorithm, which may be any 
one of the several methods available (Cucchiara et al., 2003). 
The temporal collection of 2D masks provides useful 
information about the parts of the image where spatially-
concurrent motion occurs, and thereby about the scene 
geometry. These statistics come from the temporal summation 
of the binarized masks; these mask are written ( ),m t x  where t 

is the time and the 2D vector x  is the position in the image. 
Thus, these masks comprise a set of elements signifying motion 
(“1”) or no-motion (“0”). The co-motion statistics in local sense 
can be summarized with the following two equations. First, we 
define the global motion statistics which determines the motion 
probability in every pixel (because of the discrete time-steps, 

t∆  denotes the frame count): 
 

 ( )
( ),

t
g

m t
P

t
=

∆

∑ x
x    (1) 

 
In general, the concurrent-motion probability of an arbitrary 
image-point u  with another image-point x  may be defined 
with the following conditional-probability formula: 
 

 ( )
( ) ( )

( )

, ,

,
t

co

t

m t m t
P

m t
=
∑
∑

u x
u x

x
  (2) 

 
For a detailed description of the implementation issues, we refer 
to (Szlávik et al., 2004). After normalization 
 
 ( ) 1coP =∑

u

u x    (3) 

 
the ( ).coP  is assigned to every pixel in the image, the 2D 

discrete PDF (probability distribution function) will provide 
useful information about the shapes: the average shape can be 
determined, because ( )coP u x  collects information about 

objects which pass through the point x . These PDFs may be 
approximated by normal distributions because the central limit 
theorem says that the cumulative distribution function of 
independent random variables (each have an arbitrary 
probability distribution with mean and finite variance) 
approaches a normal distribution (Kallenberg, 1997).  
Thus, 
 
 ( ) ( ), ,coP = Ν x xu x u µ Σ   (4) 

 
where the normal distribution is defined as 
 

( )
( )

( ) ( )1

2

1 1, , exp
22π

−⎛ ⎞Ν = − − −⎜ ⎟
⎝ ⎠

x µ Σ x µ Σ x µ
Σ

 (5) 

 
The following figure illustrates the results of motion statistics in 
both indoor and outdoor sequences. 
 

  
 

  
 
Figure 1. Sample frames in upper row, and raw motion statistics 
(defined by (2)) in the bottom row. The corresponding point is 
marked by ‘x’ 
 
From this feature extraction the input for the further processing 
steps is the parameters of the covariance matrix 

xΣ  in point 

x . The dimensions and orientation of the average shape come 
from the eigen-value decomposition of the covariance matrix: 
 
 

, , ,   1, 2i i i iλ= =x x x xΣ v v   (6) 

 
These statistical characteristics are displayed in figure 2. 
 

 
 
Figure 2: Example to shape properties: axes of normal 
distributions, derived from the eigen-value decomposition of 
the covariance matrix. 
 
Finally, the height measurement comes from the projection 
(vertical component) of the most vertical eigenvector: 
 

( )
( )

( ), m ax , m ax ,1 ,1 , 2 , 2,
, arg m ax , , ,

λ
λ λ λ=x x x x x xv

v e v e v

 
 

, m ax , m ax,jh h λ= =x x xe v  (7) 

 
where e  denotes the vertical unit vector: [ ]0 1=e  and 

.  is the dot product, respectively. These height estimations 

are displayed in figure 3. For the sake of later simplification we 
transform the indices from vector (coordinate) form e.g. x  to a 
simple scalar index j. Henceforward, j denotes a point in the 

x
x 
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image; viz. 
jh  is the height measurement in image-point j and 

vector 
jp  determines the coordinates of point j in the image. 

Because the scheme (7) utilizes information extracted from 
statistics, a more sophisticated form may be given for the height 
estimation which takes into account the uncertainty: 
 
 ( ) ( )ˆ ˆ , ,

jj j j j hP h h h h ∆= Ν Σ  (8) 

 
where 
 
 ( )2

2
, m axj jh h j jhσ λ∆ ∆Σ = = −  (9) 

 
 

 
 
Figure 3: Odd sample from height estimations in outdoor 
environment. 
 
3.2 Outlier Rejection 

In summary, the determination of the vanishing line is possible 
with knowledge of at least three corresponding line segments. 
In our framework the necessary height information can be 
easily determined from the local statistics. The information 
derived from statistics is valid only if the following assumption 
is satisfied: there are regions where the same objects are 
moving with equivalent probability (e.g. pathway or road). 
In general, without making any prior assumptions about the 
scene every point may be paired to every other point. But the 
practical processing of this huge data-set requires that we have 
an effective way to drop “outlier” points and extract 
information for VL estimation.  
First, we describe simple conditions which can be used to 
reduce the size of the data-set. The outlier rejection in this case 
is similar to dropping points where two objects are moving but 
are not the same size. Let j represents an arbitrary point in the 
image and k denotes another (corresponding) point: j k≠  
We reckon two points as corresponding points (which is 
probable, where same-sized objects are concerned) if 
 

 ,1 ,1
1 2

, 2 , 2

/j k

j k

λ λ
σ σ

λ λ
< <   (10) 

 
and 
 
 ( ),1 ,1,j k αΦ <v v    (11) 

 
where the notations come from the eigenvalue decomposition of 
the covariance matrices of two points, see (6), and ( ).Φ  

denotes the angle between two vectors (the deviation of 

eigenvectors in our case). These simple conditions lead to a set 
of points where the objects have similar orientation and aspect 
ratio. Figure 4 demonstrates the point set (marked by circles) 
corresponding to a point (marked by x).  
 

 
 
Figure 4: Corresponding points (marked with circles) are 
related to an arbitrary image point (marked by large ‘x’). 
 
After this preprocessing every point will have several probable 
corresponding point-pairs. However, several outliers remain, 
thus we have to use all points to determine vanishing points and 
an estimation about horizon.  
 
3.3 Error Propagation 

An initial guess about the horizon can be computed using the 
height information of corresponding points to an arbitrary point 
j: 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Using vertical size information to get the horizon ( ˆ

jl ) 

and vanishing points 
,ˆ j ia . The 2D point 

jp  is an arbitrary 

image point, while 
,1jc  and 

,j ic  are two samples for 

corresponding points determined in the previous section. 
 
To simplify the further computations the transformation 
between height information and the 2D image plane is 
necessary. We have to compute point coordinates in the ground-
plane, as it is demonstrated in the following figure. 
 
 
 
 
 
 
 
 
 
 
Figure 6. Determination of a vanishing point, which in ideal 
case lies in the horizontal vanishing line (horizon). The task 
may be summarized as the computation of d̂  taking into 
account the inaccuracy of height measurements. 

ˆ
jl : horizon 

jp

,1jc
,j ic

ˆ
jh

1̂h
îh

,1ˆ ja

… 
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2 ,1j jx p= = −p c

2 1ĥ h=
1̂ jh h=

Ground-plane: 0y =

d̂
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2̂h
1̂h

d̂

 
The determination of d̂  without uncertainty comes from 
elementary algebra: 
 
 2

1
1 2

ˆ ˆ
ˆ ˆ

pd h
h h

=
−

   (12) 

 
To derive a formula which contains the uncertainty – based on 
the method described in (Ji and Xie, 2003) – we define the 
relationship between the input and the output quantity in an 
implicit form. For this scheme we define the ideal input vector 
X  and the observed vector X̂ . The ideal parameter vector 
Θ  and the observed Θ̂ , respectively. The Θ̂  and X̂  are 
related through an optimisation function ( ).F , and Θ̂  is 

determined by minimising ( )ˆˆ ,F X Θ . In this phase of our 

method the input measurements are height information about 
the objects, while the output is the estimated position of the 
intersection of ground plane and the line through points 

( )1̂0 , h  and ( )2 2
ˆ,p h , see figure 6. This line-plane 

intersection determines one point, accordingly the input vector 
is 
 
 

1 2
ˆ ˆˆ ,h h⎡ ⎤= ⎣ ⎦X    (13) 

 
and the observation is 
 
 ˆˆ d⎡ ⎤= ⎣ ⎦Θ     (14) 

 
The analytic curve function expressed as 
 
 

( ) ( ) ( )1 2 2 1
ˆ ˆ ˆ ˆˆˆ , 0F h p d h p d= − − − =X Θ  (15) 

 
Error propagation relates the uncertainty of input measurements 
to the perturbation of Θ̂ . Let 

X∆Σ be the covariance matrix of 
measurements: 
 

 
2

2

0
0

X
X

X

σ
σ

∆
∆

∆

⎡ ⎤
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⎣ ⎦

Σ   (16) 

where 
 

 
2 2

2

2
j kh h

X

σ σ
σ ∆ ∆

∆

+
=   (17) 

 
Based on the covariance propagation theory (Haralick, 1994), 
we have  
 

 
1

22
T

X
gσ

−

∆Θ ∆

⎡ ⎤∂⎛ ⎞= ⎢ ⎥⎜ ⎟∂⎝ ⎠⎢ ⎥⎣ ⎦
Σ

Θ
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where ( ),g∂
∂
X Θ
Θ

 is defined as 
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2 2
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F F
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Thus, we have 
 

 ( )
( )

2
2

22 2
4

2 1

ˆ ˆ

ˆ ˆX

p d d

h h
σ σ∆Θ ∆Θ ∆

− +
= =

−
Σ  (20) 

 
The result is illustrated in the following figure. 
 

 
 
 
 
 
 
 
 

Figure 7. Simulation of error propagation from input data 
(height estimations) into 1D position coordinate. The two 
uncertainty heights are used to determine the intersection of line 
through these points and the x axis. The formula for uncertainty 
of this intersection was expressed by (20). 
 
Finally, we have to convert the result of (20) into the 2D image 
plane. This conversion can be accomplished by constructing a 
2D covariance matrix: 
 

 
,

2 0
0 0j i

T
V P

σ ∆Θ
∆

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
Σ U U   (21) 

 
where U  is the matrix of eigen-vectors (Note that, 

T =U U I .): 
 

 an d  , 0i
i i

i

⎡ ⎤
= =⎢ ⎥
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v
U v v

v
 (22) 

 
with eigen-vectors formed from the unit length vector through 
points 

jp  and 
,j ic : 

 

 ,

,

j i j
i

j i j

−
=

−

c p
v

c p
   (23) 

 
While the centroid (position of vanishing point defined by 
points j and i) is determined from the estimated distance d̂  
along the line with direction 

iv : 
 
 

,
ˆˆ j i j i d= +a p v    (24) 

 
Thus, we have the formula for probability density of 
measurement noise: 
 
 ( ) ( ),, , , ,ˆ ˆ , ,

j ij i j i j i j i V PP ∆= Νa a a a Σ  (25) 
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3.4 Conversion into Hough-space 

After the evaluation of the error propagation formula to every 
corresponding point pair we will have several uncertain 2D 
point coordinates. These estimations represent an initial guess 
about horizon, since the inliers of the data-set lie in the horizon. 
This line estimation problem is well known and there are 
several approaches to solve it in various cases: e.g. least squares 
(LS), total least squares (TLS) and Hough transformation 
(Kiryati and Bruckstein, 2000; Nguyen et al., 2005). 
In short, our case has the following special properties: 

1. Error in both coordinates in the 2D plane (x and y). 
2. There is correlation between the noise in the two 

coordinates. 
3. The noise covariance matrices are different for 

different data points (heteroscedastic noise). 
4. Notable amount of outliers can be found in the data-

set. 
Because of these specific characteristics the line fitting is 
viewed as a global optimisation procedure. Generally, there is 
no analytic solution for the cases of heteroscedastic and 
correlated noise, where we assume that the noise in x is 
correlated to the noise in y, furthermore, the variance of the 
noise is not identical for all data points. Heteroscedastic 
regression problem in computer vision is studied in (Kiryati and 
Bruckstein, 2000). Both LS and TLS methods fail when the 
data-set contains outliers. Line fitting on such data-set needs a 
robust estimator, for survey see (Nguyen et al., 2005). The 
Hough transform is an effective and popular way for line-fitting 
(Duda and Hart, 1972). In the standard version, an accumulator 
array is used to collect the points which lie along the same line. 
The line is parametrized by ( ),θ ρ : 

 
 ( ) ( )co s sinx yρ θ θ= +   (26) 

 
In this section the error propagation will be continued, and an 
optimal line parameter has been determined by using non-linear 
optimisation procedure. Because the Hough transformation 
generates sinusoidal voting patterns in the parameter space we 
will not use the same error propagation formula as in the 
previous section. In the end of the section a simple formula for 
the error estimation in the parameter space will be given. 
Let 2D point ( ), ,j i i ix y=a  be the unknown accurate 

position of the ith vanishing point introduced in the previous 
section. The measurements are ( ),ˆ ˆ ˆ,j i i ix y=a  based on the 

error propagation formula. Due to noise, 
, ,ˆj i j i≠a a . The 

probability density of measurement noise is modelled as a 2D 
heteroscedastic Gaussian, with correlated noise in formula (25). 
We define the line-fitting task as finding the maximum of the 
objective function: 
 
 

( )
( ) ( ),,

ˆ a rg m axj g i j i
i

P C
θ ρ∈

= ∑l
l p l  (27) 

 
where the maximum value of probability (25) along the line l  
is defined by: 
 
 ( ) ( ), ,m axj i j iC P

∈
=

u l
l u a   (28) 

 
(This line is also parametrized by ( )ˆˆ ˆ,j j jθ ρ=l  .) 

The optimum value is determined by unconstraint non-linear 
optimisation of (27), the initial estimate is given by LMS 
method. The introduced formula handles the outliers, thus there 
is no need for robust M-estimator, where the error expressions 
are replaced by some saturation function (Nguyen et al., 2005). 
We note that, the computation of (28) is simple; it has analytic 
solution, see (Kiryati and Bruckstein, 2000) for details. Since 
the residual outliers cause an error in line-fitting, we define the 
error in line-fitting with a 2D Gaussian: 
 
 ( ) ( )ˆ ˆ , ,

jj j j j V LP ∆= Ν Σl l l l  (29) 

 
where the covariance matrix is defined as 
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∆

⎡ ⎤⎛ ⎞∆
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The notations are detailed in the following figure. 
 
 
 
 
 
 
 
 
Figure 8. Demonstrating the parameters for the expression of 
line-fitting error (see (30)) in parameter space. 
 
The function ( ).d ⊥

 computes the distance between the line 

jl  and point 
,j ia , while the expected value denoted by ( ).E . 

Thus, the guess about the horizon at point j is determined by 
(29) which describes uncertainty in the parameter space (2D 
Hough-space). 
 
3.5 Final optimization procedure 

The estimation about the horizon and the estimation error are 
attached to several points in the image, as we have introduced it 
in the previous sections. The accurate determination of horizon 
is carried out in parameter space using all estimations: 
 
 

( )
( ) ( )

,
a rg m axh g i i

i

P P
θ ρ∈

= ∑l
l p l l  (31) 

 
It has been fulfilled with the same optimisation technique as in 
previous section. The following figure displays the 2D 
parameter space which has been filled with numerically 
computed values of (31). 
 

 
a) 

jl

,1ja
,j ia( ), ,j i jd ⊥ a l

( )( ), ,Y j i ji
l E d ⊥∆ = a l

Xl∆
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b) 

Figure 9: The lower picture in b) depicts the Hough space of 
indoor, while the upper relates to outdoor scene, respectively. 
 

4. EXPERIMENTAL RESULTS 

We performed a practical evaluation of the method in which 
both indoor and outdoor videos were used as input. The 
parameters introduced in the previous sections are assigned the 
following values in empirical fashion: 

1 0 .8σ = and 

2 1 .25σ =  in (10), while 10α =  in (11). To determine the 

binary motion mask ( ( ),m t x ) a motion-detection method was 

used which is based on the background model introduced by 
Stauffer (Stauffer et al., 2000). 
The manual extrapolation of the vanishing line is a difficult 
task, because: i) there are not enough static features for accurate 
alignment; and ii) the objects are usually too small in case of 
outdoor images. The outdoor video used for testing shows not 
only pedestrians, but cars as well; this is why the parameter 
configurations (distance and orientation of the horizon line) in 
Hough space show scatter, see figure 9a. The deviation from 
optimal parameter values is much smaller in indoor case, see 
figure 9b.  
The results demonstrated by straight line in 2D coordinate 
space after final optimisation of Hough space are displayed in 
figure 10. 
 

  
 
Figure 10: Horizon computation in indoor and outdoor videos. 
 

5. DISCUSSION 

 
An approach for the determination of geometric scene property, 
namely the horizontal vanishing line (horizon) in image 
sequences has been introduced. The simple motion statistics are 
the novel feature used as a basis for estimation of average shape 
for every point in the image, which provides the necessary 
height information for the estimation of VPs and finally for the 
determination of horizon. 
We have shown that using the proposed algorithm it is feasible 
to compute the horizon with good accuracy even from a real-
life noisy data set which contains several outliers. The proposed 

approach executes two statistical parameter optimization steps 
by using the benefits of error propagation formula. 
In future work, we intend to investigate the estimation of 
vertical vanishing point to accomplish camera calibration task. 
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ABSTRACT: 
 
A methodology for the automatic adaptation of object models consisting of parallel line-type objects parts to a lower image 
resolution was developed previously. This paper aims at the verification of this algorithm and describes the verification process. The 
verification is supposed to allow a statement whether the automatically adapted object models produce satisfying object extraction 
results and are as useful for image analysis in the lower resolution as the original model is in high resolution. 
For this purpose, an example system was created comprising the automatic adaptation of a given object model for road extraction to 
several lower image resolutions as well as the implementation of the original and the adapted object models in a knowledge-based 
image interpretation system. The paper illustrates the results of the object extraction with the adapted object models and comments 
on the comparison of these results. At the end of the paper, conclusions concerning the success of the automatic scale-dependent 
adaptation algorithm are drawn from the verification results. 
 
 

1. INTRODUCTION 

Due to the varying appearance of landscape objects in different 
image resolutions, an already existing model for image analysis 
can usually not be used for the extraction of the same object in 
another resolution. Hence, several models need to be created for 
the extraction of a landscape object, although the information, 
how that object looks like in a lower resolution image is already 
implicitly contained in the model for the highest spatial 
resolution. This can be assumed, as objects can loose some 
details in lower resolution images, but usually no new details 
are added. 

The automatic generation of image analysis models for the 
extraction of landscape objects in aerial and satellite images is a 
crucial issue of research, as it can reduce tedious manual work 
[Mayer04]. Methods for the automatic adaptation of image 
analysis models consisting of parallel line-type object parts to a 
lower image resolution were developed in order to facilitate the 
redundant work of object model creation for lower resolutions 
[Heller&Pakzad05]. A similar algorithm is known in 
cartography as model generalisation [Sester01]. Generalisation 
is carried out according to cartographic rules in order to adapt a 
symbolic appearance of objects in maps in different scales; the 
algorithm for model adaptation to be verified here, however, 
requires the prediction of the object’s geometric and radiometric 
appearance in images of reduced resolution.  

In the remainder of this paper, the image analysis models to be 
adapted are called “object models”, while they not only describe 
the relations of the object parts among each other, but also their 
appearance in the image. According to the categorisation of 
models given in [Förstner93], the models adapted here integrate 
both the object model and the image model. The processed 
object models use the explicit type of representation of semantic 
networks. In order to enable an automatic adaptation, the object 
model to be adapted needs to fulfil certain requirements 
[Pakzad&Heller04]. The developed methods use for the 
prediction of the appearance of the object in a lower image 
resolution the concepts of linear scale-space theory, e.g. 

[Witkin86], [Lindeberg94]. The automatic algorithm for the 
scale-dependent adaptation of object models represents a new 
approach for the automatic creation of models in image 
analysis. Up to now, these methods have not been tested 
extensively on aerial image data and therefore the new 
adaptation algorithm could not yet be approved sufficiently. The 
work presented in this paper strives for the verification of the 
developed methodology. 

In an example system an object model for the extraction of a 
dual carriageway in very high-resolution images is implemented 
in the knowledge-based image interpretation system GeoAIDA 
[Bückner02], [Pahl03]. The model is automatically adapted with 
the developed methods to three lower spatial resolutions. The 
adapted object models are also implemented in GeoAIDA and 
its extraction results are compared to the results, which were 
gained with the given object model for the high resolution. For 
the comparison aerial images of a suburban region are used.  

Section 2 gives a short summary of the strategy and the 
methodology of the adaptation algorithm. The concept used 
here for the verification is described in section 3. The example 
system including the implementation of the example object 
model in GeoAIDA and three automatically adapted object 
models to lower resolutions is presented in section 4. Section 5 
compares the extraction results of the original object model and 
the adapted object models. Conclusions from the results of the 
verification are derived in section 6.  
 
 

2. STRATEGY AND METHODOLOGY FOR SCALE-
DEPENDENT ADAPTATION 

2.1 Strategy 

The general strategy for the automatic adaptation of object 
models can be divided into three main steps that enable the 
separate scale-space analysis of object parts for the prediction of 
their scale behaviour while scale changes (cf. Fig.1).  
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Figure 1. Strategy for Scale-Dependent Adaptation 

With knowledge of the target scale, the original object model 
for high spatial resolution is at first decomposed into object 
parts with similar scale change behaviour and in neighbouring 
object parts that interfere each other’s appearance in the coarser 
scale. These groups of object parts are then analyzed separately 
regarding their scale behaviour. Their appearance in the lower 
target resolution is predicted by so-called scale change models. 
At last, all predicted objects are composed back to a complete 
object model, suitable for the extraction of that object in images 
of the lower target resolution. 

 
2.2 Methodology 

The methodology to be verified here carries out the adaptation 
of a given object model created for a certain image resolution to 
a coarser resolution in an automatic algorithm. The automatic 
methods are based on linear scale-space theory, as the reduction 
of spatial resolution is a matter of scale change. The analysis is 
undertaken in scale-space to examine the appearance of object 
parts in the target resolution. The adaptation process takes into 
account discrete scale events, which may appear during scale 
change and affect the structure of the resulting semantic net. For 
parallel line-type object parts two scale events are relevant: 
Annihilation (disappearance of objects) and Merging (one or 
more objects merge into a single object). Besides the scale 
events, the scale change models automatically predict the 
resulting attribute values of the object parts in the target 
resolution as well, thereby adapting the description of the 
appearance of the object parts in the lower resolution image. 
The adapted attribute values serve then as new adjusted 
parameters for the feature extraction operators in the target 
resolution. For a detailed insight into the developed methods, 
please see [Heller&Pakzad05]. 
 

 
3. VERIFICATION CONCEPT 

A verification of the new methods can 
decide on the success and usefulness of 
the developed adaptation algorithm. 
Thus, the verification method used here 
not only has to allow a statement on 
whether the extraction of the object in 
the respective lower resolution utilising 
the adapted object model is possible at 
all, but also on how well the prediction 
of the objects’ appearance in the target 
resolution is done with the developed 
algorithm. As the adaptation process 
naturally changes the object model, a 
direct comparison of the given model 
with the adapted model is not 
reasonable. Rather the extraction results 
of several adapted object models gained 

in the respective lower resolutions with the extraction result of 
the original object model are considered here for verification. 

The concept of the verification method applied here is depicted 
in Fig.2. With both the original model for the high resolution 
and the adapted object model for the lower resolution the image 
analysis is carried out on image data with corresponding spatial 
resolution. In order to ensure comparability of extraction results, 
it is reasonable to derive the image data utilised for the 
extraction in lower resolution from the same image scene in 
high resolution, which is simultaneously used for the extraction 
of the object with the given high-resolution object model. For 
this purpose, the image data of the high resolution are at first 
filtered with a Gaussian low-pass filter in order to avoid aliasing 
and subsequently down-sampled to the desired spatial resolution 
by bilinear transformation. The obtained extraction results in 
both resolutions are then compared to each other. To gain better 
insight about possible insufficiencies of the automatic 
adaptation process, the verification is here carried out by 
incorporating both the whole object and the object part results. 

Completeness and correctness regarding the extraction output 
are used here in the comparison process as a measure for the 
success of the adaptation methodology. The result of the 
extraction applying the given object model in the high 
resolution serves as reference data set, i.e. this extraction 
outcome represents 100% for both completeness and 
correctness. By comparing the results of the extraction with the 
automatically adapted object models in the corresponding image 
data to the reference data, only the quality of the adaptation 
algorithm is evaluated. In contrast, the image analysis capability 
of the adapted object models in regard to an extraction reference 
set created manually from an aerial image is not subject of this 
study. The quality of the target object extraction, however, is 
clearly specified by the high resolution object model itself, 
which is not verified here. 

Because the structure of the object model can change in the 
adaptation algorithm due to the occurrence of scale-space 
events, the comparison including object parts is not straight 
forward. The comparison method of the extraction results in 
different resolutions needs to consider possible scale events. 
Generally, the occurred difference can have three main origins. 
The first is the occurrence of scale events, which can easily be 
explained by a difference in the structure of the object models, 
as the scale event should also have been predicted in the 
adaptation process and therefore be inherent in the adapted 
object model for the low resolution. Another reason for an 
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extraction difference could be the inconsistent performance of 
the feature extraction operators that are assigned to the object 
parts. The feature extraction operators carry out the extraction 
of the object parts and could prove less successful or even fail 
completely in the lower resolution. In a third scenario, the 
adaptation of the object model to the coarser scale is incorrect. 
In this case, the automatic adaptation methodology is erroneous. 
It is then tried to enhance the quality of the adaptation algorithm 
by searching for the problem in the methodology and resolve it 
to obtain a sufficient adaptation result. The verification is then 
repeated. With this loop the adaptation algorithm is improved. 
  
 

4. EXAMPLE SYSTEM 

4.1 Input Data 

4.1.1 Image Data 

For the verification process high-resolution aerial image data of 
a suburban region near Hanover, Germany were used. The 
images were digitised to 0.033m spatial resolution. In order to 
ease the verification process and to make its documentation 
more clear, the images were transformed from colour (RGB) to 
grey value images. Fig.3 displays the three test images that have 
been used for the verification. Whereas the first image is 
relatively simple, the other two images display a curved road 
and contain disturbances that hinder the extraction of the object 
parts, e.g. shadows and a non-permanent road work marking, 
which is not contained in the given example object model as a 
neighbouring line in the vicinity. 

     
Figure 3. Example Images in 0.033m/pel 

 
4.1.2 Example Road Model 

The example object model for the high resolution was created 
manually for a dual carriageway in images of 0.03-0.04m 
resolution. Fig.4 displays the given original object model for the 
high resolution, serving as a starting point for the automatic 
adaptation. The semantic net is composed of the roadway itself 
and the road markings, forming nodes, which are part of the 
road. The uppermost node “roadway” is modelled here as a 
continuous stripe with a certain grey value and extent, i.e. width 
of the line-type object. The road markings are either of object 
type periodic stripe or continuous stripe. A periodic object 
describes lane markings, which appear as dashed lines in the 
image. The nodes not only contain the respective object type, 
but also values for the attributes grey value, extent and 
periodicity. The specification of the spatial relations and the 
distances between the object parts are essential for the scale-
dependent adaptation process. The distance d corresponds to the 
width of a single lane. All nodes of the net are connected to 
appropriate feature extraction operators. 

The original example object model was adapted with the 
automatic algorithm to be verified to a spatial resolution of 
0.10m. This scale change corresponds to a scale parameter 
σ=1.0. In the adaptation a scale event was predicted – the 
Merging of the two central continuous line markings to a single 
line. Although in the grey value profile there are still two 

rig
ht

-o
f 

[d
=3

.2
0m

]

rig
ht

-o
f 

[d
=3

.2
0m

]

Legend:

spatial relation
[Distance d]

Roadway
Cont.Stripe

gv=70
ext=13.00m

p=1

Object Part Name

Object type
Gray Value gv

Extent ext
Periodicity p

Edge Line 
Left

Cont.Stripe
gv=170

ext=0.17m
p=1

Lane Marking 
Left

Periodic Stripe
gv=170

ext=0.17m
p=0.5

Lane Marking 
Right

Periodic Stripe
gv=170

ext=0.17m
p=0.5

Edge Line 
Right

Cont.Stripe
gv=170

ext=0.17m
p=1

le
ft-

of
 

[d
=3

.2
0m

]

Central 
Line Left

Cont.Stripe
gv=170

ext=0.17m
p=1

le
ft-

of
 

[d
=3

.2
0m

]

Central 
Line Right
Cont.Stripe

gv=170
ext=0.17m

p=1

rig
ht

-o
f 

[d
=0

.1
2m

]

part-of part-of part-ofpart-ofpart-ofpart-of

Feature Extraction

Figure 4. Original Object Model for Dual Carriageway in 0.03m/pel 

175



 

rig
ht

-o
f 

[d
=3

.1
4m

]

rig
ht

-o
f 

[d
=3

.1
4m

]

Roadway
Cont.Stripe

gv=70
ext=13.00m

p=1

Edge Line 
Left

Cont.Line
gv=165

ext=0.20m
p=1

Lane Marking 
Left

Periodic Line
gv=165

ext=0.20m
p=0.5

Lane Marking 
Right

Periodic Line
gv=165

ext=0.20m
p=0.5

Edge Line 
Right

Cont.Line
gv=165

ext=0.20m
p=1

le
ft-

of
 

[d
=3

.1
4m

]

le
ft-

of
 

[d
=3

.1
4m

]
Central 

Line
Cont.Line
gv=165

ext=0.46m
p=1

part-of part-of part-ofpart-ofpart-of

Feature Extraction

Figure 5. Adapted Object Model for Dual Carriageway 0.10m/pel 

distinct maxima present, these two adjacent lines cannot be 
distinguished reliably from each other anymore in an image 
resolution of 0.10m by the line extraction operator. 
Furthermore, the values for the attributes are adjusted due to the 
slightly different appearance of the object parts (road markings) 
whose type now changed from stripes to lines in the lower 
resolution image. The lines appear wider and with less contrast 
in the images of the lower resolution. The resulting object 
model for the extraction of the example road in 0.10m 
resolution images is depicted in Fig.5. 

In the scale-dependent adaptation to 0.20m no further scale 
event were confirmed. However, the central lines now exhibit a 
definite Merging with only a single maximum in the grey value 
profile left. The attribute values for grey value and extent of the 
object parts are adjusted here as well (cf. Fig.6).  

As a last target resolution for the verification 1.00m was chosen. 
For this resolution the adaptation algorithm predicted the failure 
of the operator for lane markings, resulting in another scale 
event – the Annihilation of the lane markings. The structure of 
the semantic net has been altered here significantly with only 
three extractable road markings left, as can be seen in Fig.7.  
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4.2 Concept of GeoAIDA 

The knowledge-based image interpretation system GeoAIDA 
was developed at the Institute of Communication Theory and 
Signal Processing (TNT) at the University of Hannover and 
represents a tool for image analysis incorporating a priori 
knowledge in form of semantic nets [Bückner02]. Hypotheses 
for the existence of the object parts in the semantic net are 
generated and evaluated in the extraction process. GeoAIDA 
applies Top-Down- and Bottom-Up-operators. After generating 
the hypotheses, for each object part the corresponding Top-
Down-operator is called, extracting from the input image data 
the respective object part by image processing algorithms. The 
output of the Top-Down-operators is then evaluated and 
grouped to superior objects by the Bottom-Up-operators. For 
verified hypotheses an instance net with label images for the 
corresponding instance nodes is created. 
 
4.3 Implementation of the example object model 

In the example system the Top-Down-operators carry out the 
extraction of the road markings, which are modelled as object 
parts in the example road model. The operators extract edge 
lines and central lines as continuous lines and lane markings as 
dashed lines. The operators use the line extraction algorithm of 
Steger [Steger98], followed by the evaluation and fusion of 
lines according to [Wiedemann02]. The algorithm of 
Wiedemann was adapted to the special requirements of the 
extraction of road markings in high-resolution images 
[Schramm05]. Ingoing parameters for the road markings 
extraction are width and contrast of the lines in the image. The 
operators were designed very flexible in regard to the setting of 
the parameters, allowing the adjustment of parameters in 
accordance with varying width and contrast of the markings in 
different image resolutions.  
 
The Bottom-Up-operators group the extracted lines and evaluate 
the instances concerning the hypotheses from the semantic net. 
At first the operators select from the results of the Top-Down-
operators those lines with the appropriate attribute values that fit 
to the ones assigned in the nodes of the semantic net. The lines 
are then tested for their spatial relations, also considering their 
distances to each other. Instances fulfilling all the conditions of 
the relations of the object parts determined in the semantic net 
are subsequently grouped to a superior object. This superior 
object is grouped again with appropriate line instances, if the 
spatial relation to that line is satisfying. This grouping is 
repeated until all hypotheses for the object parts (road 
markings) are evaluated. If all hypotheses were accepted, the 
extraction of the road in the examined image is successful and 
GeoAIDA creates the label images with the instance nodes.  
 
 

5. RESULTS 

5.1 Reference Data Set 0.033m 

The extraction result obtained with the original object model in 
the cut-out of the example image set serves as reference for the 
verification of the adaptation algorithm in the example system. 
The extraction of all relevant road markings with the Top-Down 
operators in the example image was successful. All road 
markings were grouped by the Bottom-Up operators according 
to the spatial relations assigned in the given object model for 
0.033m image resolution. Fig.8 depicts the result of the object 
extraction with the road markings operators. 

     
Figure 8. Extraction Results in 0.033m/pel – Reference        

(white: edge lines, black: lane markings) 
 
5.2 Extraction Results 0.10m 

The extraction of the road markings in 0.10m resolution was 
carried out with adjusted parameter values for contrast and line 
width taken from the adapted object model. All relevant road 
markings were found and the grouping was successful. In 
comparison to the reference data set all object parts were 
extracted correctly, taking into account the scale event Merging 
of the central line. The central line was extracted with the edge 
line operator, but with a different line width parameter taken 
from the adapted model. The correctness achieved 100% for this 
target resolution. In contrast, the extraction of the right edge line 
was not complete in the second image in shadowed image 
regions. 
 

     
Figure 9. Extraction Results for 0.10m/pel (white/blue: central 

line, white/red: edge lines, black: lane markings) 
 

5.3 Extraction Results 0.20m 

In 0.20m resolution not all the object parts could be extracted 
100% completely and correctly with the predicted attributes for 
contrast and width. The operators had problems in shadow 
regions and for the left dashed lane marking with the adjacent 
continuous road work marking in the second and third test 
image. However, the grouping of the road markings was still 
successful with the adapted distances between the object parts. 
 

     
Figure 10. Extraction Results for 0.20m/pel 

 
5.4 Extraction Results 1.00m 

For a resolution of 1.00m the predicted entire failure of the lane 
marking operator is confirmed, although there is still a dashed 
line with small contrast in the image existent. This Annihilation 
was predicted correctly by the adaptation algorithm. Due to 
shadows and low contrast the operator for continuous lines is 
not successful for all the edge lines in the first two example 
images (cf. Fig.11). Therefore, not all hypotheses could be 
verified by the Bottom-Up operators and subsequently the 
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object dual carriageway could not be extracted successfully in 
these two example images with the feature extraction operators 
used for a resolution of 1.00m/pel. In the third image all 
remaining lines were extracted, thereby proving the adaptation 
algorithm also for 1.00m to be correct. 
 

     
Figure 11. Extraction Results for 1.00m/pel (enlarged) 

 
5.5 Comparison to high resolution extraction results 

For the comparison of the extraction results of the lower image 
resolutions the difference to the reference data set is of interest. 
In order to estimate the quality of the automatic adaptation the 
percentage of the difference to the reference set is determined. 
Table 1 reflects the completeness and correctness values for all 
object parts in the adapted object model for the three target 
resolutions. Due to degraded contrast and context objects the 
completeness suffered in some image regions. The insufficient 
extraction result regarding completeness for the third examined 
target resolution of 1.00m can be accounted to the limit of the 
usability range of the applied feature extraction operators,  
which can be reduced by disturbing influences, such as shadows 
or insufficient contrast. This usability range therefore 
simultaneously defines the scale change limit for the 
adaptability of the given object model with its assigned feature 
extraction operators. 
 

 0.10m 0.20m 1.00m 
Completeness    97%   96%   60% 
Correctness 100%   90% 100% 

Table 1. Completeness and Correctness of extraction results for 
object parts with adapted object models in target resolutions 
 
 

6. CONCLUSIONS AND OUTLOOK 

A method for the verification of a previously developed 
algorithm for the automatic adaptation of object models was 
presented, enabling the assessment of the success of the 
developed algorithm. The results of the verification lead to the 
conclusion that an automatic scale-dependent adaptation 
exploiting linear scale-space theory is generally possible. The 
prediction of scale events of object parts occurring during scale 
change could be confirmed being correct by the verification 
process. In the verification process the tested algorithm can be 
improved, correcting unforeseen shortcomings. 

The verification results also revealed the sensitivity of the 
adaptation algorithm to the assigned feature extraction 
operators. The assigned feature extraction operators in the 
original object model should be easily adaptable to another 
resolution by parameters corresponding to the attributes in the 
nodes of the adapted object model. Otherwise, the operators 
might fail already for a relatively small change in image 
resolution. This flexibility is desirable in order to enlarge the 
range of image resolution, for which the adaptation with the 
examined methodology will be successful. The performance of 
the operators can also be degraded or even lead to a complete 
failure to extract the object due to disturbances in the images, 
such as shadow or local context objects. This limitation could 
be overcome by extending the adaptation algorithm in regard to 
the incorporation of local context in the adaptation process. This 
algorithm extension is therefore a goal for the near future. 

For further future tasks, a test of the algorithm for satellite 
image resolution (up to 5m) is intended by using the feature 
extraction operators of the continuous road markings for the 
extraction of the roadway, as roads possess the same object type 
in satellite images. 
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ABSTRACT: 
 
Traditionally, an unsupervised classification divides all pixels within an image into a corresponding class pixel by pixel; the number 
of clusters usually needs to be fixed a priori by a human analyst. In general, the spectral properties of specific information classes 
change with the seasons, and therefore, the relation between object class and spectral cluster is not constant over time. In addition, 
relations for one image can in general not be extended to others. Thus, even if the number of clusters is correctly fixed for one image 
at one instance in time, the results cannot be transferred to other areas or epochs. 
In this study, a heuristic method based on Genetic Algorithms (GA) is adopted to automatically determine the number of cluster 
centroids during unsupervised classification. The optimization is based on the Davies-Bouldin Index (DBI). A software programme 
was developed in MATLAB, - and the GA unsupervised classifier was tested on an IKONOS satellite image. The classification 
results were compared to conventional ISODATA results, and to ground truth information derived from a topographic map for the 
estimation of classification accuracy. 
 
 

                                                                 
*  Corresponding author. The research reported here was carried out in 2005 and 2006 while Y.F. Yang was with the Institute of 

Photogrammetry and GeoInformation, Leibniz University of Hannover. 

1. INTRODUCTION 

1.1 Background on unsupervised classification 

Image classification, including supervised and unsupervised 
classification, is an established analytical procedure of digital 
image processing (Lillesand and Kiefer, 2000). Supervised 
classification procedures require a human analyst to provide 
training areas, which form a group of pixels with known class 
label, so as to assemble groups of similar pixels into the correct 
classes (Avery and Berlin, 1992). In comparison, unsupervised 
classification proceeds with only minimal input. An 
unsupervised classification divides all pixels within an image 
into a corresponding class pixel by pixel. Typically, the only 
input an unsupervised classification needs is the number of 
classes of the scene. However, this value is usually not known a 
priori. Moreover, the spectral properties of specific classes 
within the images can change frequently and the relationships 
between the object classes and the spectral information are not 
always constant, and once defined for one image cannot 
necessarily be extended to others. Supervised and unsupervised 
classification suffers from these drawbacks. 
Heuristic unsupervised classification works by establishing 
some mathematical model and then optimising a predefined 
index to determine the cluster numbers and centroids 
automatically. Heuristic optimization processes, therefore, are 
seen as a repeatable, accurate, and time-effective method to 

classify remote sensing imagery automatically, which is the 
main objective of this research. Genetic algorithms (GA) 
constitute one possibility for heuristic unsupervised 
classification. GA -have already been adopted successfully in 
image processing (Kawaguchi, et al., 1997), and image 
recognition for some special purposes such as medical 
treatment or criminal offence investigations (Caldwell and 
Johnston, 1991; Yang, et al., 2000). In this study, GA is 
adopted to determine number of cluster centroids of an image 
for use in unsupervised classification. 
 
1.2 Status of research applying genetic algorithms  

Genetic algorithms, introduced by John Holland in 1975 (Coley, 
1999; Pham and Karaboga, 2000), are numerical optimisation 
algorithms inspired by the nature evolution process and directed 
random search techniques. In many fields, such as the analysis 
of time series, water networks, work scheduling, and facial 
recognition, GA have been successfully applied (Coley, 1999; 
Rothlauf, 2006). In 1975, De Jong (1975) executed a number of 
tests to study the effect of the various control parameters 
concerning the performance of GA. In this research, suitable 
values were defined, such as population size, crossover 
probability, and the mutation probability (Pham and Karaboga, 
2000). In 2001, Bandyopadhyay and Maulik (2001) applied GA 
to cluster different man-made experimental point data sets and 
obtained very good results. 
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2. BASES OF GENETIC ALGORITHM  

The genetic algorithm is a method, which is suitable for solving 
an extremely wide range of problems (Coley, 1999). Recently, 
GA has been widely and successfully applied to optimization 
problems specifically in unsupervised classification of digital 
data sets (Ross, 1995; Bandyopadhyay and Maulik, 2002). The 
following sections describe the general operation of GA.   
 
2.1 Chromosome representation 

In GA applications, the unknown parameters are encoded in the 
form of strings, so-called chromosomes. A chromosome is 
encoded with binary, integer or real numbers. Since multi-
spectral image data are usually represented by positive integers, 
in this research a chromosome is encoded with a unit (tuple) of 
positive integer numbers. Each unit represents a combination of 
brightness values, one for each band, and thus a potential 
cluster centroid. 
The length of the chromosome, K, is equivalent to the number 
of clusters in the classification problem. K is selected from the 
range [Kmin, Kmax], where Kmin is usually assigned to 2 unless 
special cases are considered (Bandyopadhyay and Maulik, 
2002), and Kmax describes the maximum chromosome length, 
which means the maximum number of possible cluster centroids. 
Kmax must be selected according to experience.  
Without assigning the number of clusters in advance, a variable 
string length is used. Invalid (non-existing) clusters are 
represented with negative integer "-1". The values of the 
chromosomes are changed in an iterative process to determine 
the correct number of clusters (the number of valid units in the 
chromosomes) and the actual cluster centroids for a given 
classification problem. 
 
2.2  Chromosome initialization 

A population is the set of chromosomes. The typical size of the 
population can range from 20 to 1000 (Coley, 1999). In the 
following an example is given to explain the creation of an 
initial population: we assume to have a satellite image with 
three bands, Kmin is set to 2 and Kmax to 8. At the beginning, for 
each chromosome i (i =1, 2,…,.P, where P is the size of 
population) all values are chosen randomly from the data space 
(universal data set; here: positive integers). Such a chromosome 
belongs to the so-called parent generation. One (arbitrary) 
chromosomes of the parent generation is given here: 
 
-1    (110, 88, 246)    (150, 78, 226)    -1    (11, 104, 8)    (50, 
100, 114)    -1    (227, 250, 192) 
  
2.3 Crossover and Mutation 

2.3.1 Crossover:  The purpose of the crossover operation is 
to create two new individual chromosomes from two existing 
chromosomes selected randomly from the current population. 
Typical crossover operations are one-point crossover, two-point 
crossover, cycle crossover and uniform crossover. In this 
research, only the simplest one, the one-point crossover was 
adopted; the following example illustrates this operation (the 
point for crossover is after the 4th position): 
 
Parent1 :  -1  (110, 88, 246)  (150, 78, 226)  -1  (11, 104, 8)  
(50, 100, 114)  -1  (227, 250, 192) 
 

Parent2 :  (210, 188, 127)  (110, 88, 246)  -1  -1  (122, 98, 45)   
-1  (98, 174, 222)  (125, 101, 233) 
 
Child1 :  -1  (110, 88, 246)  (150, 78, 226)  -1  (122, 98, 45)  -1  
(98, 174, 222)  (125, 101, 233) 
 
Child2 :  (210, 188, 127)  (110, 88, 246)  -1  -1  (11, 104, 8)  
(50, 100, 114)  -1  (227, 250, 192) 
 
2.3.2 Mutation:  During mutation, all the chromosomes in 
the population are checked unit by unit and according to a pre-
defined probability all values of a specific unit may be 
randomly changed. An example explains this procedure; the 
bold-faced and italic units represent the result of the mutation.  
 
Old string:  (210, 188, 127)  (110, 88, 246)  -1  -1  (122, 98, 45)  
-1  (98, 174, 222)  (125, 101, 233) 
 
New string:  (210, 188, 127)  (97, 22, 143)  -1  -1  (122, 98, 45)  
-1  (98, 174, 222)  (125, 101, 233) 
 
2.4 Indices identification 

Based on crossover and mutation the chromosomes, once 
initialised, iteratively evolve from one generation to the next. In 
order to be able to stop this iterative process, a so-called fitness 
function needs to be defined to measure the fitness or 
adaptability of each chromosome in the population. The 
population then evolves over generations in the attempt to 
maximize the value of fitness, also called index. 
Previous research used different indices, such as distance, 
separation index, Fuzzy C-Means, K-means, Davies-Bouldin 
Index (DBI), and Xie-Beni Index (XBI), as criteria to determine 
the best clustering (Ross, 1995; Bandyopadhyay and Maulik, 
2002). Here, the DBI was adopted, because it is not as complex 
as fuzzy C-Means and one can obtain better results than with 
some other indices as shown using simulated data 
(Bandyopadhyay and Maulik, 2002; Yang and Wu, 2001). For 
the reasons of comparison, we also used the ISODATA 
algorithm. 
 
 

3. METHODOLOGY 

 
3.1 GA application of unsupervised classification 

In the following paragraphs we explain the application of GA 
within unsupervised classification of satellite imagery. In 
particular, each GA procedure (such as reproduction, crossover, 
and mutation) is described.  
 
3.1.1 Parent generation and population size:  This 
procedure is an operation to produce the cluster centroids 
including the initial cluster centroids, which are selected 
randomly. This step is identical to the example given above. 
The range [Kmin, Kmax] equals [2, 8]. Two population sizes were 
used in or research: 40 and 100. 
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3.1.2 Crossover:  Crossover is considered, according to the 
crossover probability, for example, if there are 100 
chromosomes (population size 100), and the crossover 
probability is 0.8, the best 80 chromosomes (according to some 
index) are chosen for the crossover pool. The next generation 
(the new 100 chromosomes) are then only produced from the 80 
old chromosomes of this pool.  
 
3.1.3 Mutation:  Mutation is a parameter for extending the 
search space; therefore, the time to reach a convergent solution 
increase with an increase of the mutation probability. 
According to the suggestion of Schaffer et al., in 1989 (Pham 
and Karaboga, 2000), the mutation probability is set to 0.005 
here. 
 
3.2 The Davies-Bouldin's Index  

In this research, the Davies-Bouldin index (DBI) is used to 
represent the fitness of a chromosome (Xie and Beni, 1991; 
Bezdek and Pal, 1998; Swanepoel, 1999; Martini and Schöbel, 
2001; Yang and Wu, 2001; Groenen and Jajuga, 2001). 
First, each pixel xn of the whole image is assigned to the nearest 
cluster centroid of the given chromosome, see Eq. (1): 
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where      xn = pixel n with grey values x (one for each band) 
                N = total number of pixels 
 uk = grey values of kth cluster centroid of the previous 

iteration (=generation) 
 K = total number of clusters 
 μkn = membership function of each pixel xn belonging  
 to the kth cluster 
 
Next, the average and the standard deviation for each cluster 
and for the current iteration are computed (Eq. (2) and (3), 
followed by determining the Minkowski distance between the 
clusters (Eq. (4))): 
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where vk = average value of kth cluster in the current iteration 
  Mk = the number of pixels belonging to the kth cluster  
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where Sk = standard deviation of the pixels in the kth cluster 
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where    dkj,t = Minkowski distance of order t between the kth 

and jth centroids. Here 2 has been chosen for t. 
 
Subsequently, the value Rk,t of the kth cluster can be computed 
as Eq. (5): 
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The DB value is then defined as the average of R for all clusters 
in the chromosome (Eq. (6)): 
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The goal for achieving a proper clustering is to minimize the 
DBI (Eq. (7)). Thus, the fitness function for chromosome j is 
defined as 1/DBj, which is equivalent to the clustering with the 
smallest inner-cluster scatter and the largest cluster separation. 
After calculating the DBI of each chromosome of a given 
population, the best chromosome is compared to the best one of 
the previous generation (iteration). The termination condition 
for the iterations is that the difference between these two values 
lies below a pre-defined threshold. If this condition is not met, 
the best chromosomes are selected into the crossover pool (see 
above) and a new iteration is started. The computations are also 
stopped once a maximum number of generations is reached. 
 
3.3 Influence of crossover and mutation probabilities 

There are five factors that influence the result of a GA 
algorithm: the encoding form (binary, real number and so on), 
the size of the initial population, the fitness function, the genetic 
operations (such as the one-point crossover, two-points 
crossover, etc.), and the probabilities for crossover and mutation 
(Pham and Karaboga, 2000). In this research, variations of the 
initial population size and the crossover probability are 
discussed. 
 
3.4 Image data, ground truth and error matrices 

For our research we used a multi-spectral IKONOS image. The 
image depicts Chandlers Ford in the U.K. and, was taken on 
2000/08/25 with 4 meters pixel size and 11 bits per pixel (see 
Figure 1). We used a subset with a total of 18330 pixels. A 
higher resolution map served as a reference for obtaining 
ground truth information.  
We measure classification success using the well-known criteria 
producer's accuracy or completeness (the number of pixels that 
are correctly assigned to a certain class divided by the total 
number of pixels of that class in the reference data) and user's 
accuracy or correctness (the number of pixels correctly 
assigned to a certain class divided by the total numbers of 
pixels automatically assigned to that class). 
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Figure 1. (a) The original IKONOS image; (b) The extracted 
IKONOS subset image; (c) Ground truth map superimposed on 

the subset image.  
 
 

4. ANALYSIS RESULTS 

In this section, we present the results of our research. The 
following parameters of the GA classifier were set:  
  

1. chromosome length          8 
2. single point crossover  
3. crossover probability        0.4 and 0.8 
4. population size                  40 and 100 
5. mutation probability          0.005 

 
In the ground truth data four distinct classes can be found: road, 
farmland, forest, and others. Figures 2 and 3 show the results 
with one colour per class: road in white, farmland in light green, 
forest in dark green, and others in yellow. The error matrices of 
the four experiments are shown in Tables 1 to 4. 
Compare Figure 2 (a) with Figure 2 (b) and Table 1 (a) and (b), 
when the population size increases, the overall accuracy 
increases from 49.1% to 69.8% and four instead of only three 
classes are found. The same effects are evident from Figure 3 (a) 
and 3 (b) and Table 2: the overall accuracy increases from 
54.4% to 71.1% and again four classes can be detected with a 
population size of 100. When comparing the effect of the two 
investigated parameters, it is clear that the population size is 
significantly more important than the mutation probability. 
With a few exceptions, most notably the completeness of roads, 
the producer’s and the user’s accuracy all increase when 
increasing the population size. 
As a reference, Figure 4 and Table 3 depict the results of the 
traditional ISODATA with four classes as prior information. 
The results of the GA are better (taking the higher population 
size) than the ISOADATA results; it should be mentioned, 
however, that the computational expense for GA is significantly 
larger than that for the ISODATA algorithm.  
 
 

 
(a) 

 
(b) 

 
Figure 2. Results with (a) population size 40, and crossover 

probability 0.4; (b) population size 100 and crossover 
probability 0.4 

 
 

  Reference Data 
 Road Farmland Forest Other 

Road 77.7% 31% 49.7% 52% 
Farmland 7% 52.6% 12.6% 48% 

Forest 15.3% 16.4% 37.7% 0% 

C
la

ss
ifi

ca
ti

on
 

Other 0 0% 0% 0% 
 
Producer’s Accuracy (Completeness) User’s Accuracy (Correctness) 
Road=77.7% Road=14% 
Farmland=52.6% Farmland=87.4% 
Forest=37.7% Forest=33.5% 

Other=0% Other=0% 

Overall accuracy=49.1% 

(a) 
  Reference Data 

 Road Farmland Forest Other 
Road 33.3% 5.5% 1.4% 38.6% 

Farmland 50.2% 76.5% 22.9% 54.7% 

Forest 5.3% 6.9% 74.7% 0.4% 

C
la

ss
ifi

ca
ti

on
 

Other 11.2% 11.1% 1% 6.3% 
 
Producer’s Accuracy (Completeness) User’s Accuracy (Correctness) 
Road=33.3% Road=35.9% 
Farmland=76.5% Farmland=81.4% 
Forest=74.7% Forest=79.3% 

Other=6.3% Other=0.8% 

Overall accuracy= 69.8% 

(b) 
 

Table 1. (a) and (b). Error matrices for results depicted in 
Figure 2  

 
 

(a) 

(b) 

(c) 
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(a) 

 

 
(b) 

 
Figure 3. Results with (a) population size 40, and crossover 

probability 0.8; (b) population size 100 and crossover 
probability 0.8 

 
 

  Reference Data 
 Road Farmland Forest Other 

Road 77.1% 33.2% 5% 88.8% 
Farmland 19.2% 57.6% 42.3% 7.2% 

Forest 3.7% 9.2% 52.6% 0% 

C
la

ss
ifi

ca
ti

on
 

Other 0% 0% 0% 0% 
 
Producer’s Accuracy (Completeness) User’s Accuracy (Correctness) 
Road=77.1% Road=16.4% 
Farmland=57.6% Farmland=82.9% 
Forest=52.6% Forest=56.7% 

Other=0% Other=0% 

Overall accuracy=54.4% 

(a) 
  Reference Data 

 Road Farmland Forest Other 
Road 38.4% 3.2% 1.9% 45.3% 

Farmland 49.6% 79.5% 39.2% 48.9% 

Forest 7.3% 4.5% 57.9% 0% 

C
la

ss
ifi

ca
ti

on
 

Other 4.7% 12.7 1% 5.8% 
 
Producer’s Accuracy (Completeness) User’s Accuracy (Correctness) 
Road=38.4% Road=44.4% 
Farmland=79.5% Farmland=84.5% 
Forest=57.9% Forest=72.8% 

Other=5.8% Other=0.6% 

Overall accuracy= 71.1﹪ 

(b) 
 

Table 2. (a) and (b). Error matrices for results depicted in 
Figure 3 

  
 

 
 

Figure 3. Results of ISODATA algorithm (4 clusters) 
 
 

  Reference Data 
 Road Farmland Forest Other 

Road 64% 13.9% 52.2% 69.1% 
Farmland 27.2% 70% 26.4% 9% 

Forest 8.4% 12.5% 20.7% 21.5% 

C
la

ss
ifi
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ti

on
 

Other 0.4% 3.6% 0.7% 0.4% 
 
Producer’s Accuracy (Completeness) User’s Accuracy (Correctness) 
Road=64% Road=17.5% 
Farmland=70% Farmland=88.7% 
Forest=20.7% Forest=33.6% 

Other=0.4% Other=0.2% 

Overall accuracy= 65.1% 

 
Table 3. Error matrix from ISODATA results 

 
 

5.  CONCLUSION 

One of the a priori inputs traditionally needed for unsupervised 
classification is the number of clusters in the data set. In many 
cases, however, this number of classes is not available. This 
research describes a procedure for unsupervised classification 
based on genetic algorithms, which is able to estimate the 
required number of clusters as part of the procedure. In order to 
evaluate the individual results we used the Davues-Bouldin's 
Index (DBI). 
The effectiveness of the new technique was evaluated using 
examples of IKONOS satellite image data. Based on 
independent ground truth an overall accuracy of 71.1% was 
reached as compared to 65.1% when using the ISODATA 
algorithm. For a number of applications this accuracy is still 
acceptable.  
GA has a number of free parameters. Two of them, namely 
population size and the crossover probability were considered 
in this research. In our results the population size proofed to be 
significantly more important than the crossover probability. In 
future research we will further investigate the potential 
influence of the other parameters and also consolidate our 
results using more test data and alternative indices for 
measuring the chromosome fitness. 
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ABSTRACT: 

 

Modern airborne SAR sensors provide spatial resolution in the order well below half a meter. In such data many features of urban 

objects are visible, which were beyond the scope of radar remote sensing only a few years ago. Core elements of urban infrastructure 

are bridges. In high-resolution InSAR data even small bridges are mapped to extended data regions covering large numbers of pixels. 

Therefore, in data of this quality the identification of bridge structure details is possible at least by visual interpretation. The special 

appearance of bridges over water in high-resolution InSAR data is discussed. Geometric constraints for the mapping of certain bridge 

elements in interferometric SAR imagery are given. An approach for detection of such bridges is proposed. Information about the 

bridge structure is extracted in subsequent fine analysis. First results of the approach are demonstrated using orthogonal InSAR 

single-pass data sets of spatial resolution better than 40cm. 

 

1. INTRODUCTION 

In time critical events SAR can be the most appropriate remote 

sensing technique for gathering useful actual data under certain 

circumstances such as bad weather or at night-time. For 

example, satellite SAR has proven being suitable for flooded 

area detection and damage assessment purposes [Bach et al., 

2005]. Due to climate change, flooding events of unfortunately 

even increasing devastation capability are more frequently 

observed in many places of the earth [International Charter, 

2006]. Given the rather coarse resolution of operational SAR 

satellite systems, up to now the SAR analysis was mostly 

restricted to medium scale products, such as flood maps (e.g. 

Elbe flooding, 2006, [International Charter, 2006]). With the 

advent of high resolution SAR satellite systems and commercial 

airborne systems more detailed analysis at the object level 

becomes feasible. This was already studied for example in the 

context of building recognition [Soergel et al., 2003] and road 

extraction [Hedman et al., 2005] from SAR imagery. 

Bridges are key elements of man-made infrastructure. 

Monitoring of these important connecting parts of the traffic 

network is vital for applications such as disaster management or 

in the context of political crisis, e.g. to evacuate inhabitants and 

to deliver goods and equipment.  

In this paper, first results of a long-term project are presented, 

which aims at automatic detection and reconstruction of bridges 

in Interferometric SAR (InSAR) data of fine spatial resolution. 

Here, the focus is on bridges over water. In later project phases 

the investigation shall be expanded to other bridge types too. 

Compared to coarser SAR images in high-resolution SAR data 

of modern sensors many additional bridge structure features are 

observable, allowing better discrimination from other urban 

objects and higher level of detail in object recognition. Urban 

analysis does not only benefit from higher resolution of 

conventional amplitude SAR imagery. In addition, the 

capability of SAR to measure the 3D shape of scene topography 

by interferometric processing offers valuable features to 

distinguish man-made objects of different kinds [Soergel et al., 

2003]. For example, bridges are naturally higher than 

surrounding ground and they coincide with an orthogonal 

orientated stripe of low signal amplitude and poor coherence, if 

they span a river. Additionally, the strong aspect dependency of 

SAR, due to the oblique scene illumination principle, leads to 

very interesting effects at bridges over water. 

Under certain viewing conditions different types of scattering 

events lead to the appearance of several bridge images at 

different range locations [Raney, 1983; Raney, 1998; Robalo & 

Lichtenegger, 1999]. These images are mainly caused by direct 

backscatter, double-bounce reflection, and triple-bounce 

reflection involving bridge structure and water surface. The 

location of such scattering events is predictable from the given 

SAR viewing geometry and the bridge structure. On the one 

hand, such features are useful to extract information about the 

3D structure of bridges from InSAR data. 

On the other hand, SAR phenomena such as layover and 

occlusion burden the analysis. Hence, in order to achieve higher 

detection probability a multi-aspect analysis is advantageous. In 

this paper, a methodology for bridge detection in large multi-

aspect InSAR data sets is proposed and demonstrated. Based on 

detection results information about the bridge structure is 

derived in subsequent fine analysis. 

The paper is organized as follows. In Section 2 the typical 

appearance of bridges in high-resolution InSAR data is 

discussed. Geometric constraints for the mapping of bridge 

structures into the SAR imagery are given. The methodology for 

bridge detection and geometry extraction is presented in Section 

3. This structural image analysis approach is demonstrated for 

two InSAR data sets of the same urban scene, which have been 

taken from orthogonal viewing directions. The data have spatial 

resolution better than 40 cm in range and even finer in azimuth 

direction. 
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Figure 1  InSAR data sets with spatial resolution approximately 38 cm in range and 18 cm in azimuth, off nadir angle 43 degree, 

range is always from left to right: a-c) magnitude, elevation (DEM), and coherence images of an interferogram showing 

part of a narrow bridge over a river in slant range geometry; d) aerial image of same bridge (dashed area corresponds to 

SAR data); e,f) elevation and coherence values along the horizontal profile in b-c); g-h) railway bridge: g) aerial image; 

h,i) amplitude and elevation data of same aspect as a-c), number 0 corresponds to layover from bride superstructure; j,k) 

amplitude and elevation of railway bridge in orthogonal view. 

 

2. APPEARANCE OF BRIDGES IN HIGH-

RESOLUTION INSAR DATA 

Bridges over water illuminated orthogonal to their orientation 

(i.e. along the river direction) may cause multiple images in 

SAR data. Usually three parallel structures are observed at 

increasing range locations: first direct backscatter from the 

bridge (more precise: layover of bridge and water signal), 

followed by double-bounce reflection between bridge and water 

or vice versa, and finally triple reflection (water, lower parts of 

the bridge and water again). Sometimes additionally 

superstructure elements and piles are also visible. This was 

already shown in the literature for SAR satellite amplitude 

imagery [Raney, 1998]. In SAR data of coarser resolution 

usually the structures show up as salient bright lines in sharp 

contrast to surrounding water surface. From the ground range 

distance ∆gs of first to second or second to third stripe and off 

nadir angle θ  the bridge height h can be estimated [Raney, 

1983; Robalo & Lichtenegger, 1999] according to: 

 

)1().tan(/ θsgh ∆=  

 

In SAR data of finer spatial sampling however the structures are 

not line-like anymore but appear as stripes of considerable 

width, which has to be considered for geometric analysis. 

Additionally, in the case of InSAR data further information is 

available in form of interferometric elevation and coherence.  

186



In the following, the appearance of bridges in high-resolution 

multi-aspect InSAR data is discussed and geometric constraints 

are given. The test site is located in the city area of Dorsten, 

Germany. It contains several water canals. The single-pass X-

band SAR data shown in Figure 1 were acquired by the AeS 

sensor of Intermap Technologies [Schwaebisch & Moreira, 

1999]. Spatial data resolution is 38.5 cm in range and 18 cm in 

azimuth. After co-registration and further pre-processing, 

interferograms have been calculated from the given SAR 

imagery. From the interferogram the coherence is obtained and, 

after phase-unwrapping, the InSAR elevation (DEM). The 

image chips depicted in Figure 1a-c cover part of a narrow 

bridge spanning water, illumination direction is from left to 

right, off nadir angle θ is approximately 43 degree. The 

mentioned triple stripe structure shows up again in the 

magnitude, elevation, and coherence images. In the magnitude 

image (Figure 1a) however the bridge’s layover signal (structure 

1) is only partly visible, probably due to scattering away from 

sensor at railing elements and mirror reflection on the smooth 

paving. The former hypothesis is supported from the dashed 

structure of the related coherence (Figure 1c). Both in elevation 

and coherence images (Figure 1b,c) the layover stripe structure 

is better visible compared to the magnitude data. The entire 

width of the layover stripe ∆s was estimated manually from the 

InSAR images to be approximately 5m in slant geometry that 

project to distance ∆g of 7.3m in ground range according to: 

 

)2(),sin(/ θsg ∆=∆  

 

with the difference ∆s between first slf and last layover point sll 

(Figure 2a). This is well above the ground truth bridge width of 

4m taken from the aerial image shown in Figure 1d. But 

considering the sketch in Figure 2a, this is not surprising, since 

layover on the water body is caused both by vertical and 

horizontal bridge structure elements. If additionally the 

identification of the backscatter of point slc located at the lower 

bridge corner is possible, at least the vertical bridge dimension 

hb can be derived from the data by: 

 

)3().cos(/)( θlflcb ssh −=  

 

Assuming slc to coincide with the border between dashed and 

solid layover parts, vertical height hb is estimated to 2.6m, 

which seems to be plausible for such small bridge.  

Reason for the second bright stripe (structure 2) is double-

bounce reflection sdb occurring at the corner reflector that is 

spanned from smooth vertical bridge facets facing the sensor 

and the water surface. The signal propagation according to this 

effect is sketched in Figure 2b. By theory all these double-

bounce signal contributions sdb should integrate into the range 

cell that coincides with the direct reflection or single-bounce 

backscatter path length ssb from the nadir projection of the 

vertical bridge elements on the water surface: 

 

)4(.dbsb ss =   

 

But, due to additional different scattering events (e.g. at small 

bridge structures) and non-perfect smoothness of bridge and 

water surface, the double-bounce signal is usually spread out 

around the slant range value ssb of a direct signal from the 

bridge footprint [Robalo & Lichtenegger, 1999]. The width of 

this stripe seems therefore to be hardly predictable without very 

detailed 3D information of bridge geometry and material 

properties.  
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Figure 2 SAR Phenomena arising from viewing geometry at a 

bridge (grey) over water: a) layover, b) corner 

reflector double-bounce, c) triple-bounce, d) location 

of these effects in slant and ground geometry. 
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Analogous to Equation 3, the bridge height h can be estimated 

from the difference sdb - slc: 

 

)5().cos(/)( θlcdb ssh −=  

 

Such estimate of height h of course can also be derived from the 

InSAR elevation data.  At first glance, the most straightforward 

way for this task seems to use the interferometric elevation 

value difference between bridge and surrounding water. 

However, elevation values coinciding with water surface were 

not useful for this purpose, because almost specular signal 

reflection led to negative SNR of about -3dB, resulting in 

elevation data approximately evenly distributed over the 

possible unambiguous elevation span of 20m. But, it turned out 

that the mean elevation value over the entire second stripe was a 

very good estimate of the water surface height. The elevation 

data standard deviation over this stripe was also very low. This 

observation is supported by the related mean coherence 

magnitude |γ| of 0.98 (Figure 1f). According to  

 

)6(,
1 γ

γ
−

=SNR  

 

this coherence value translates to SNR of 49 or approximately 

17dB. The bridge height h over water was estimated using 

elevation values taken from the layover stripe (structure 1). The 

difference of both estimates giving the distance between bridge 

deck and water was in this case 11m compared to 10,8m from 

ground truth (LIDAR DEM).  

Very interesting is also the third bridge image (structure 3) 

resulting from triple-bounce reflection between water, the lower 

bridge part, and water again. Figure 2c illustrates this effect: 

because of the longer path length the signal is mapped to a 

position behind the true bridge location in range direction. 

Geometrically the signal seems to stem from a virtual bridge 

replica produced by mirroring the real bridge at the water 

surface. Assuming the absence of substructures below the 

bridge’s core, the width of the bridge bw can be estimated 

exploiting this type of signal. Analogous to Equation 2, bridge 

width bw is given by the difference of near and far triple-bounce 

stripe borders, here called stn and stf  respectively:  

 

)7().sin(/)( θtntfw ssb −=  

 

This estimate yields 4.5m for the width of this bridge bw that is 

close to 4m according to the aerial image.  

Interestingly, the interferometric elevation values of such stripes 

were in some cases far too high in the final DEM product, 

possibly due to erroneous treatment during phase unwrapping 

processing, because initial phase values indicate to elevation 

well below water level. This behaviour is object of further 

studies. 

In Figure 2d the mentioned effects are summarized and their 

location in slant and ground range SAR images is given. From 

the sketch and the image examples discussed above it becomes 

clear that in high-resolution InSAR data the stripes are not 

evenly spaced in range and show different spatial extension. 

Hence, simple height determination according to Equation 1, 

which yields good results for data of coarser resolution, seems 

not to be appropriate for data of finer spatial sampling. 

In the same InSAR dataset a railway bridge spanning water is 

almost perfectly orientated in same direction. This object 

features typical construction structures often observed at 

railway bridges, such as superstructures made of connected 

metal bars crossing in vertical and horizontal directions. The 

horizontal structures are directly visible in the aerial image 

(Figure 1g) taken from nadir view and the vertical ones can at 

least be guessed from sun shadow on water and shore. 

Similarly, but caused by totally different mapping processes, the 

superstructure pattern appears in the InSAR data. Especially 

from the magnitude image (Figure 1h, illumination direction 

from left again) the human observer may extract details of these 

structures. Despite layover, which causes signal mixture of 

vertical and horizontal metal bridge structures, the horizontal X-

structures are at least partly visible in the layover signal, not 

only in the water region but also in the grassland area. However, 

the interpretation of the amplitude data is not straightforward, 

mainly because of dominant scattering events (e.g. at metal bars 

of the superstructure) superimposing adjacent areas even far 

apart the origin of such strong backscatter. The mentioned 

superstructures cause in the InSAR elevation data a fourth 

salient signal stripe, appearing as bright or elevated zone  on the 

left in Figure 1i (structure 0, structures 1,2,3 same as in Figure 

1a-c). Then the sequence follows as described for the other 

bridge: layover of bridge’s trackway, double-bounce area, and 

triple-bounce area. The very same bridge is shown again in 

Figure 1j,k, this time illuminated from orthogonal aspect along 

trackway direction. Even though the single-pass acquisition of 

both tracks was only 10 minutes apart, the bridge mapping is 

now totally different only due to the altered aspect angle. 

Superstructures orientated perpendicular to the illumination 

direction lead to strong scattering, revealing some insight in the 

bridge’s geometry.    

 

 

3. BRIDGE DETECTION APPROACH  

Bridge detection and feature extraction are carried out in two 

subsequent modules. Knowledge about the typical size of 

bridges is coded a priori in a bridge model that can be further 

specified according to information of features of the scene of 

interest. In the general case, including bridges over roads and 

bridges crossing valleys of the landscape, both steps base on 

structural image analysis. For example, bridge hypotheses are 

detected using crossing stripe-like objects (one for the bridge 

and the other for the bridged obstacle), which fulfill certain 

model requirements and have been built hierarchically from 

edge or line primitives [Soergel et al., 2006]. But, for the special 

case of bridges over water such approach is not appropriate for 

two reasons. Firstly, despite man-made river regulation, rivers 

exhibit often rather curved structure together with sometimes 

remarkable and abrupt change of contours, e.g. due to natural 

riverbank variation. An example is given in Figure 3a on the 

right depicting an amplitude image of a canal of different shape 

on both bridge sides. Furthermore, river shape may change 

significantly because of seasonal effects influencing the water 

level. Secondly, the sharp bridge contrast to the water 

background allows a simplified detection strategy.  

The strategy applied here is described using the images shown 

in Figure 3. First step is segmentation of dark amplitude image 

areas based on a threshold that can be estimated from histogram 

analysis. Of course besides the desired water area all other dark 

areas (e.g. caused from smooth surfaces such as asphalt) are 

extracted in this manner and the bright bridge structures are still 

missing (Figure 3b). By a sequence of morphological erosion 

and dilatation steps undesired small objects are removed and 

bridge gaps are closed. The remaining image region (white in 

Figure 3c) is now the expectation area for bridges over rivers. 

The morphological operation sequence has to be parameterized 

according to a given river and bridge model (i.e. search for 

narrow or broad rivers or bridge, respectively). Here, in general 

it is assumed that the bridge is narrower compared to the river 
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or canal. The expectation area can further be scaled down by a 

logical “exclusive or” operation with the initial threshold result 

(i.e. Figure 3b ⊕ Figure 3c) and subsequent morphological 

noise reduction.  

The aim of the algorithm described so far is screening of large 

data sets for potential bridge locations. For reasons of 

robustness and computational load the described procedure is 

carried out in sub-sampled data. Subsequent analysis is based on 

high-resolution data. 

The next step consists of the detection of possible bridge 

structures in the InSAR data restricted to the segmented 

expectation area. As discussed in the previous section, 

depending on viewing aspect and river orientation the very 

same bridge might appear as single or multiple stripe structure 

in the imagery. In the remainder of this paper the more 

interesting latter case is focused on. Compared to magnitude 

and elevation data the coherence image is most suitable for 

detection of the triple stripe structure (Figure 1a-c). For the 

detection of individual stripes the Steger operator [Steger, 1998] 

is used. This operator requires the stripe width as parameter. 

The admissible range of this parameter is adjusted according to 

the given bridge model. Furthermore, the expected bridge 

orientation can at least be roughly estimated from the main 

direction of the detected water body in proximity of the bridge 

(assuming preferred orthogonal crossing of bridges over water). 

The extracted stripe structures for the two bridge examples are 

shown in Figure 3d. The analysis up to now was carried out 

separately for every viewing direction of the given InSAR data. 

The individual results can be fused to improve evidence. This 

topic shall be investigated thoroughly in future work. 

 

 

4. FINE ANALYSIS 

The fine analysis is based on the geometric constraints 

discussed in Section 2. The first step is to decide whether 

neighboring stripes belong to the same bridge or not. This is 

sometimes hardly possible, if bridges are located close to each 

other. In the test area this problem does not arise. According to 

the given bridge model, plausible minimum and maximum 

values of the separation in range of the stripes can be roughly 

estimated from Equation 1.  

As discussed before, the bridge’s height over water can be 

estimated in different ways from SAR and InSAR data. Results 

are shown in Table 1 and compared to LIDAR data as ground 

truth. B1 refers to the right column and B2 to the left column in 

Figure 3. The SAR and LIDAR data have not been collected at 

the same time, but since the scene contains canals and not rivers 

the water height is expected to be kept quite constant from 

authorities in order to ensure smooth shipping traffic. Except for 

the LIDAR reference data all estimates are rounded to integer 

values.  

 

 

Height from 

amplitude 

Height from 

elevation 

 Ground 

truth 

1à  2 2à  3 manual automatic 

B1 10.8 9 11 11 11 

B2 11 11 9 11 11 

 

Table 1 Results of bridge height over water estimation. 

 

 

First, bridge height extraction from amplitude data is discussed. 

With respect to Equation 1, the problem arises to choose the 

correct range locations for the estimate. Here, manually the 

middle stripe range positions have been used and two estimates 

were carried out for stripes one to two and two to three.  The 

accuracy of results varies with up to 2m error.  

Another possibility to determine the bridge height is the 

elevation data. At the beginning of the investigations it was 

assumed, that the average elevation of the water would match 

its real height, despite the lower SNR compared to other objects. 

However, this was not the case, probably due to absence of 

wind leading to almost mirror-like water surface resulting in 

dominant noise influence and an elevation mean only slightly 

below bridge level. Therefore, the height was estimated from 

the difference of the layover and the double-bounce signals. 

This was done twice: manually and from the automatically 

detected stripe structures. The results are close to the reference 

values. In the case of the exploitation of the automatically 

a

c

b

d  

Figure 3 Detection of two parallel bridges in InSAR data, range 

direction top-down. From top: a) amplitude images, b) Result of 

threshold operation (dark regions shown in white), c) result after 

morphological operations, d) detected typical triple stripe image 

structure of both bridges. 
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detected stripes only elevation pixels coinciding with coherence 

values larger than 0.9 were used to calculate the mean over the 

extracted stripe. Furthermore, the coherence is used as weight in 

the averaging process [Soergel et al., 2003] to increase the 

accuracy of this estimate. Without consideration of the 

coherence results would be severely degraded.  

Of course from such few examples as presented here no 

statistical sound overall assessment of the methodology is 

possible. However, the achieved accuracy encourages further 

investigation in this direction in future studies.  

 

 

5. CONCLUSION AND FUTURE WORK  

Modern SAR sensors achieve such high spatial resolution that 

even rather small bridges are mapped with considerable level of 

detail. Therefore, more comprehensive analysis of such objects 

is now possible. Interferometric processing even reveals many 

additional object features supporting bridge extraction. 

However, the constraints arising from the sometimes multiple 

appearance of bridge structures in the data have to be 

considered carefully. Height estimate based on InSAR elevation 

data seems to be more robust compared to analysis of amplitude 

SAR data alone. First results of the proposed approach for 

bridge detection and geometry extraction are promising. 

In this paper the focus was on bridges over water. The 

morphological water segmentation might fail in the case of 

narrow rivers or creeks. In order to detect such thin water bodies 

a line based approach will be developed. In further 

investigations other types of bridges shall also be considered 

(e.g. spanning roads, railway tracks, or valleys).  

At present, the detection is carried out independently in each 

InSAR data set. In the future the image analysis shall be 

combined in earlier recognition stages to enhance results by 

mutual evidence support and the elimination of blunders. 

Furthermore, context information given for example by a road 

network extraction [Hedman et al., 2005] will be incorporated 

to support the analysis.Finally, automatic reconstruction of 

bridge extensions in terms of length and width will be 

investigated.  
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ABSTRACT: 

 

  This paper presents a method for semi-automatic 3D positioning of tree tops that can be used for obtaining tree maps of the photo-

visible trees and tree heights. Such spatio-temporal, detailed information is usable for many applications in e.g. forestry and 

landscape management. The method incorporates the use of passive, high-resolution optical images with co-existent low-resolution 

airborne lidar data. The latter is used for confining the search space of image matching to agree with the volume of photo-visible 

trees in the upper canopy and for obtaining an accurate elevation model, which is paramount for reliable tree height estimation. The 

method is presented here and tested with restricted image and field material. 

 

1. INTRODUCTION 

  Remote sensing is applied currently in almost all forest data 

acquisition. Orthoimages and stereopairs of aerial photographs 

are used for stratifying the forest into stands, satellite images are 

employed in the assessment of large areas and airborne laser 

scanning is used for the mapping of topography and canopies. 

Advances in the sensor technologies and analysis methods 

continuously widen the potential scenarios of new forest 

inventory methods that put to use remote sensing (Leckie 1990, 

Baltsavias 1999, Petrie 2003, Naesset et al. 2004). Single-tree 

remote sensing (STRS) that is based on the idea of substituting 

the field measurements and mapping of individual trees with 

cost-efficient airborne observations is an example of a field 

made possible by the development. Digital and automatic, 

image- and/or lidar-based STRS is a topical domain (See 

references in Culvenor, 2003; Korpela, 2004; Pouliot et al., 

2005), although the concept of STRS is not entirely novel 

(Worley and Landis, 1954; Talts, 1977). 

  STRS aims at a detailed description of the growing stock that 

is crucial in most applications of forest inventory. Ideally, it 

provides the size-distribution of the standing trees per species 

with the two- or three-dimensional map of trees. Korpela and 

Tokola (2006) examined the potential of image-based, 2D and 

3D STRS. The DBH (stem diameter at 1.3 m height) and 

volume of individual trees cannot be estimated as accurately 

with STRS as is it possible in the field. The main reason is the 

indirect estimation phase with allometric models that results in 

both random and systematic, tree and stand level errors. The 

model inaccuracies are coupled with photogrammetric 

measurement errors in species, tree height and/or crown width. 

Random errors cancel out effectively, but the aggregate results 

of STRS at the stand level are liable to systematic offsets. 

Inclusion of tree heights, i.e. the use of 3D STRS was found to 

improve the estimation accuracy of both DBH and stem volume 

considerably in comparison to 2D STRS, in which trees are 

measured for species and crown dimensions only. In addition, 

in STRS the growing stock is inherently underestimated since 

some trees always remain unseen − at least by optical sensors.  

  In STRS, field calibration is needed for avoiding the 

systematic errors of the allometric equations. Thus, some field 

visits seem inevitable if very accurate data is wanted. Because 

of the inferior accuracy in comparison to field measurements, an 

applicable STRS system has to provide the measurements and 

estimates with much lower costs, which calls for automatic 

procedures. A complete 3D STRS system solves all of the 

following tasks: (a) tree or crown positioning in 3D, 

measurements of (b) crown dimensions and (c) tree height, (d) 

species recognition and (e) allometric estimation of stem size 

(Figure 1). 

 
Figure 1. An example of the data, tasks and output of a 3D 

image-based STRS-system for stand cruising. 

 

1.1 Hypotheses and objectives 

  This paper addresses the question of using remote sensing for 

3D treetop positioning and height estimation and extends the 

work by Korpela (2000, 2004), in which a semi-automatic 

method for treetop positioning was introduced. It was based on 

the use of multiple image-matching of digitized aerial 

photographs for the purpose of finding treetops inside a 

predefined 3D search space in the canopy volume (Figure 2). 

The algorithm applies template matching for processing the 

aerial images into correlation images, where local maxima 

correspond to 2D image positions of treetops (cf. Pollock, 1996; 

Larsen and Rudemo, 1998). The predefined 3D search space is 
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processed into a point mesh. The points in the mesh are back-

projected into the correlation images and aggregated for 

volumetric correlation, which is further processed into 3D 

maxima that correspond to candidate treetop positions. The 

algorithm resembles that of Tarp-Johansen (2001), who 

positioned tree bases of oaks in 3D using multiple leaf-off aerial 

images. Here, it is further assumed that correct 3D treetop 

positions will help in solving the other image-based tasks of the 

measurement of the crown dimensions and the interpretation of 

species (cf. Figure 1).  

 
Figure 2. Image matching for 3D tree top positioning (Korpela, 

2004). The search is restricted to a predefined 

volume in the canopy. A DEM/DTM is used for 

height estimation. The scale of the images (N>1) is 

not restricted as such, but the full orientation of the 

images has to be established reliably. 

 

 The discernibility of treetops is a major restriction of optical 

STRS. Only the dominant, co-dominant and intermediate trees 

are visible with a high likelihood. The probability of 

discernibility is an exponential function of the relative height of 

the tree; such probability-of-discernibility curves vary between 

stands according to the density of the stand (Korpela, 2004). In 

most cases trees with a relative height of below 50% are not 

seen at all in the images. The 50% relative height constitutes 

thus a lower limit for the volume from where to conduct the 

manual or automatic search of treetops − at least in closed 

canopies. Respectively, the upper limit is at the maximal height 

of trees. These two parameters vary spatially and it is necessary 

to obtain reasonably accurate estimates of them to avoid 

commission errors by the treetop positioning algorithm 

(Korpela, 2000; 2004) as the locally restricted depth of the 3D 

search space is the geometric (epipolar) constraint that is used 

for the solution of the mathematically ill-posed correspondence 

problem for tree tops. The results can only be optimal if the 

search is set to cover the upper canopy volume (Korpela, 2004; 

p. 35, 65−66).  

  The estimation of tree height is straightforward once the 

treetop is positioned in 3D. A DTM gives the elevation of the 

butt. The error of the height estimate consists thus from possible 

treetop positioning errors and DTM errors. A DTM is also 

needed for defining the lower limit of search space at the app. 

50% relative height level below which treetops cannot be 

expected to be measurable. Korpela (2004) suggested that an 

accurate DTM obtained by means of low-resolution laser 

scanning could be incorporated in the algorithm for the 

delineation of the search space and for accurate tree height 

estimation. Similarly, laser scanning was proposed for the 

estimation of the local, maximal height of trees by a canopy 

height model (CHM). These proposals/theses are put to test here 

with real field, image and lidar data. By combining aerial 

photographs with lidar this paper exploits the principle of the 

photo-lidar approach presented by St-Onge et al. (2004). A low 

sampling rate airborne lidar is used to keep the material costs to 

a minimum. The proposal in this article is that low-resolution 

lidar can be combined with multiple image-matching of aerial 

images for accurate and cost-efficient, semi-automatic tree top 

positioning and tree height estimation.  

 

2. METHOD FOR SEMI-AUTOMATIC 3D TREETOP 

POSITIONING USING AERIAL IMAGES AND 

LIDAR BASED SURFACE MODELS 

  The method consists of the steps 1−9 given below. Automation 

of steps 2 and computations in step 5 have been developed most 

in comparison to the algorithm presented in (Korpela, 2004).  

 

1) Delineation of the area of interest. Here, the tree tops were 

positioned inside circular plots with a radius ranging from 15 to 

20 m. In general, the geometry of the area of interest can vary 

and a homogenous stand would be a natural choice in practice. 

 

2) Delineation of the 3D search space in the upper canopy. This 

is done by analyzing the lidar-DTM and the lidar-CHM such 

that the search space is filled by a 3D point mesh with 0.5 m 

spacing. The maximal elevation or local dominant height in a 

given XY point is given by the CHM, which is multiplied by 

parameter fHDOM ∈ [1, 1.3] to reduce the inherent 

underestimation. Parameter HDepth ∈ [0, 1] defines the depth 

of the search space with respect to the local dominant height of 

trees (HDepth = 1) and the terrain elevation (HDepth = 0). 

 

3) Selection of a sample tree and the measurement of its 3D 

treetop position using manual image-matching. The capture of 

elliptic templates representing the tree in all images (Figure 3). 

 

 
Figure 3. Template-boundaries of a selected and manually 

positioned sample spruce tree with parameters: 

EllipseHeight = 3.0 m, EllipseWidth = 2.6 m and 

EllipseShift = −1.0 m. The shift downwards by 

EllipseShift is seen in the image on the right: the 

image position of the hot-spot i.e. the tree top and 

the template centre deviate. The vertical lines 

connect the measured 3D tree top position and the 

DTM. This photo-lidar height estimate was 15.53 m 

and the field measurement was 15.7 m. 

 

 Object space parameters EllipseShift, EllipseHeight, and 

EllipseWidth define the position, size, and shape of the ellipse 

in the images. EllipseShift shifts the center of the template in the 

Z direction. Using this parameter, the templates are typically 

moved down to capture more of the crown than the background. 

Ellipseheight defines the major axis of the elliptic template, 

which in the images is made parallel to the direction of the Z 

axis (trunks). EllipseWidth defines the length of the shorter axis. 
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The shape is conditioned to circular i.e. the templates are 

allowed to be elliptic for oblique views only and in the direction 

of the radial displacement (i.e. Z axis, tree trunk). These 3 

parameters take metric values. The actual template images are 

rectangular copies of the aerial images. Pixels that fall outside 

the ellipse are masked out. The location of the treetop inside the 

template, the so called hot-spot, is stored for each template and 

is accounted for in cross-correlation computations that follow.  

 

4) Template matching. Template matching with normalized 

cross-correlation is carried out for each image using the 

template of that aerial image. This procedure maps the aerial 

images into cross-correlation images ρ (x,y) ∈ [-1,1], in which 

high values of ρ indicate good match at image location x,y 

(Figure 4). Ideally ρ (x,y) would consist of very sharp peaks at 

the correct positions of the treetops.  

 

 
Figure 4. Cross-correlation images computed using the captured 

templates and aerial images of Figure 4. High 

correlation is displayed in white. 

 

5) Aggregation of 3D correlation, ρ3D. Each point in the search 

space is back-projected to the cross-correlation images using 

collinear equations and an affine fiducial mark transformation 

with pixel accuracy. ρ3D is computed for each point in the 3D 

search space seen as a geometric mean of the images resulting 

in ρ3D∈ [0, 2]. 

 

 
Figure 5. Illustration of the volumetric, discrete ρ3D data in the 

search space with three transects (slices) superimposed in an 

oblique aerial view. The brightness of the points denotes ρ3D. 

The undulation is due to changes in terrain elevation and local 

dominant height of trees. The white dots that form lines are the 

terrain points. 

 

6) Clustering of the ρ3D data into 3D treetop candidate 

positions. The point set is first sorted in the ascending order of 

ρ3D. Clusters are formed from points with ρ3D above a limit, 

Rlimit. Points are merged into existing clusters while the sorted 

list is processed. Merging is controlled by a planimetric distance 

parameter, XYthin. Points closer than the set value are merged 

into existing clusters and do not form a new cluster. The 3D 

position of the cluster is the mean of the 3D points that belong 

to the cluster and ρ3D is used in linear weighting of the 

coordinates. Rlimit is a parameter that controls the quality of the 

clusters. Only the best clusters are accepted as tree top 

candidates, if Rlimit is set to a high value. In such cases, 

omission errors are few assuming that the search space is set 

correctly. A low value of Rlimit brings about new clusters at the 

cost of commission errors. The merge-parameter XYthin 

controls the density of the clusters. A value that is too large 

causes neighbouring trees to be merged. Similarly, if XYthin is 

set too low it can result in several clusters originating from the 

actual ρ3D response of a single tree.  

 

The description of the steps 7−9 below applies to any practical 

implementation of the algorithm in situations where no ground 

truth exists. In the experiments of this study step 7 was replaced 

by a numerical quality assessment, and steps 8 and 9 were not 

performed. 

 

7) Visual quality assessment of the treetop positioning. The 

visual evaluation of the matching results is based on visual 

examination of the candidates that are superimposed either on 

monoscopic or stereoscopic views. If necessary, the clustering 

algorithm is re-run by adjusting the parameters XYthin and 

Rlimit. Sometimes the procedures have to be repeated from the 

start by selecting and positioning a new model tree. As all 

subsequent steps need to be re-computed it is important to have 

good approximate values for the parameters to avoid 

unnecessary iteration. 

  

Figure 6. Candidate positions and the borders of circular photo-

plot (r=15 m) superimposed in an image pair. The circle is 

drawn at the elevation of the treetop of the model tree.  

 

8) Manual correction of the semi-automatic matching results. In 

it, the bad candidates are removed or corrected for position. The 

unrecognized tree tops are completed manually using stereo 

interpretation (for operators with a good stereo vision) or using 

manual image matching with monocular observations and 

epipolar constraining (Korpela, 2004) 

 

9) Height estimation using the existing DTM.  

 

3. EXPERIMENTS 

3.1 Data 

  The field data in Hyytiälä, southern Finland (61o50'N, 

24o20'E) consists of fully mapped and measured stands 

(Korpela 2004). The field measurement errors for tree positions 

and the basic tree variables are known through repeated 

observations. The positions of the field trees have been 

established with tacheometer and VRS-GPS observations and 

field levelling. The image data consisted of digitized aerial 
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photographs, which have been orientated in one large multi 

temporal (1946-2004) image block (Korpela 2006). Here, leaf-

on images from summers of 2002 and 2004 were used in the 

experiments. These were taken using standard metric cameras 

with 15 cm and 21 cm lenses and the images have a 14- or 15-

micron pixel size. The experiment allowed for testing the 

following nominal scales: 1:6000, 1:8000, 1:12000, 1:14000, 

1:16000 and 1:30000. The images have forward and side 

overlaps that vary from 60 % to 80 %. Lidar data was from 

August 2004 with an Optech ALTM2033 sensor from a flying 

height of 900 m. The pulses had a footprint diameter of 0.3 m 

and the pulse density was 1.1 m by 1.3 m, on average. The 

instrument recorded 1 or 2 returns. The full geometry of each 

pulse was available: time stamp, position and orientation of the 

lidar, ranges, intensities and positions of the 1 or 2 returns. A 

raster DTM was processed from the lidar returns using a simple 

gradient-based method and a RMSE of 0.30 m was obtained in 

a test set of 10947 tacheometer points representing terrain of 

wooded areas. A raster CHM was constructed from lidar 

maxima in 5 m by 5 m cells. 

 

3.2 Performance of tree top positioning 

   A treetop was considered to be correctly found (hit) if a 

candidate was inside a 2.4-meter wide and a 6-meter high test-

cylinder. The dimensions of the test-cylinder affect the 

performance measures. The field errors in tree positioning using 

tacheometer, in height measurements, errors made in updating 

heights to the time of the photography, possible tree slant and 

sway as well as the stand density of the test sites were 

considered. The test-cylinders can have overlap in dense forests 

and excessive candidates in a test-cylinder or in intersecting 

cylinders were considered as commission errors and trees 

without a candidate were considered as errors of omission. A 

buffer around circular test plots (Figure 7) was used as trees can 

be hit by a candidate from the buffer and vice versa.  

  Hit-rate was the ratio between the number of hits and the total 

number of trees. An accuracy index was computed based on the 

numbers of omission (o) and commission (c) errors and the 

number of trees (n) (cf. Pouliot et al. 2005): AI = [(n − o − c) / 

n] × 100. The 3D-positioning accuracy was evaluated with the 

RMSE that were computed separately for the XY and Z 

although the positioning is entirely 3D. The RMSEs include the 

imprecision of the ground truth and therefore overestimate the 

true inaccuracy. The positioning error-vector [∆X, ∆Y, ∆Z] was 

defined as field−−−−candidate; thus a positive ∆Z indicates 

underestimation. Mean differences of ∆X, ∆Y and ∆Z measure 

systematic offsets. To evaluate the averaging effect of tree 

heights, a regression line was fitted in the ∆Z×tree height 

distribution and the slope coefficient (trend) and its standard 

error were computed. The set of field trees was confined to 

those that were discernible to the operator. This tree set 

represents the potential trees to be found. In some stands such a 

criterion can leave out 50% or more of the trees; however, the 

proportion of the total volume in the non-discernible trees is 

normally small, from 0 % in managed stands to 12 % in natural 

forests (Korpela, 2004). 

 

 

3.3 Tests in a spruce stand 

  Treetop positioning was tried out using image sets in scales 

1:8000-1:16000 (Table 1) in one managed spruce stand. Images 

in the scale of 1:6000 were left out because of the 

computational burden of template matching and scale 1:30000 

was omitted because individual treetops were not well 

measurable in that scale anymore. 

 

  

Figure 7. Results of treetop positioning for a circular test plot. 

Unfilled squares depict the candidate positions for 

correct hits (56), squares with a cross depict missed 

treetop positions (o = 2), and the crosses depict the 

commission errors (c = 1). The AI was [(58-2-

1)/58]×100 = 94.8%. The hit-rate in total stem 

volume was 97.1%, RMSE of ∆XY was 0.55 m, 

RMSE of ∆Z was 0.67 m with a slope coefficient of 

0.055 m per m of tree height. The errors in the DTM 

elevations had an RMS of 0.27 m.  

 

  One model tree was used in all trials, and the parameters 

defining the shape and position of the elliptic templates were 

kept fixed. The exact 3D position of the treetop was measured 

separately for each set of images using manual, monoscopic 

multi-image matching. It varied in Z because of the temporal 

mismatch of the May 2002 and June 2004 images and because 

of small orientation and observation errors. The search space 

was kept fixed with parameters fHDOM and HDepth. Tree heights 

from May 2002 were simply added +0.7 m, which corresponded 

to the average height growth of three summers. Parameters 

Rlimit and XYthin were tuned for obtaining optimal results in 

the AI-measure.  

 

Number of  images, 

scale, overlaps (%), 

focal length (cm) 

AI-

% 

c Mean 

∆Z,  

m 

RMS 

∆Z,  

m 

RMS 

∆XY, 

m 

2   1:8000 60/60 21 61.1 13 −0.04 1.29 0.70 

2   1:8000 60/60 21 77.9 9 −0.39 1.24 0.73 

4   1:8000 60/60 21 85.3 7 +0.06 0.76 0.68 

4   1:8000 60/60 21 88.4 5 −0.21 0.99 0.67 

6   1:8000 60/60 21 85.3 2 −0.08 0.72 0.61 

2 1:12000 70/60 15 82.1 10 +0.22 0.80 0.60 

3 1:12000 70/60 15 91.6 5 +0.13 0.70 0.56 

4 1:12000 70/60 15 88.4 4 +0.31 0.85 0.57 

3 1:14000 80/60 21 87.4 4 −0.09 0.83 0.68 

4 1:14000 80/60 21 87.4 7 −0.20 0.93 0.65 

6 1:14000 80/60 21 94.7 3 −0.15 0.87 0.60 

7 1:14000 80/60 21 93.7 2 −0.12 0.94 0.62 

2 1:16000 60/60 15 85.3 5 −0.25 0.87 0.66 

3 1:16000 60/60 15 88.4 3 +0.15 0.93 0.62 

4 1:16000 60/60 15 74.7 4 +0.42 0.98 0.58 

 

Table 1. Results of treetop positioning using different number 

of images in different scales. Plot S6 with 95 photo-

visible trees in a circular plot with radius of 20 m. 

fHDOM = 1.15, HDepth = 0.65.  

 

 Increasing the number of images usually improved the 

performance in the AI measure; however there were images in 
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which the crown of the model tree was not seen against a clear 

background, which resulted in a poor cross-correlation image 

that deteriorated treetop positioning. The imaging geometry 

affects treetop positioning; best results were obtained with an 

image set that consisted of six images taken with normal-angle 

cameras at the scale of 1:14000. These images had even large 

overlaps and the elevation of the sun was higher (45o) during 

the photography. These factors affect occlusion and shading in 

aerial views that can impede image matching. It seems that the 

optimal scale for the type of spruce trees in plot S6 (heights 

from 12 to 22 m) is somewhere between 1:10000 and 1:15000. 

The images in 1:8000 had details that did not help in treetop 

positioning, but may be needed for example in species 

recognition with texture measures. 

 Parameter fHDOM corrects the local dominant height given by 

the CHM and thus defines the upper limit of search space. 

Similarly, the parameter HDepth defines the lower height and 

depth of the search space. Treetop positioning was tried at 

different values of these parameters. The optimal values for 

fHDOM were from 1.1 to 1.3, when HDepth was kept at 0.65. All 

performance measures showed best performance in this range. 

Here, the CHM was calculated using a 5 m grid, which may be 

too coarse in sparse stands. Similarly, the density of the lidar 

data will most likely affect the quality of the CHM, which needs 

to be considered in setting the value for fHDOM.  

fHDOM 
AI-

% 
c 

Mean 

∆Z, m 

RMS 

∆Z, 

m 

RMS 

∆XY, 

m 

Trend 

∆Z×h,  

m/m  

0.95 46.3 21 +1.03 1.35 0.71 0.33 

1.00  78.9 11 +0.88 1.28 0.69 0.31 

1.05 88.4 7 +0.48 0.92 0.70 0.24 

1.10  94.7 4 +0.21 0.74 0.69 0.18 

1.15 93.7 5 +0.06 0.74 0.70 0.16 

1.20 89.5 7 −0.09 0.80 0.70 0.17 

1.25 90.5 5 −0.18 0.86 0.71 0.16 

1.30 88.4 5 −0.21 0.85 0.71 0.14 

1.35 85.3 6 −0.32 0.91 0.71 0.13 

1.40 73.7 15 −0.39 0.93 0.72 0.13 

Table 2. Performance of the 3D tree top positioning algorithm 

for different values of the parameter fHDOM. Plot S6 with 95 

trees in a circular plot with radius of 20 m. Rlimit = 1.41, 

XYthin = 1.5 and HDepth = 0.65. Four images in scale 1:12000. 

 

   Parameter HDepth gives the lower height of the search space, 

and this parameter should be adjusted according to stand 

density since in dense stands only the tallest trees remain photo-

visible The dominant height of plot S6 was 20.6 m and the 

shortest discernible tree had a plot-level relative height of 0.53. 

However, the neighboring trees of this 10.6-m high tree had 

heights from 15 to 18 m, which means that the local relative 

height of this tree is approximately 0.6. Best results in AI-% 

were obtained with HDepth at 0.65. Commission errors ("short 

ghost trees") start to appear, if the search space is started from a 

too low height. If the search space is not deep enough, the 

heights of the short trees are overestimated and the averaging 

effect increases. These effects are seen in Table 3.  

  

HDepth 
AI-

% 
c 

Mean 

∆Z, m 

RMS 

∆Z, m 

RMS 

∆XY, 

m 

Trend 

∆Z×h,  

m/m  

0.45 64.2 31 +0.28 0.84 0.72 0.11 

0.50 75.8 22 +0.19 0.77 0.71 0.11 

0.55 88.4 10 +0.12 0.72 0.70 0.12 

0.60 90.5 8 +0.06 0.71 0.70 0.13 

0.65 93.7 5 +0.06 0.74 0.70 0.16 

0.70 92.6 3 +0.01 0.75 0.70 0.19 

0.75 89.5 3 −0.06 0.75 0.71 0.21 

0.80 89.5 2 −0.21 0.77 0.72 0.22 

0.85 82.1 3 −0.42 0.82 0.73 0.22 

0.90 69.5 2 −0.70 0.94 0.74 0.20 

 

Table3. Performance of the 3D tree top positioning algorithm 

for different values of the parameter HDepth. Plot 

S6 with 95 trees in a circular plot with a radius of 20 

m. Rlimit = 1.41, XYthin = 1.5 m, fHDOM = 1.15. Four 

images in scale 1:12000. 

 

4. DISCUSSION 

  Semi-automatic 3D tree top positioning of individual trees 

using image-matching is an alternative or complement to lidar-

based techniques in which trees are found by processing very 

high-resolution lidar data with from 5 to 30 points per m2. The 

method presented here combines optical images and low-cost 

lidar with emphasis on the use of images. The lidar-based 

surface models that approximate the canopy elevation and give 

the terrain relief accurately are a necessity for accurate height 

estimation, since the ground is seldom seen in images taken 

under leaf-on conditions. If the image-matching strategy here is 

compared with common techniques of stereo matching for 

surface modelling, it can be said that the lidar CHM and DTM 

provided a short-cut and gave a good approximation for the 

possible space of solutions, which normally are obtained by 

hierarchical image matching techniques and the coarse-to-fine 

strategy (Schenk, 1999). The results of the experiments gave 

support to the thesis that low-resolution lidar data can be used 

for delineating and bounding the search space in the canopy 

semi-automatically by adjusting the parameters that define the 

relative underestimation of the lidar-CHM (fHDOM) and the 

lowest relative height of the trees that expected to be visible in 

the aerial views (HDepth).  

 

  The implementation described here is not very robust against 

the variation in the size of tree crowns and the results presented 

here were good mainly because the test stand represented a 

rather regular forest. In stands with a large species mixture and 

variation in crown sizes, the results have been found inferior. It 

may be possible to incorporate the use several sample trees (or 

synthetic images of crowns; see Larsen, 1997) in image 

matching to improve the possibilities to detect and position 

trees of varying size. Similarly, it would be desirable, if the 

feature detector, template matching in this case, would yield not 

only the 2D image positions of tree tops but also symbolic 

information similar to what is utilized by an operator when the 

task is performed manually (species, crown size). It would then 

be possible to rule out automatically some of the unpreventable 

commission errors.  

 

 A semi-automatic approach seems to be the only solution to 3D 

tree top positioning using aerial views because of the nature of 

the problem. Occlusion and shading are inherently present in 
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aerial views and trees vary in size, shape and radiometric 

properties. In the development of the methods presented here, 

the strategy has been to provide a system for measuring as many 

tree tops as possible automatically with a high positioning 

accuracy and a low commission error rate. After manual 

amendment the 3D tree tops provide tree heights and 2D image 

positions that can be used as seed points for the remaining tasks 

of species identification and measurement of crown dimensions, 

which can possibly be solved in the 2D image domain.  
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ABSTRACT: 
 
Over the last years lidar has become one of the major techniques to obtain spatial data in coastal areas. Due to the fact that lidar 
systems can provide several 3D points per square meter and high height accuracy, lidar data is suitable for several applications in the 
field of coastmonitoring and coastprotection. Generally, a digital terrain model (DTM) is used as basic spatial information for 
applications like morphologic change detection and hydrological modelling. In order to generate a DTM in coastal areas from lidar 
data, a classification process has to be performed to separate the lidar points into water and land points. Only land points, 
representing the coastsurface, are used to calculate the DTM.  
In this paper, we present a new method to classify lidar data in water points and land points. The original points of each flight strip 
are classified scan line by scan line. Several parameters which are directly related to each point as well as the point distribution 
within one scan line are used for the classification method. A fuzzy logic concept is applied to determine a membership value for 
every point belonging to the class water. Then, a threshold method is employed to classify the points of every scan line. Afterwards, 
classification discrepancies are detected and corrected by comparing height differences between neighboured water and non-water 
points. In order to achieve a more realistic classification result small isolated point groups of a certain class are removed. To 
illustrate the ability of the algorithm two examples with different characteristics (lidar scanner system, point density, point 
distribution etc.) are presented. The results are promising and constitute a proof-of-concept for the suggested method. 
 

1. INTRODUCTION 

 
Lidar has become one of the major techniques to obtain high 
accurate spatial data in coastal areas. The method delivers, 
depending on the lidar system and flight parameters, several 
laser points per square meter with high height accuracy. Large 
areas can be registered fast (e.g. Brügelmann and Bollweg 
2002) and digital terrain models (DTMs) can then be 
interpolated from the individual 3D points. Generally, a DTM is 
used as basic spatial information for applications like 
morphologic change detection and hydrologic modelling. In 
order to calculate a DTM, a filtering process has to be 
performed to separate lidar points into terrain points and off 
terrain points (Sithole and Vosselman, 2004).  
Within coastal areas, several regions are covered by water. 
Typically the lidar beam does not penetrate water. Hence, lidar 
points measured in water regions describe the water surface but 
not the DTM lying underneath. In order to obtain a DTM of 
high accuracy, another process must be included to identify 
water points and exclude them from the DTM calculation.  
Depending on the available data sources different approaches 
are possible. Two general cases can be distinguished. In the first 
case simultaneous acquisition of lidar and multispectral data is 
assumed. In this case, the images can be used to classify water 
with common classification methods. Lecki et al. (2005) 
pointed out that high-resolution multispectral imagery and 
appropriate automatic classification technique offer a viable 
tool for stream mapping. Within their analysis, especially water 
was classified accurately. Mundt et al. (2006) demonstrated that 
the accuracy of classification significantly increases by 
combining images and height data. However, multicspectral 
images are not always acquired during lidar data capture. Thus, 
in the second case, only the lidar data is assumed to be 
available. Typically, lidar data providers deliver the original 3D 

points and an intensity value, which corresponds with the 
strength of the backscattered beam echo. Up to now, only a few 
approaches to use the intensity of lidar data for classification 
were published. Katzenbeisser and Kurz (2004) emphasized the 
fact that classification methods used for remote sensing images 
need to be adapted to intensity data. They pointed out that the 
intensity has only a useful information value within open areas 
where only one echo was detected. Hence, other criteria’s have 
to be considered in order to filter water points from lidar data. 
In this paper, we first summarize important physical 
characteristics of lidar data and previous approaches, which 
were carried out to separate water points in lidar data. Then, a 
new method is presented to classify lidar data into water and 
land points. Starting from original irregularly distributed lidar 
points, several parameters are derived and rated using a fuzzy 
logic concept. Several steps are taken after classification in 
order to detect discrepancies and enhance the classification 
result.  
To illustrate the ability of the algorithm, two examples with 
different characteristics (lidar scanner system, point density, 
point distribution etc) are presented. Finally, this paper 
concludes with a summary and an outlook on further 
development issues. 
 
 

2. STATUS OF RESEARCH 

 
2.1 Physical characteristics of lidar data within coastal 

areas 

In order to develop a suitable algorithm which is capable of 
classifying the lidar data (raw 3D-lidar points and intensity 
values) the physical characteristics of common lidar systems as 
well as the reflection of water and land areas have to be 
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considered. Generally, lidar systems operate in the near infrared 
range. Wolfe and Zissis (1989) describe the absorption of 
infrared radiation depending on the illuminated surface material 
and the wavelength. They pointed out that the absorption for 
water is significantly higher than the absorption for soil. This 
leads to the fact that the intensity of water points is regularly 
lower than the intensity of land points. 
Additionally, as a result of the Rayleigh Criteria, calm water 
surfaces behave like a mirror. Thus, specular reflexion occurs. 
Depending on the spatial orientation of the aircraft, the emitted 
laser pulse and the water surface with respect to each other, in 
general only a small part of the emitted radiation returns to the 
detector. Often, a distance measurement can not accomplished 
successfully because the received radiation energy is not 
distinguishable from background noise. This leads to the fact 
that the point density of lidar data within water areas is often 
significantly lower than within land areas. 
 
2.2 Filtering off terrain points and filtering water points 

respectively 

The filtering of off terrain points from lidar data is a common 
and necessary step in order to derive a DTM. Many different 
approaches (i.e. Sithole and Vosselman, 2005 or Tóvári and 
Pfeifer, 2005) were published and provide accurate results 
(Sithole and Vosselman, 2004). Neglecting differences of the 
approaches it can be stated that high points (or segments 
respectively) in the vicinity of lower points are generally 
labelled as off terrain points. 
In order to calculate an accurate DTM in coastal areas a 
filtering of water points is performed. Analogous to off terrain 
points water points do not belong to the surface and have to be 
removed from the data set. Water points have a lower height 
than the surrounding land points. Theoretically, an inverse 
strategy of filtering off terrain points is able to classify likely 
water points. However, the overall correctness of a 
classification using such an inverse filtering strategy is not 
satisfying due to the fact that common filter techniques use only 
geometrical relationships of neighboured lidar points or 
segments respectively. Hence, local minima like tidal trenches 
are detected, but they may be dry and thus the detected points 
actually belong to the DTM. Furthermore, completely filled 
tidal trenches or swales can not be detected because the water 
level height is nearly equal to the surrounding flat coastal area. 
 
2.3 Previous approaches to extract water areas from lidar 

data 

Brockmann and Mandlburger (2001) developed a technique to 
extract the boundary between land and water of rivers, and 
applied it to data from the German river “Oder”. Based on lidar 
data, the planimetric location of the river centre line as well as 
bathymetric measurements of the riverbed, the boundary was 
obtained within a two-stage approach. First, the height level of 
the water area was derived by averaging the lidar points in the 
vicinity of the river centre line. Afterwards, the DTM of all 
lidar points (including also points of the water surface) was 
calculated. Then, the 0 m contour line of the difference model 
of the lidar DTM and the water height level was derived. This 
contour line is called the preliminary borderline. Within step 
two, the bathymetric points of the preliminary water area are 
combined with all lidar points outside the preliminary water 
area. Then, a DTM representing the riverbeds instead of 
waterlevel was calculated. Afterwards, the final borderline was 
obtained by intersecting the DTM including the riverbeds and 
the height level of water area.  

Brzank and Lohmann (2004) (see also Brzank et al., 2005) 
proposed another algorithm which separates water regions from 
non water regions based on a DSM calculated from lidar data. 
The main idea was to detect reliable water regions and expand 
them with the use of height and intensity. For that purpose local 
height minima were extracted from the DSM, which represent 
the potential seed zones of the searched water areas. This was 
followed by region growing procedure using height and 
intensity data of the grid points.  
 
2.4 Evaluation of previous approaches 

In order to classify water points within lidar data, only height 
information is not sufficient. At least one additional data source 
is necessary. Brockmann and Mandlburger (2001) used the 2D 
position of the river as prior information. Hence they knew 
approximately where water occurs. Assuming that a water area 
has lower height than the surrounding land, the border can be 
detected. Next to the 2D position and the lidar data, also 
bathymetric measurements are prior information of this method. 
Thus, this algorithm needs additional information which is not 
always available in our application, taking into account that 
form and position of tidal creeks are changing fast.  
Brzank and Lohmann (2004) tried to use the intensity as 
additional criteria to classify water. The algorithm provides 
accurate results if the intensity of water points differs 
significantly from land points. However, due to the fact that the 
intensity is generally very noisy and strongly influenced by the 
lidar scanner type and used wavelength, type and water ratio of 
the illuminated area, the classification accuracy can be 
unpredictable. Thus, at least one criterion has to be 
implemented in a new algorithm. Furthermore, this method does 
not work with the original lidar data but uses grid data. This is a 
crucial disadvantage because lidar data is obtained strip wise 
and generally, parts of several flight strips are combined in 
order to calculate a certain grid. Depending on the flight 
planning, a time shift occurs between neighboured flight strips. 
Taking into account that the water level in coastal area varies 
with time due to the tide, several water levels of the same water 
area may thus occur in a grid.  
 
2.5 Requirements of the algorithm to classify water points 

from lidar data 

Based on the physical characteristics of lidar data and the 
evaluation of the previous approaches, the following 
requirements for a successful algorithm are defined: 
 

1. The algorithm uses the original lidar data. 
2. No additional data sources such as images or vector 

GIS data are permissible.  
3. The point density is used as additional criterion. 
4. The classification is done for every flight strip. 

 
 
3. CLASSIFICATION OF WATER POINTS USING 1D-

LIDAR PROFILES 

 
The new classification method is based on the analysis of 1D- 
lidar profiles of the original raw data in combination with fuzzy 
logic. Each lidar strip is classified separately followed by a 
check across the scan lines. At first the lidar points of a strip are 
grouped into single scan lines. Then a membership value of 
class water (see equation 1) is calculated for each point of every 
scan line. The membership value depends on the parameters 
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height, slope, intensity, segment length, point distribution and 
missed points (see section 3.1), the membership function and 
weight for every used parameter. Afterwards, the classification 
is done using a hysteresis-threshold-method. Finally, in order to 
detect and remove discrepancies, several steps are applied. 
They use the classification results of neighbouring scan lines to 
overcome the limitation of 1D profile classification. All 
classification steps are described in more detail in the 
following. 
 

(1) 
 

 
δi: weight parameter i 
µ(x) entire membership of class water for point x  

 µi(x) membership value water point x depending on 
parameter i 

 
3.1 Employed parameters and membership function 

For classification several parameters are used. The parameters 
are: 
 
Height: The higher a lidar point is situated the higher is the 
assumption that this point is not a water point. Thus with 
increasing height the membership value for class water 
decreases. 
 
Slope: The more the slope within the profile direction increases 
the more the assumption holds that the following point is not a 
water point. Thus, with increasing slope the membership value 
for class water decreases. 
 
Intensity: As pointed out earlier a low intensity value is an 
indication for a water point. Thus, with decreasing intensity the 
membership value for class water increases. 
 
Missed points: If holes occur from one profile point to next 
within the scan line, discrete point(s) are not measured. The 
appearance of holes is an indication for a water region. The 
bigger a hole between two neighboured points the higher is the 
assumption for the occurrence of water. In order to deal with 
points which are close to the border line between land and 
water the number of missed points is checked in both direction 
for every profile point. Only the membership value related to 
the smaller number of missed points is used further. 
 
Segment length: Based on the determination of the missed 
points the number of contiguous points within a profile can be 
derived. Thus, every profile point is a member of a certain 
segment with a certain segment length. With increasing 
segment length the indication increases that the segment points 
are land points.  
 
Point density: For every point the number of previous and 
following profile points within a certain distance s can be 
determined. The higher number is divided by the distance s. 
Thus, with increasing point density the membership value for 
class water decreases. 
 
It has to be pointed out, that the parameters missed points, 
segment length and point density are related to the fact that 
generally the number of points within the water area is smaller 
than within the land area. The usage of all parameters is 
possible, but existing correlation should be considered. 

In order to calculate the membership value for a certain 
parameter a membership function and thresholds are needed. 
Basically, every function which increases strictly monotonic (or 
decreases strictly monotonic) can be used. In our algorithm, a 
straight line is applied. The two resulting thresholds limit the 
application range of the membership function. Outside the 
application range the membership value is set to 0 or 1 
depending on the parameter. Figure 1 illustrates the calculation 
of the membership value of the parameter height for a scan line. 
After selecting the two thresholds the membership value can be 
calculated.  
 

 
Figure 1: Deriving the membership value of the parameter 
height for a 1D-profile 
 
After the calculation of the membership value for every scan 
line point using equation 1 the classification is done with a 
hysteresis-threshold-method. A low and a high threshold have 
to be defined. The classification of the actual point depends on 
the classification result of the previous point. If the previous 
point was classified as land the membership value of the actual 
point has to be higher than the high threshold to be classified as 
water. If the previous point was classified as water the 
membership value of the actual point has to be only higher than 
the low threshold to be classified as water. 

 
Figure 2: Classification of a 1D-profile with hysteresis-
threshold-method 
 
Figure 2 illustrates the classification process. The classification 
starts from the beginning (left side) of the profile. All of the 
first points have a membership value below the low threshold. 
They are classified as land points. Then, two points next to each 
other have a membership value above the high threshold, thus 
they are classified as water. The next four points of the profile 
are in between both thresholds. These four points are also 
classified as water points, because the previous point was 
classified as water and the membership value is higher than the 
low threshold. Thus, six points of the illustrated profile are 
classified as water points. It has to be mentioned that this 
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classification depends on the direction, in which the profile is 
processed. If the classification starts from the other side (the 
end of the profile) the result may be not the same. In case of 
Figure 2 only the two points above the high threshold are 
considered to be water points if the classification starts from the 
right side. 
 
3.2 Elimination of classification discrepancies and 

classification enhancement 
 
Typically, classification techniques do not output error-free 
classification results. In order to obtain a suitable result 
classification discrepancies have to be removed. To detect and 
remove these discrepancies several steps are performed. They 
are all based on the fact that a water point next to a land point 
must have a lower height. At first, every individual profile is 
checked. If a water point next to a land point is found, the mean 
height of all water points within a certain distance is compared 
with the height of the land point. This mean height of several 
neighboured water points is used to suppress the influence of 
occurring waves. If the mean water height is equal or higher 
than the land height, a classification discrepancy occurs. Then, 
the average of the mean membership value of the water points 
and the membership value of the land point is calculated and 
compared to the average of the two thresholds used for the 
hysteresis-threshold-classification (see Figure 2). All points are 
labelled as water/land if the average membership value is 
higher/lower than the average of both thresholds. 
Due to the fact that the algorithm is limited to 1D-profiles, the 
classification does not take neighboured points of the previous 
and next scan line into account. Therefore, in order to improve 
the result the second dimension is considered in the next step. 
Every scan line is compared to its left and right neighbour scan 
line. It is assumed that every correctly classified segment 
continues in the previous as well as the next scan line. A simple 
example may illustrate this assumption. Assuming a tidal trench 
which is filled with water is present in the lidar data. Several 
scan lines cross the water area. Assuming further that all scan 
lines are classified correctly, the classified water segment of the 
tidal trench for a certain line can be found next to this segment 
in the previous and the next scan line.  
To check all classified segments of every scan line we use the 
following approach. First, every scan line is split into classified 
segments of the same class (see figure 3). Then, a rectangle 
with a width of three scan lines is generated, which is limited 
by the first and last point of the considered segment. 
Afterwards, all points from the previous and next scan line 
which are inside the rectangle are extracted. If no point of the 
extracted previous scan line and also no point of the next scan 
line have the same classification as the considered segment, the 
classification is defined to be wrong. Then, the classification of 
the considered segment is changed. Figure 3 shows an example 
of the check. The segment in the centre of the figure is detected 
as an isolated segment and the classification is changed while 
the segment in the lower right remains.  
 

 
Figure 3: Check for isolated classified segments, crosses 
represent classified water points – circles represent classified 
land points, scan lines run from left to right  

Subsequently, another classification check is performed. Again 
we use the assumption that if the height of a water point is 
equal or higher than a neighboured land point a classification 
discrepancy occurs. At first a certain number of neighboured 
scan lines is selected (e.g. 10). Then, a cross section is created 
for every point of each scan line perpendicular to the azimuth of 
the scan line. For every scan line the point with the smallest 
distance to the cross section is determined. The point becomes a 
member of the cross section if the distance is smaller than a 
predefined distance. Then, every cross section is checked 
analogous to the control of every individual scan line (see 
above). 
After performing these checks the number of classification 
errors decreases. However, small classified segments may 
remain. Thus, the classification results may appear to be noisy. 
In order to enhance the classification further, small classified 
segments (of one scan line as well as perpendicular using 
several scan line) which are surrounded by classified segments 
of the other class are detected and removed. Finally, an almost 
consistent and smooth classification result can be obtained.  
 

 
Figure 4: Elimination of classification discrepancies and 
enhancement, bright points represent land, dark points represent 
water. a) Orthophoto with digitized water-land-border, b) 
Classification result without further checks for discrepancies, c) 
Discrepancies within every scan line removed, d) Segments 
removed, which only occur in one scan line, e) discrepancies 
removed within perpendicular cross section, f) Small isolated 
segments removed 
 
Figure 4 illustrates the process of removing discrepancies and 
enhancing the classification. Figure 4 a) shows a small part of 
the coast line of the East Frisian Island Langeoog. The added 
black line represents the border between water and beach. 
Figure 4 b) shows the classification result without checking for 
discrepancies. Bright points are classified as land. Dark points 
are classified as water. Within the water area some points are 
classified incorrectly due to the fact that they are part of long 
segments, which leads to a low water membership value. 
Furthermore, waves are present. Points on waves are higher, 
thus they have a low water membership value. The following 
images show the stepwise process of enhancement and 
removing discrepancies: 4 c) – discrepancies within every scan 
line removed, 4 d) segments removed, which only occur in one 
scan line, 4 e) – discrepancies removed within perpendicular 
cross section, 4 f) – small isolated segments removed. Finally, a 
smooth classification result without isolated points is obtained. 
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3.3  Automated Determination of used parameters in 
training areas 

 
It is obvious that the selection of the used parameters, the 
membership function, the weights as well as the thresholds have 
a crucial impact on the classification result. Depending on the 
data (lidar scanner type, weather conditions etc.) only 
parameters which differ between land and water should be used. 
Because the user has to make these selections, he has to know 
the data rather well. In order to assist the user with his choice, 
at least one training area for water and for land is selected 
interactively. In our approach, the mean value of every 
parameter within the training area is determined. Based on these 
values, the user can better decide, which parameters are suitable 
for the classification. 
 
3.4 Classic Fuzzy classification concepts vs. suggested 

approach 
 
The classification algorithm uses fuzzy logic. Based on the 
fundamentals introduced by Zadeh (1965) also classification 
algorithms containing fuzzy concepts were developed and 
widely used (Traeger, 1993). Although these fuzzy 
classification concepts deliver suitable results we adapt the 
classic concept to overcome some difficulties.  
In classic fuzzy classification concepts fuzzy sets (for example: 
low, medium, high) for every used parameter are defined. 
Based on membership functions exact values for certain 
parameters can be transformed into membership values for all 
defined fuzzy sets. Then, a rule base is defined which decribes 
how to combine all possible combinations of fuzzy sets of all 
used parameters. Finally, a defuzzification process is performed 
in order to allocate the result to a certain class. In our method 
we do not define fuzzy sets for the used parameters (for 
example: low height, medium height, high height) but transform 
sharp values of every used parameter in a membership value for 
the output class water by using two thresholds as well as the 
membership function. Thus, we do not have to define a rule 
base, which is a rather complex task. Assuming that we define 
three fuzzy sets for every used parameter (6) a total of 36 = 729 
rules have to be defined. Furthermore, the membership function 
of every fuzzy set has to be defined, too. According to the data, 
the membership functions have to be changed either in an 
automated process or by a human operator. Furthermore, 
practical tests with various lidar data pointed out, that the 
benefit of a parameter also depends on the used lidar scanner 
system. Thus, the rule base has to be designed taking the used 
lidar system into account. In our approach, it is easier to 
classify water areas, because the needed parameter values 
(thresholds and weights) can be derived by using training areas.  
 
 

4. EXAMPLES 

To show the capability of this approach two different examples 
are presented. The first example is taken from the lidar 
campaign “Langeoog 2005”. The East Frisian Island 
“Langeoog” was flown by the German company Milan using 
the LMS Q560 system of the company Riegl. The example 
contains a large see water area, mainly dry coast region and 
some water puddles. The second example contains a certain part 
of a flight strip of the campaign “Friedrichskoog 2005” which is 
situated at the coast of the North Sea next to the estuary of the 
river Elbe. The flight was carried out by the German company 
Toposys using their own lidar system Falcon II.  

Within the first example 361.280 points were classified (see 
Figure 5). The classification was mainly based on the fact that 
the point density of the lidar points within water was 
significantly lower than over land. Additionally, the height also 
had a major impact on the classification result.  
The second example (see figure 6) contains 998.029 lidar 
points. Due to the fact that the point density did not differ 
significantly between water and land, the classification was 
based on the parameters height, slope and intensity. 
 

 
Figure 5: Classification of a part of a flight strip of the 
campaign “Langeoog 2005” – left: lidar DTM, right: classified 
water points = white dots, classified land points = black dots  
 

 
Figure 6: Classification of a part of a flight strip of the 
campaign “Friedrichskoog 2005” – left: lidar DTM, right: 
classified water points = white dots, classified land points = 
black dots 
 
The used parameters, thresholds and weights are listed in Table 
1. The thresholds of the parameters were obtained from training 
areas (see section 3.3) while the weights and the hysteresis-
threshold-values were defined manually based on experience 
with the data set. 
 
Table 1: Classification parameter of Example “Langeoog 
2005” and “Friedrichskoog 2005” 

 Langeoog 2005 Friedrichskoog 2005 
Threshold Threshold  

 Water Land 
Weight 

Water Land 
Weight 

Height [m] -0.8 -0.4 2 1.4 2 3 
Slope [°] -10 10 1 -10 10 1 
Intensity --- --- 0 22 40 1 
Missed 
points 4 0 2 --- --- 0 

Segment 
length 2 10 2 --- --- 0 

Point 
density 

[point/m] 
0.722 1.5 5 --- --- 0 

 low high low high 
Water 

Threshold (35%) (50%) (40%) (50%) 
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Table 2: Classification result of Example “Langeoog 2005” and 
“Friedrichskoog 2005” 

 Langeoog 2005 Friedrichskoog 
2005 

Number 
classified points 361.280 998.029 

Classified water 
points 121.399 86.991 

Classified land 
points 239.881 911.038 

 Water Land Water Land 

Classified water 
points 119.253 2.146 79.803 19.695 

Classified land 
points 990 238.891 7188 891.343 

Correctness [%] 99,2 99,1 91.7 97.8 

 
To check the reached correctness the simultaneously acquired 
image data was merged into an orthophoto mosaic. Based on 
this mosaic the water and land area was digitized and 
intersected with the classified points. The results of the check 
are listed in Table 2. It can be seen that for “Langeoog 2005”, 
the rate of correctly classified points within the land as well as 
the water is higher than 99%. The main border line between the 
sea and coast was nearly completely extracted. Only in the 
upper centre part of the flight strip the classification is not very 
accurate due to the fact that this part contains wet sand only 
slightly higher than the sea water level. The point density 
within the wet sand is significantly lower than in the 
neighboured dry sand area, thus the classification provides high 
water membership values for this part.  
Also for “Friedrichskoog 2005”, the results were very 
promising. 91.7% of the classified water points and 97.8% of 
the classified land points are correct. Analogous to the first 
example the algorithm has problems to classify wet land areas. 
Their intensity values are generally low and their height is only 
slightly higher than the neighboured water area.  
 
 

5. CONCLUSION AND OUTLOOK 

 
An approach to separate lidar points into the classes water and 
land based on 1D profile analysis of the raw lidar data has been 
introduced. The classification is based on the original lidar data 
and classifies for every flight strip. The algorithm uses several 
parameters which are derived from the lidar data. The 
classification is based on the fuzzy logic concept. Two different 
examples are shown to illustrate the capability of this algorithm. 
They point out that the classification algorithm is able to deliver 
accurate results for different lidar scanner types. However the 
classification lacks in accuracy if wet land area of low height 
occur.  
In order to increase the automation rate it will be part of the 
future work to determine meaningful weights of the used 
parameter as well as the two final water thresholds from 
training areas.  
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ABSTRACT: 
 
Traffic monitoring requires mobile and flexible systems that are able to extract densely sampled spatial and temporal traffic data in 
large areas in near-real time. Video-based systems mounted on aerial platforms meet these requirements, however, at the expense of 
a limited field of view. To overcome this limitation of video cameras, we developed a concept for automatic derivation of traffic 
flow data which is designed for commercial medium format cameras with a resolution of 25-40 cm and a rather low frame rate of 
only 1-3 Hz. Since resolution and frame rate are the most limiting factors, the focus of the first implementations and evaluations lies 
on the approach for automatic tracking of vehicles in image sequences of such type in near real-time. The tracking procedure relies 
on two basic components: a simple motion model to predict possible locations of previously detected vehicles in the succeeding 
images and an adaptive shape-based matching algorithm in order to match, i.e. recognize, the detected vehicles in the other images. 
To incorporate internal evaluations and consistency checks on which the decision of a correct track can be based, the matching is 
done over image triplets. The evaluation of the results shows the applicability and the potentials of this approach. 
 
 

1. INTRODUCTION 

1.1 Traffic Monitoring 

Traffic monitoring is a very important task in today’s traffic 
control and flow management. The acquisition of traffic data in 
almost real-time is essential to swiftly react to current 
situations. Stationary data collectors such as induction loops 
and video cameras mounted on bridges or traffic lights are 
matured methods. However, they only deliver local data and are 
not able to observe the global traffic situation. Space borne 
sensors do cover very large areas. Because of their relatively 
short acquisition time and their long revisit period, such 
systems contribute to the periodic collection of statistical traffic 
data to validate and improve certain traffic models. However, 
often, monitoring on demand is necessary. Especially for major 
public events, mobile and flexible systems are desired, which 
are able to gather data about traffic density, average velocity, 
and traffic flow, in particular, origin-destination flow. Systems 
based medium or large format cameras mounted on airborne 
platforms meet the demands of flexibility and mobility. While 
they have the capability of covering large areas, they can 
deliver both temporally and spatially densely sampled data. 
Yet, in contrast to video cameras, approaches relying on these 
types of cameras have to cope with a much lower frame rate. 
 
A more extensive overview on the potential of airborne vehicle 
monitoring systems is given in (Stilla et al., 2004), while the 
use of aerial image sequences to derive traffic dynamics is 
studied in (Toth et al., 2003). There, it is also shown that the 
knowledge about traffic income and outgo directions allows a 
more precise and effective handling of traffic flow 
management. 
 
1.2 Related Work 

In the last decades, a variety of approaches for automatic 
tracking and velocity calculation have been developed. Starting 
with the pioneering work of Nagel and co-workers based on 
optical flow (Dreschler and Nagel 1982; Haag and Nagel, 
1999), the usage of stationary cameras for traffic applications 
has been thoroughly studied. Further examples for this category 

of approaches are (Dubuisson-Jolly et al., 1996; Tan et al., 
1998, Rajgopalan et al., 1999; Meffert et al., 2005). Some of the 
ideas incorporated in these approaches have influenced our 
work. Though, a straigtforward adoption is hardly possible 
since these approaches exploit oblique views on vehicles as 
well as a higher frame rate – both, however, at the expense of a 
limited field-of-view. Another group of approaches uses images 
taken by a photogrammetric camera with a high resolution of 5-
15cm on ground (e.g., (Hinz, 2004)). Also, these approaches are 
hardly applicable since the vehicle’s substructures which are 
necessary for matching a wire-frame model are no more 
dominant in images of lower resolution. 
 
In (Ernst et al., 2005), a matured monitoring system for real 
time traffic data acquisition is presented. Here, a camera system 
consisting of an infrared and an optical sensor is mounted on 
slowly moving air vehicles like an airship or a helicopter, but 
also tests with aircrafts have been conducted. Traffic parameter 
estimation is based on vehicle tracking in consecutive image 
frames collected with a frame rate of 5 Hz and more. While the 
results are promising, a major limitation of this system is the 
narrow field of view (the width of one single road) due to the 
low flying altitude that is necessary to obtain a reasonable 
resolution on ground.  
 
Considering the data characteristics, the most related 
approaches are (Reinartz et al. 2005) and (Lachaise, 2005). Like 
us, they use aerial image sequences taken with a frame rate of 
1-3 Hz and having a resolution of 25-40cm. Vehicle detection is 
done by analyzing difference images of two consecutive 
frames. This method is quite robust to detect moving objects 
and to quickly find possible locations for car tracking. Yet, with 
this approach, it is not possible to detect cars that are not 
moving, which often also happens for active vehicles if they are 
stuck in a traffic jam or waiting at a traffic light or stop sign. 
Furthermore, tracking of detected vehicles includes an 
interactive component at the current state of implementation. 
 
The boundary conditions of our work are primarily defined by 
the use of medium format cameras of moderate cost. They 
allow a large coverage and still yield a resolution of roughly 
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25cm. However, due to the high amount of data for each image, 
the frame rate must be kept rather low, i.e. 1 up to a maximum 
of 3 Hz. In the following, we will outline a concept to 
automatically detect and track vehicles which is designed to 
deal with these constraints. The main contribution presented 
here relates to the tracking procedure rather than the detection 
of the vehicles. We focused on this point first since the low 
frame rate is the most influencing factor of the overall concept, 
and the benefits and limitations of this module should be clearly 
analyzed. In addition, also some first results of automatic 
detection will be given.  
 
 

2. OVERALL CONCEPT 

The underlying goal of the concept outlined in the following is 
the fulfillment of near real time requirements for vehicle 
tracking and derivation of traffic parameters from image 
sequences. The general work flow is depicted in Fig. 1. 
 

 
Figure 1. Work flow of online vehicle tracking 

 
The images are co-registered and approximately geo-referenced 
after acquisition. This process is commonly supported by 
simultaneously recorded navigation data of an INS-/GPS-
System. GIS road data, e.g. stemming from NAVTEQ or 
ATKIS data bases, are mapped onto the geo-referenced images 
and approximate regions of interest (RoI) are  delineated(so-
called road sections). Thus, the search area for the following 
automatic vehicle detection can be significantly reduced. For 
further processing, it is helpful to extract the road as well as 
their lanes in addition, since geo-referencing might not be 
accurate enough and GIS data rarely includes the position of 
individual lanes. An example for the automatic determination of 
lane sections using a slightly modified version of the road 
extraction system of Hinz & Baumgartner (2003) is shown in 
Fig 2. This example is generated by a stand-alone module and 
not yet incorporated into the automatic processing chain. 
 
A car detection algorithm is supposed to deliver positions and, 
optionally, additional attributes such as boundary and direction 
constrained to the lanes within the RoI. Tests with matching 
wire frame models of cars showed only limited success due to 
the moderate ground resolution of 25-40cm. More promising 
results were obtained by a differential geometric blob detection 
algorithm similar to (Hinz, 2005), which has to be trimmed for 
colored blobs yet. Results of blob detection are shown in Fig. 3. 

 
Figure 2. Intermediate result of lane extraction 

 

 
Figure 3. Results of a blob detection 

 
After their detection in the first image, the cars are tracked by 
matching them within the next two images. To this end, an 
adaptive shape-based matching algorithm is employed 
including internal evaluation and consistency checks (see 
details in Sect. 3). From the results of car tracking, various 
traffic parameters are calculated. These are most importantly 
vehicle speed, vehicle density per road segment, as well as 
traffic flow, i.e. the product of traffic density and average 
speed, eventually yielding the number of cars passing a point in 
a certain time interval.  
 
In our tests of vehicle tracking, the first three parts are 
simulated, thereby accounting for potential impreciseness and 
uncertainty of the data. Their implementation is due to future 
work: i) The co-registration between image pairs is done by an 
affine 2D-transformation using least-squares optimization. This 
approximation seems reasonable, since our focus is on roads, 
which are generally almost planar objects. ii) GIS data have 
been simulated by digitizing road lines for each carriage way of 

Geo-referencing and Co-registration

GIS Integration 

Car Detection 

Car Tracking 

Calculation of Traffic Parameters 
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a road. These lines will be referred to as “road polygons” in the 
sequel. They consist of “polygon points” P, while two of these 
enclose a “polygon segment” L. For each segment, the length as 
well as the orientation angle ang(L) are determined. iii) Cars are 
selected manually by digitizing the approximate center of the 
car including the shadow region since the shadow is an 
important indicator in detection and tracking a vehicle. 
However, since this step will be replaced by an automatic 
procedure in the near future (see Fig. 3), we will call them 
“detected vehicles” or “detected cars” in the following. 
 

 
3. VEHICLE TRACKING 

Before outlining algorithmic details of the tracking procedure in 
Sect. 3.2., we will first sketch the underlying vehicle motion 
model. 
 
3.1 Vehicle Motion Model 

The frame rate of the image sequences dictates the change of 
locations of a car, i.e. the possible maneuvers a car has 
undergone in the inter-frame time interval. Cars possibly move 
sideways and forward quite far within a period of half a second 
or more. Therefore, a motion model for predicting a vehicle’s 
position in the next image is necessary. 
 
3.1.1 Motion Model for Single Vehicles: We suppose that 
cars generally move in a controlled way, i.e. certain criteria 
describing speed, motion direction and acceleration should be 
met. To better incorporate the continuity of motion direction, 
we consider also a third image of the sequence. Figure 4 
illustrates some of these cases. For instance, there should be no 
abrupt change of direction and change of speed, i.e. abnormal 
acceleration, from one image to the others. In general, the 
correlation length of motion continuity is modelled depending 
on the respective speed of a car, i.e., for fast cars, the motion is 
expected to be straighter and almost parallel to the road axis. 
Slow cars may move forward between two consecutive images 
but cannot move perpendicular to the road axis or backwards in 
the next image. These model criteria are incorporated in our 
tracking evaluation described in section 3.2. 
 
3.1.2 Motion Model for Vehicle queues: In more complex 
traffic situations, the motion model can be extended to consider 
also vehicle queues. For images taken with a frame rate of 1-3 
Hz, the car topology within a queue changes very rarely from 
one image to the other, although one could think of more 
complex queue motion models that describe the interaction of 
cars in a Markov-Chain manner.  
 

 
Figure 4. Examples for possible and impossible car movement 

Hence, we currently analyze only pairs of cars as shown in Fig. 
5. The distance of two cars following each other might increase 
or decrease, of course with a lower bound depending on the 
vehicles’ speed. The trailing car may start to pass the leading 
car and change lanes. However, the cars cannot switch their 
relative positions. 
 

 
Figure 5. Vehicle queue behavior 

 
 
3.2 Tracking procedure 

In the current implementation, we focus on single car tracking 
in three consecutive images. Figure 6 shows the workflow of 
our tracking algorithm. As it can be seen, image triplets are 
used in order to gain a certain redundancy allowing an internal 
evaluation of the results. Of course, one could use more than 
three images for tracking. However, vehicles that move towards 
the flying direction only appear in few images so that the 
algorithm should also deliver reliable results for a low number 
of frames.  
 
We start with the co-registration of the three images I1, I2, and 
I3, followed by car detection in I1 and the determination of a 
number of vehicle parameters which describe the actual state of 
a car, i.e. the distance to the road side polygon and the 
approximate motion direction (Sect. 3.2.1). Then, we create a 
vehicle image model C1 by selecting a rectangle around the car. 
By using a shape-based matching algorithm, we try to find the 
car in the other images. In order to reduce the search, we select 
a RoI for the matching procedure based on the motion model 
(Sect. 3.2.2). The matching procedure delivers matches M12 in 
image I2 and the matches M13 in image I3. It should be 
mentioned, that both M12 and M13 contain multiple match 
results also including some wrong matches (see Fig. 7). As 
output of the matching algorithm, we receive the position of the 
match center. 

  

 
Figure 6. Workflow for the vehicle tracking algorithm 
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Figure 7. a) First image with detected car; b) second image with 
two matches M12 for C1; c) third image with three matches M23 
for each C2 (corresponding matches are indicated by the same 
color; note the overlapping rectangles); d) third image with 
matches M13 
 
For each match M12, vehicle parameters are calculated and new 
vehicle image models are created based on the match positions 
of M12. These models are searched in image I3, eventually 
resulting in matches M23, for which vehicle parameters are 
determined again. Finally, the results are evaluated and checked 
for consistency to determine the correct track combination of 
the matches (see Sect. 3.2.3). 
 
3.2.1 Vehicle Parameters: The vehicle parameters are 
defined and determined as follows: 
 
Distance to road polygon: The road polygon closest to a given 
vehicle is searched, and root point PF is determined. This point 
is needed to approximate the direction of the car’s motion. 
 
Direction: A given vehicle’s motion direction dir(Car) is 
approximated as a weighted direction derived from the three 
adjacent polygon segments, thus also considering curved road 
segments. The situation is illustrated in Fig. 8. The distances d0 
and d1 between PF and the end points of the central line 
segment Ln are determined. The weight of the angle of Ln is set 
to 1. The weight of the adjacent line segments’ angles is 
computed using the relative distances d0 and d1. Note that d0 is 
used to determine the weight of ang(Ln+1) while d1 contributes 
to the weight of ang(Ln-1). This results in a higher weight for the 
angle of the closer adjacent line segment. The weights for both 
ang(Ln+1) and ang(Ln-1) add up to 1. Therefore, the overall 
weight sum is 2. The formula for dir(Car) is 
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3.2.2 Matching: For finding possible locations of a car in 
another image, we are using the shape-based matching 
algorithm proposed by (Steger, 2001) and (Ulrich, 2003). The 
core of this algorithm is visualized in Fig. 9. First, a model 
image has to be created. This is simply done by cutting out a 
rectangle of the first image around the car’s center. The size of 
the rectangle is selected in such a way that both car and shadow 
as well as a part of the surrounding background (usually road) is 
covered by the area of the rectangle. 
 

 
Figure 8. Approximation of the car’s motion direction 

 
 
Still, no other cars or distracting objects such as neighboring 
meadows should be within the rectangle. The rectangle is 
oriented in the approximate motion direction that has been 
calculated before. 
 
A gradient filter is applied to the model image and the gradient 
directions of each pixel are determined. For run time reasons, 
only those pixels with salient gradient amplitudes are selected 
and defined as model edge pixels, in the following also referred 
as model points. In the RoI of the search image, the gradient 
filter is also applied. Finally, the model image is matched to the 
search image by comparing the gradient directions. In 
particular, a similarity measure is calculated representing the 
average vector product of the gradient directions of the 
transformed model and the search image. This similarity 
measure is invariant against noise and illumination changes but 
not against rotations and scale. Hence the search must be 
extended to a predefined range of rotations and scales, which 
can be easily derived from the motion model and the navigation 
data. To fulfill real-time requirements also for multiple 
matches, the whole matching procedure is done using image 
pyramids. For more details about the shape-based matching 
algorithm, see (Ulrich, 2003) and (Steger, 2001). 
 
A match is found whenever the similarity measure is above a 
certain threshold. As a result, we receive the coordinates of the 
center, the rotation angle, and the similarity measure of the 
found match. To avoid multiple match responses close to each 
other, we limited the maximum overlap of two matches to 20%. 
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Figure 9. Principle of the shape-based matching 
method, taken from (Ulrich, 2003), p. 70 
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3.2.3 Tracking Evaluation 
The matching process delivers a number of match positions for 
M12, M23, and M13. In our tests, we used a maximum number of 
the 6 best matches for each run. This means that we may 
receive up to 6 match positions for M12 and 36 match positions 
for M23 for each C1. Also having 6 match positions for M13, we 
need to evaluate 216 possible tracking combinations for one 
car. At a first glance, this seems quite cost intensive. Yet, many 
incorrect matches can be rejected through simple thresholds and 
consistency criteria so that the computational load can be 
controlled easily. 
 
Evaluation scheme: As depicted in figure 10, we employ a 
variety of intermediate weights that are finally aggregated to an 
overall tracking score. Basically, these weights can be separated 
into three different categories, each derived from different 
criteria: i) First, a weight for the individual matching runs is 
calculated (weights w12, w23, and w13 in Fig. 10). Here, we 
consider the single car motion model and the similarity measure 
as output of the matching algorithm which is also referred to as 
matching score. ii) Based on these weights, a combined weight 
w123 for the combination of the matching runs M12 and M23 is 
determined. In this case, the motion consistency is the 
underlying criterion. iii) Finally, weights w33 are calculated for 
the combination of the match positions M23 and M13. For a 
correct match combination, it is essential that the positions of 
M13 and M23 are identical within a small tolerance buffer. 
 

 
Figure 10. Diagram of the match evaluation process for one car 
 
To avoid crisp thresholds and to allow for the handling of 
uncertainties, each criterion is mathematically represented as a 
Gaussian function 
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with parameters mean µ and standard deviation σ evaluating the 
quality of an observation with respect to the criterion. By this, 
the weights are also normalized. 
 
In the following, we will outline the calculation and 
combination of the different weights. 
 
Single Tracking Run: The score wmatch of the shape-based 
matching is already normalized (see (Ulrich, 2003) for details). 
In order to take into account the continuity criterion of a single 
car’s motion, the difference between the motion direction in the 
first image (say of model C1) and its conjugate in the next 
image (say match M12) is considered. In addition, a 

displacement angle ang12 is also included, that essentially 
reflects the direction difference between the orientation of the 
trajectory from C1 to M12 and the motion directions in C1 and 
M12. From this, the criteria value Dcross12 is derived, penalizing 
across displacements regarding the expected direction dirS12. 
To accommodate the fact that fast cars should move almost 
straight, Dcross12 is multiplied by the distance vel12 between M0 
and M12. 
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The final weight wdir for this criterion is obtained again by 
measuring its fit with the expected values represented by a 
Gaussian function.  The combined weight w12 then calculates to 

dirmatch www ⋅=12 . 
Please note that the formulae above also hold for very slow or 
even parking cars, since a very small motion distance vel12 will 
scale down Dcross12 and thereby allowing for nearly arbitrary 
direction differences. 
 
Motion consistency: In order to exclude implausible 
combinations of matches, we examine the consistency of a car’s 
trajectory over image triplets. The first criterion of this category 
is the change of velocity, i.e. the difference between vel12 and 
vel23.  

231213 velveldvel −= . 
In typical traffic scenarios accelerations of more than 1.5m/s2 
rarely happen, while a (nearly) constant speed is common. 
Again, such values are used to parameterize a Gaussian 
function resulting in weights wvel. 
 
In order to address the continuity of the trajectory, we carry out 
the very same calculations as for the single tracking run, now 
using C1 and M23, and compare it with the sum of Dcross12 and 
Dcross23 of the single displacements. If no difference appears, a 
car moves totally straight. Deviations from it are again modeled 
with a Gaussian function, eventually yielding weight wdis. The 
weights wvel and wdis are combined to w123 by multiplication.  

disvel www ⋅=123  
 
Identity of M13 and M23: As a last criterion, the identity of 
Matches M13 and M23 is checked (see Fig. 10). Weight w33 is 
simply the distance between the match positions of M13 and M23 
put into a Gaussian function. 
 
Final Weight: Assuming that the five individual measurements 
w12, w23, w13, w123, and w33 reflect statistically nearly 
independent criteria (which, in fact, does not perfectly hold), 
the final evaluation score W is computed as the product of the 
five weights: 

12333132312 wwwwwW ⋅⋅⋅⋅=  
 
The correct track is selected as that particular one yielding the 
best evaluation, however, as long as it passes a lower rejection 
threshold. Otherwise, it is decided that there is no proper match 
for a particular car. This may happen when a car is occluded by 
shadow or another object, but also when it leaves the field-of-
view of the images. The latter case can of course be predicted 
based on a car’s previous trajectory. Please note that the track 
evaluation allows a straightforward extension to more frames or 
even the tracking of multiple hypotheses if, e.g., the second best 
track reaches nearly the score of the best track. This option will 
be included in future work. 
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4. RESULTS AND DISCUSSION 

We tested our algorithm on image triplets. These images have 
been acquired with a Minolta DiMAGE 7i 5Mpixel camera at a 
frame rate of 2 Hz. The focal length was approximately 50mm. 
The approximate flight altitude was between 2000 and 3000 m, 
therefore we have a ground pixel size of roughly 25-40 cm. 
  

 
Figure 11. Results of the tracking in the test image.  
a) Detected vehicles in the first image; b) associated cars in the 
second image; c) final track positions in the third image; see 
text for explanation of the color coding. 
 
Figure 11 shows the tracking results for one cut-out of an image 
triplet. It depicts a quite busy highway with cars traveling with 
different velocities. What makes it also challenging is the 
presence of the severe shadows on the left carriage way of the 
highway.  
 
Correctly tracked cars are marked green while incorrect track 
results are marked red. Black rectangles mark cars which were 
correctly matched in the second image but moved out of the 
field-of-view of the third image. Blue marked vehicles are 
correctly matched in the second image but could not be tracked 
in the third image even though they were present. In this triplet, 
16 out of 20 cars could be correctly tracked. One car moved out 
of sight in the third image, therefore the comparison with the 
third image failed. One car was incorrectly tracked. Two cars 
couldn’t be found in the third image although they were 
present, one of those was at least correctly found in the second 
image. Note that it is possible that correct and incorrect tracks 
overlap in the third image. This is the case for the car in front of 
the yellow bus in Fig. 11. The car itself was tracked correctly, 
but was also falsely assigned to another car. 
 
In other image triplets with less dominant shadows, correct 
tracks were found for roughly 90% of the vehicles. However, 
more testing especially with larger and more variable scenes is 
still essential. The results reached so far are nonetheless very 
promising and show the potential of our approach. 
 
The total computation time for all tracks was approximately 5-6 
seconds on a 1.8 GHz standard computer. The tracking time for 
the fourth and following images will further decrease since 
prior knowledge from the first image triplet can be introduced 
to better restrain the regions of interest. In addition, we have to 
mention that the current C++ implementation is by far not yet 
optimized. 

5. FUTURE WORK 

As mentioned in Sect. 2 , we want to integrate the tracking 
approach with an automatic vehicle detection module including 
lane extraction in the near future. Concerning the tracking, it is 
planned to apply our approach not only to individual image 
triplets but – sequentially – also to longer image sequences in 
order to recover the whole trajectory of each car. Furthermore, 
when tracking vehicles in longer image sequences, we are 
planning to extent the motion model by an adaptive component 
so that besides evaluating the speed and acceleration of a car, 
the relations to neighboring cars can also be integrated into the 
evaluation. This would allow a more strict limitation of the 
search area and deliver a much more precise measure for 
tracking evaluation. Another area of research would be the 
detection and integration of context information such as large 
shadow areas or partial occlusions to be able to also track 
vehicles that were partially lost during the tracking.  
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ABSTRACT:

Roads are important objects for many applications of topographic data. They are often acquired manually and as this entails significant
effort, automation is highly desirable. Deficits in the automatic extraction hindering a wide-scale practical use haveled to the idea
of setting-up a EuroSDR test comparing different approaches for automatic road extraction. The goal is to show the potential of the
state-of-the-art approaches as well as to identify promising directions for research and development. After describing the data and the
evaluation criteria used, we present the approaches of a number of groups which have submitted results and give a detailed discussion
of the outcome of the evaluation of the submitted results. Wefinally present a summary and conclusions.

1. MOTIVATION AND BACKGROUND

The need for accurate, up-to-date, and detailed information for
roads is rapidly increasing. They are used in a variety of appli-
cations ranging from the provision of basic topographic infras-
tructure, over transportation planning, traffic and fleet manage-
ment, car navigation systems, location based services (LBS), and
tourism, to web-based applications. While road extractionhas
been performed by digitizing maps, the update and refinement
of the road geometry is often based on aerial imagery or high
resolution satellite imagery such as Ikonos or Quickbird. Addi-
tionally, terrestrial methods, particularly mobile mapping are of
significant importance for determining attributes for navigational
purposes.

Because road extraction from imagery, on which we focus for the
remainder of this paper, entails large efforts in terms of time and
money, automation of the extraction is of high potential interest.
Full automation of the extraction of topographic objects iscur-
rently practically impossible for almost all applicationsand thus
a combination with human interaction is necessary. An impor-
tant factor hindering the practical use of automated procedures is
the lack of reliable measures indicating the quality and accuracy
of the results, making manual editing lengthy and cumbersome.
Manufacturers of commercial systems have developed very few
tools for semi-automated extraction and their cooperationwith
academia has been minimal. Thus, users and producers of such
data, including national mapping agencies (NMAs) and largepri-
vate photogrammetric firms, have been left with many wishes to
be fulfilled.

NMAs increasingly plan to update their data in shorter cycles.
Their customers have increasing demands regarding the level of
accuracy and object modeling detailedness, and often request ad-
ditional attributes for the objects, e.g., the number of lanes for
roads. The insufficient research output and the increasing user
needs, necessitate appropriate actions. Practically oriented re-
search, e.g., the ATOMI project at the ETH Zurich (Zhang,
2004), has shown that an automation of road extraction and up-
date is feasible to an extent that is practically very relevant. Com-
panies that have developed semi-automated tools for building ex-
traction and other firms too, could very well offer similar tools
for roads.

These considerations led to the idea of setting-up a road extrac-
tion test under the umbrella of EuroSDR (European Spatial Data
Research – www.eurosdr.net). An important inspiration forit was
the highly successful 3D reconstruction test of (Scharstein and
Szeliski, 2002) which has become a standard in the field. The em-
phasis of our test is put on the thorough evaluation of the current

status of research (including models, strategies, methodsand data
used). Through testing and comparing existing semi- or fully au-
tomated methods based on various datasets and high quality ref-
erence data extracted manually by an experienced operator from
the image data used for the test, weak points as well as promising
directions should be identified and, strategies and methodsthat
lead to a fast implementation of operational procedures forroad
extraction, update, and refinement should be proposed. However,
since most of the participating groups focus on road extraction
rather than on refinement or update, the scope of this test has
been limited purely on road extraction for the time being.

2. DATA AND TEST SET-UP

Initially, eight test images were prepared from different aerial and
satellite sensors. All images have a size of at least 4,000� 4,000
pixels. Unfortunately, this was found to be insurmountableby
nearly all approaches and, therefore, the limiting factor of the
test. Reasons for an inability to process the larger scenes were
apparently twofold: First, because of missing functionality for
processing the whole image in patches which are then combined
into one solution, intermediate results just exceeded the available
memory. Second, even if this had not been the case, the time it
takes to process the images together with the need to adapt the
parameters to all variations in the larger scenes, meant these im-
ages required too much effort for most people. Hence we decided
eventually to cut out three smaller parts with 1,600� 1,600 pixels
of Ikonos images where we found the largest interest.

In the following, only those images are listed, for which at least
three extraction results were submitted:� 3 scanned aerial images from the Federal Office of Topogra-

phy, Bern, Switzerland (image scale 1 : 16 000, focal length
0.3 m, RGB, 0.5 m ground resolution, 4 000� 4 000 pixels
– see Fig. 1) )

– Aerial1: suburban area in hilly terrain

– Aerial2: hilly rural scene with medium complexity

– Aerial3: hilly rural scene with low complexity� 3 IKONOS images (Geo) from Kosovo, provided by Bun-
deswehr Geoinformation Office (AGeoBw), Euskirchen,
Germany, given as pan-sharpened images in red, green,
blue, and infrared (1 600� 1 600 pixels – see Fig. 1 and
2)

– Ikonos1-Sub1: urban/suburban area in hilly terrain
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– Ikonos3-Sub1 and -Sub2: rural hilly scenes with
medium complexity

For evaluation we use criteria put forward by (Wiedemann et al.,
1998). The basic assumption is that reference data is available in
the form of the center lines of the roads. Additionally, it isas-
sumed that only roads within a buffer of a certain width, usually
the average width of the roads, around the road, here 5 pixelson
both sides, i.e., 10 m for the Ikonos data, are correct. The ex-
tracted roads which are inside the buffer of the given reference
roads and vice versa are determined via matching of the respec-
tive vector data. The most important criteria defined by (Wiede-
mann et al., 1998) based on these matching results to which we
have restricted the analysis are:

Completeness: This is the percentage of the reference data which
is explained by the extracted data, i.e., the part of the reference
network which lies within the buffer around the extracted data.
The optimum value for completeness is 1.

Correctness: It represents the percentage of correctly extracted
road data, i.e., the part of the extracted data which lie within the
buffer around the reference network. The optimum value for cor-
rectness is 1.

RMS (root mean square): The RMS error expresses the geometri-
cal accuracy of the extracted road data around the referencenet-
work. In the given evaluation framework its value depends on
the buffer widthw. If an equal distribution of the extracted road
data within the buffer around the reference network is assumed,
it can be shown thatRMS = w=p3. The optimum value isRMS = 0. As RMS mainly depends on the resolution of the
image, it is given in pixels in this paper.

The reference data has an estimated precision of half a pixel. It
comprises major and secondary roads, but no paths or short drive-
ways. The reference data has not been made available to the par-
ticipants. The participants usually asked only once or twice for an
evaluation, i.e., no optimization in terms of the referencedata was
pursued. Opposed to (Scharstein and Szeliski, 2002) we allowed
people to optimize their parameters for each and every image, as
constant parameters were seen as too challenging.

3. ROAD EXTRACTION APPROACHES

We will shortly introduce the approaches of the participating
groups (alphabetical ordering according to correspondingau-
thor):

Uwe Bacher and Helmut Mayer, Institute for Photogramme-
try and Cartography, Bundeswehr University Munich, Germany:
The approach is only suitable for the Ikonos images and is fo-
cusing on rural areas where roads are mostly homogeneous and
are not disturbed by shadows or occlusions. It is based on earlier
work from TU München of (Wiedemann and Hinz, 1999) and
partially (Baumgartner et al., 1999). The approach of (Wiede-
mann and Hinz, 1999) starts with line extraction in all spectral
bands using the sub-pixel precise Steger line extractor (Steger,
1998) based on differential geometry and scale-space including
a thorough analysis and linking of the topology at intersections.
The lines are smoothed and split at high-curvature points. The
resulting line segments are evaluated according to their width,
length, curvature, etc. Lines from different channels or extracted
at different scales, i.e., line widths, are then fused on a best first
basis. From the resulting lines a graph is constructed, supple-
mented by hypotheses bridging gaps. After defining seed lines in
the form of the best evaluated lines, optimal paths are computed
in the graph and from it gaps to be closed are derived. Bacher
has extended this by several means (Bacher and Mayer, 2005).

The central idea is to take into account the spectral information
by means of a (fuzzy) classification approach based on fully auto-
matically created training areas. For the latter parallel edges are
extracted in the spirit of (Baumgartner et al., 1999) in a buffer
around the lines and checked if the area in-between them is ho-
mogeneous. The information from the classification approach is
used to evaluate the lines. Additionally, it is the image informa-
tion when optimizing snakes to obtain a more geometrically pre-
cise, but also more reliable basis for bridging larger gaps in the
network, which is another novel feature of Bacher’s approach.

Charles Beumierand Vinciane Lacroix, Signal and Image Cen-
ter, Royal Military Academy, Brussels, Belgium: The approach
for Ikonos images rests on the line detector of (Lacroix and
Acheroy 1998) which assumes that the gradient vectors on both
sides of a line are pointing in opposite directions. Bright lines are
extracted from the green channel with a slight Gaussian smooth-
ing employing non-maximum suppression. Lines are tracked
with limited direction difference until a minimum strengthis
reached. Lines are only kept if they are at least 30 pixels long
and are straight enough when checked based on the square root
of the inertial moment. For each of the line points the Normal-
ized Difference Vegetation Index (NDVI) is computed from the
red and the infrared channel and if it is below zero, the pointis
supposed to be vegetation and is rejected. Finally, the restof the
points are again tracked and checked to see if they are still long
and straight enough.

Markus Gerke and Christian Heipke, Institute for Photogram-
metry and Geoinformation (IPI), Hannover University, Germany:
They use two approaches suitable for aerial images as well as
for Ikonos data, both designed primarily for rural areas as Bacher
above. GerkeW is the approach of (Wiedemann and Hinz, 1999)
– see Bacher above. GerkeWB consists of a combination of
GerkeW with the approach of (Baumgartner et al., 1999). The
latter is based on extracting parallel edges with an area homoge-
neous in the direction of the road in between in the original high
resolution image and fusing this information with lines extracted
at a lower resolution. Herewith it combines the high reliability
of high resolution with the robustness against disturbances par-
ticularly for the topology of the lower resolution. Quadrangles
are constructed from the parallel edges and, from them, in turn
longer road objects taking also local context information into ac-
count. GerkeWB in essence substitutes the Steger line extractor
of the original Baumgartner approach by the full-fledged (Wiede-
mann and Hinz, 1999) approach and additionally puts less weight
on the homogeneity in the direction of the road. Gerke notes that
there is still room for improvement as he has not at all optimized
the snakes used to bridge gaps.

Jose Malpicaand Jose Mena, Subdirección de Geodesia y Car-
tografı́a, Escuela Politécnica, Campus Universitario, Alcalá de
Henares, Spain: This approach (Mena and Malpica, 2003; Mena
and Malpica, 2005) makes heavy use of the spectral and color
characteristics of roads learned from training data. The latter is
usually generated based on (possibly outdated) GIS data from the
given image data. The basic image analysis is done on three sta-
tistical levels. On the first level, only color information is em-
ployed using Mahalonobis distance. On the so-called ”one and a
half order” level, the color distribution is determined fora pixel
and its 5 x 5 neighborhood and compared to the learned distribu-
tion via Bhattacharyya distance. Bhattacharyya distance is also
used on the ”second order” statistical level where, for six different
cross-sections of a 3 x 3 neighborhood of a pixel, co-occurrence
matrices and from them 24 Haralick features are computed. The
three statistical levels are normalized and combined employing
the Dempster-Shafer Theory of Evidence. After thresholding and
cleaning the derived plausibility image for roads is the basis for
deriving the main axes of the roads. A standard skeleton show-
ing all, including the usually unwanted details, is combined with
a coarse skeleton to obtain a graph with precise road segments
without too many wrong short road segments. The segments in
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the graph are finally subject to a geometrical as well as topologi-
cal adjustment.

Karin Hedman and Stefan Hinz, Institute for Photogramme-
try and Cartography, Technische Universität München, Germany:
Like Bacher’s and Gerke’s approaches it again rests on (Wiede-
mann and Hinz, 1999) and is particularly suitable for rural areas.
It has only been used for the smaller pieces cut from the Ikonos
images. As Hedman and Hinz found that line extraction is the
critical point, they have optimized it: First, they noted that the
blue channel gives the best results, with the NDVI adding little,
but complementary, information particularly for rural areas. For
Ikonos3-Sub1 they found that it was advantageous to use two dif-
ferent scales for line extraction in the blue channel. They also
note that it is surprising and needs further investigationsthat the
blue channel delivers the best results for line extraction,since
this spectral range is supposed to be significantly affectedby at-
mospheric attenuation.

Qiaoping Zhang and Isabelle Couloigner, Department of Ge-
omatics Engineering, University of Calgary, Canada: The ap-
proach is used with minor modifications for all test images. The
two Aerial images were re-scaled by a factor of two. At the
core of the approach of Zhang and Couloigner is K-means clus-
tering with the number of classes set to an empirically found
value of six. For most of the images three channels were used.
The infrared channel was only employed for Ikonos1-Sub1; for
the other two Ikonos sub-images it was regarded as too noisy.
From one or more clusters the road cluster is constructed by a
fuzzy logic classifier with predefined membership functions. The
road cluster is refined by removing big open areas, i.e., buildings,
parking lots, fields, etc., again by means of a fuzzy classifica-
tion based on a shape descriptor using the Angular Texture Sig-
nature (Zhang and Couloigner, 2006a; Zhang and Couloigner,
2006b). Road segments are found from the refined clusters viaa
localized and iterative Radon transform with window size31�31
pixels with improved peak selection for thick lines. The segments
are grouped bridging gaps smaller than five pixels and forming in-
tersections. Finally, only segments longer than twenty pixels are
retained.

4. RESULTS AND DISCUSSION

The results of the evaluation are summarized in Table 1 linking
particularly good results to Figures 1 and 2. The table is ordered
in the first instance according to the test areas (from aerialto
satellite data) and in the second instance alphabetically according
to the group and possibly its approaches. For each test area the
best result in terms of the geometric mean of completeness and
correctness is marked in bold. In addition, all values for com-
pleteness or correctness which are beyond a value of 0.6 or 0.75
respectively, are marked in bold. These numbers can be seen as a
lowest needed limit so that the results become practically useful.
The value for correctness was set to a higher value as experience
shows that it is much harder to manually improve given faulty
results than to acquire roads from scratch. To be of real practi-
cal importance, in many cases both values probably need to be
even higher, e.g., for correctness around 0.85 and for complete-
ness around 0.7, but we have chosen the lower values, to distin-
guish ’the probably useful’ for the obtained results from the rest.

We focus the analysis on the details from the Ikonos images, as
it is only for these smaller images that we have received a larger
number of results. We comment on the images, discuss the in-
dividual approaches and give important overall findings. For the
different images, we observed the following:

Aerial1–3: All three images have only been processed by Gerke
and Zhang. The latter performs best for Aerial1 (Fig. 1a), which
is the most difficult of the three images showing a suburban area.

No Name(best) CompletenessCorrectnessRMS
(� 0.6) (� 0.75) [pix]

Aerial1
1 GerkeW 0.46 0.47 3.74
2 GerkeWB 0.31 0.56 1.53
3 Zhang (Fig. 1a) 0.51 0.49 1.92

Aerial2
4 GerkeW 0.76 0.66 2.87
5 Gerke WB (Fig. 1b) 0.65 0.82 1.14
6 Zhang 0.67 0.49 1.72

Aerial3
7 GerkeW 0.81 0.63 3.14
8 Gerke WB (Fig. 1c) 0.72 0.77 1.3
9 Zhang 0.72 0.63 1.66

Ikonos1Sub1
10 Bacher 0.34 0.66 1.29
11 Beumier (Fig. 1d) 0.48 0.69 1.3
12 GerkeW 0.27 0.41 1.89
13 GerkeWB 0.19 0.49 1.91
14 Hedman 0.31 0.51 1.25
15 Malpica 0.25 0.74 1.13
16 Zhang 0.56 0.41 1.52

Ikonos3Sub1
17 Bacher (Fig. 2a) 0.81 0.87 0.97
18 GerkeW 0.8 0.65 1.53
19 GerkeWB 0.68 0.75 1.99
20 Hedman (Fig. 2b) 0.77 0.78 1.16
21 Malpica (Fig. 2c) 0.6 0.79 1.41
22 Zhang 0.72 0.35 1.22

Ikonos3Sub2
23 Bacher (Fig. 2d) 0.86 0.89 1.
24 GerkeW 0.75 0.52 1.35
25 GerkeWB (Fig. 2e) 0.71 0.84 1.7
26 Hedman (Fig. 2f) 0.85 0.91 1.19
27 Malpica 0.6 0.89 1.59
28 Zhang 0.7 0.34 1.18

Table 1. Results of the evaluation. Bold names represent thebest
result for a test area in terms of the geometric mean of complete-
ness and correctness. Bold numbers are beyond 0.6 or 0.75 for
completeness or correctness, respectively.

It seems that for it the loss of information by down-samplingby
a factor of two by Zhang is more than made up by employing
color information via classification, a feature Gerke is lacking.
GerkeWB gives the best results in terms of completeness and
correctness for images 2 and 3 (Fig. 1b and c) showing rural areas
for which it was designed. Particularly the result for Aerial3 is on
a level which could be a viable basis for a practical application.
Finally, comparing the results for GerkeW and GerkeWB one
can see nicely how for GerkeWB completeness is still sacrificed
for correctness even when introducing additional information in
the form of the homogeneity in the road direction for the original
high resolution imagery.

Ikonos1-Sub1: This image shows an urban/suburban scene and
has been processed by six approaches, none giving a practically
useful result. It seems to be too hard a challenge for the cur-
rent approaches. Beumier has only submitted this one result(Fig.
1d), but it is the best for this scene. It shows that a good line
extractor combined with spectral information (NDVI) and well
chosen constraints on the geometry can produce a pretty good
result. In terms of a trade-off between completeness and correct-
ness Bacher, Malpica, and Zhang are similarly good. Lookingat
the individual results, however, one can very well see the differ-
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ent balance. Yet, for practical applications, the high correctness
values for Bacher and Malpica would probably be preferred com-
pared to Zhang.

Ikonos3-Sub1 and -Sub2: These two images depicting rural
scenes of medium complexity are the only ones for which a larger
number of approaches, namely six, was applied and for which at
least some of the results (see also Fig. 2) are in a range, which
could be suitable for a practical application. This is particularly
true for the approaches of Hedman and Bacher. Both rest on the
approach of (Wiedemann and Hinz, 1999) and both make use
of color information, Bacher in a more sophisticated way than
Hedman. While Bacher has a clear edge for Sub1, Hedman is
slightly better on Sub2. Gerke’s approaches also rest on (Wiede-
mann and Hinz, 1999), but are less sophisticated in the way they
make use of the color information, which seems to be a clear
disadvantage here. While for Sub1 GerkeW and WB perform
very similarly, GerkeWB taking into account the homogeneity
of the road in the original resolution is markedly better on Sub2.
For the approaches based on color and texture Malpica achieves
a higher quality particularly in terms of correctness than Zhang.
This is especially true for Sub1. Finally, a comparison of the
results for Bacher and Malpica shows the benefits of global net-
work optimization inherent in all approaches based on (Wiede-
mann and Hinz, 1999) together with snakes for bridging gaps.It
is clearly visible that in Bacher’s result many smaller gapsare
bridged meaningfully.

We next comment on distinct characteristics of the individual ap-
proaches, if they have not been discussed already with the im-
ages:

Bacher, Gerke W and WB, and Hedman: All three fol-
low (Wiedemann and Hinz, 1999), the difference being which
additional information is used. Bacher, with classification based
on automatically generated training data is the most sophisticated
and achieves the best results, but also Hedman’s suitable selection
of channels and scales as well as the use of the NDVI is sufficient
to outperform GerkeW and WB, which do not make explicit use
of color.

Gerke W versus WB: GerkeWB can be seen as an extension
of GerkeW, taking into account higher resolution information
in the form of parallel edges enclosing a region homogeneous
in the direction of the road. GerkeWB enforces more detailed
constraints and, thus, as expected, the results for it show alower
completeness, but a higher correctness. This is true in all cases,
but GerkeWB seems to be particularly well suited for open rural
scenes, where the roads mostly match its model of homogeneous
areas.

Malpica and Zhang: Both employ a classification approach us-
ing color or multispectral information, though in a different way.
While Malpica also includes textures and learns the characteris-
tics from given GIS data, Zhang uses an unsupervised classifica-
tion. Malpica outperforms Zhang for the Ikonos data, but Zhang
is more flexible with the unsupervised classification producing
results for most images, also the ones not reported here.

Finally, we want to note some importantoverall findings:

The approaches based on line extraction, i.e., Bacher, Gerke W,
GerkeWB and Hedman based on the Steger extractor as well as
Beumier built on top of Lacroix’s work give better results for the
more line-like high resolution Ikonos data than approachesbased
on pixel-wise or local classification, i.e., Zhang and Malpica. It
would be interesting to see how the latter perform on higher res-
olution aerial images where the line structure of the image is less
marked and the spectral information should be of higher quality.
Please note that the Ikonos data available for the test are pan-
sharpened with a physical resolution for the color of only about 4

m. One issue still to be investigated is the use of the original low
resolution images.

There is a trend to use color / multispectral information partic-
ularly for high resolution satellite data. This is done either as
simple as the NDVI (Beumier and Hedman) or based on a more
or less sophisticated classification (Bacher, Malpica, andZhang).
For the latter, training is done using given GIS data (Malpica),
training areas are automatically generated from characteristic ho-
mogeneous road parts with parallel road sides (Bacher), or the
classification is done unsupervised (Zhang). Network optimiza-
tion and bridging gaps, e.g., by means of snakes, only seems
to become important when a certain level of quality has been
reached as, for example, by Bacher for Ikonos-Sub1 and -Sub2.

5. SUMMARY AND CONCLUSION

In summary, the results show that it is possible to extract roads
with a quality in terms of completeness and correctness which
should be useful for practical applications, although onlyfor
scenes with limited complexity, namely up to medium complex
rural scenes. This is true for aerial as well as high resolution satel-
lite data. The test has also demonstrated that most approaches
cannot deal with images larger than about 2,000� 2,000 pixels.
This is probably due to missing functionality to process images
in patches and shows that the approaches focus on furtheringthe
understanding of the basic problems rather than on practical de-
velopment, where robustness to all possible situations would be
the central issue. With the advent of digital aerial camerasand
high resolution satellite data making high quality color and spec-
tral information available, there is a recent focus to employ this
information for road extraction and the results show its useful-
ness. However, particularly for the high resolution data, there is
still much to be done.

As it took nearly two years to obtain the results presented here, we
learned the hard way that it is extremely important to see as very
long term the evaluation of the results for different approaches
based on the same data. Experience for similar tests, such as
the highly successful 3D reconstruction test of (Scharstein and
Szeliski, 2002) only gained momentum after some time. The goal
has to be, that after a while, papers proposing a new approach
only get accepted for higher level conferences when they show
comparable or improved results on the test data compared to the
state of the art. It is, thus, very important to continue thiswork.

Although there are only scarce resources both in academia and
practice, we hope that this EuroSDR test will help to create
a nucleus of interested researchers, who with the cooperation
of NMAs, and if possible manufacturers, could form a well-
coordinated and focused research network which can speed up
the development of operational (or quasi-operational) systems for
road extraction. Here, a focus should be on using a priori data.
Though, we note that a fair test of these systems is a difficultissue
due to the complexity of practical environments.

Promising directions for future research comprise statistical gen-
erative modeling. A particularly impressive instance is (Stoica
et al., 2004) who have employed this kind of modeling for roads.
To our knowledge this is the first time that the natural variability
of the road network has been modeled in a realistic way.
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(a) Results of Zhang for Aerial1 (No. 3 in Tab. 1) (b) Results of GerkeWB for Aerial2 (No. 5 in Tab. 1)

(c) Results of GerkeWB for Aerial3 (No. 8 in Tab. 1) (d) Results of Beumier for Ikonos1-Sub1 (No. 11 in Tab. 1)

Figure 1. Results of EuroSDR Road Extraction Test: Correctly extracted roads are given in green, incorrectly extractedroads in blue,
and missing roads in red.
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(a) Result of Bacher for Ikonos3-Sub1 (No. 17 in Tab. 1) (d) Result of Bacher for Ikonos3-Sub2 (No. 23 in Tab. 1)

(b) Result of Hedman for Ikonos3-Sub1 (No. 20 in Tab. 1) (e) Result of GerkeWB for Ikonos3-Sub2 (No. 25 in Tab. 1)

(c) Result of Malpica for Ikonos3-Sub1 (No. 21 in Tab. 1) (f) Result of Hedman for Ikonos3-Sub2 (No. 26 in Tab. 1)

Figure 2. More results of EuroSDR Road Extraction Test (colors see Fig. 1)
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ABSTRACT: 
 
This article proposes a novel road extraction methodology from digital images. The innovation is based on the dynamic 
programming (DP) algorithm to carry out the optimisation process in the object space, instead of doing it in the image space such as 
the DP traditional methodologies. Road features are traced in the object space, which implies that a rigorous mathematical model is 
necessary to be established between image and object space points. It is required that the operator measures a few seed points in the 
image space to describe sparsely and coarsely the roads, which must be transformed into the object space to make possible the 
initialisation of the DP optimisation process. Although the methodology can operate in different modes (mono-plotting or stereo-
plotting), and with several image types, including multisensor images, this paper presents details of our single image methodology, 
along with the experimental results. 
 
 

                                                                 
* Corresponding author. 

1. INTRODUCTION 

Road extraction from aerial and satellite imagery is of 
fundamental importance in the context of spatial data capturing 
and updating for GIS applications. Substantial work on road 
extraction has been accomplished since the 70's in computer 
vision and digital photogrammetry, with pioneering works by, 
e. g., Bajcsy and Tavakoli (1976) and Quam (1978). This 
research topic is still challenging, what is demonstrate, for 
example, by the fact that vendors of commercial 
photogrammetric system have not provided useful toolkits for 
automated road extraction, including practical semiautomatic 
ones.  
The mentioned classification of the road extraction methods is 
related to the amount of automation incorporated by them. 
Semiautomatic methods depend on the intervention of an 
operator for identifying the road object and supplying a little 
information about it, as e.g. seed points. These methods include 
road-follower (McKeown and Denlinger, 1988; Vosselman and 
de Knecht, 1995; Dal Poz and Silva, 2002; Kim et al., 2004) 
and some kind of simultaneous curve fitting (Kass et al., 1987; 
Grüen and Li, 1997; Agouris et al., 2000; Hu et al., 2004; 
Merlet and Zerubia, 1996; Dal Poz and Vale, 2003). Automated 
methods try to completely circumvent human intervention 
during the extraction process. A sophisticated example is found 
in Baumgartner et al. (1999), in which different resolutions, 
grouping, and context are used to extract road networks from 
high-resolution images. Stoica et al. (2004) modelled the road 
network in remote sensed images as connected line segments, 
resulting in a probabilistic model to be solved by the Maximum 
a Posteriori (MAP) estimation. As a final example, Zhu et al. 
(2004) extracted linear features from laser data and used them 
to guide the road extraction from aerial images. 
While such fully, or at least close to fully, automated processes 
have not reached a mature state, semiautomatic methods need to 

be developed or improved to allow the rapid, reliable and 
accurate provision of data for GIS systems. This article 
proposes a novel road extraction methodology from digital 
images. The innovation is based on the dynamic programming 
optimisation (DP) algorithm to carry out the optimisation 
process in the object space, instead of doing it in the image 
space such as the DP traditional methodologies. This paper is 
organised in four main sections. Section 2 presents our object 
space road extraction methodology using a single aerial image 
and a DTM. Results are presented and discussed in Section 3. 
Finally, conclusions are provided in Section 4. 
 
 

2. OBJECT SPACE ROAD EXTRACTION USING A 
SINGLE IMAGE 

2.1  Image space road models 
 
Photometric and geometric road properties (as e.g. road is 
elongated and lighter than the background, road grey levels do 
not change much within a short distance, road is smooth etc.) 
are used to formulate a generic road model considering that the 
road can be represented by an image space polygon Pi= {p1, ..., 
pn}, where pi is its ith  vertex. The generic road model can be 
formulated by the merit function (equation 1) and an inequality 
constraint (equation 2), as follows (Gruen and Li, 1997), 
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where,   are 
functions  describing geometric and radiometric road properties 
and depending on consecutive points p

)p ,(pE  and ),p ,(pE ),p ,(pE 1iip1iip1iip 321 +++

iα
β

i and pi+1;  is the 
direction of the vector defined by points pi-1 and pi;  and γ  

are positive constants;  |  is the distance between points  
p

|∆Si

i-1 and pi; and T is a user-defined threshold for direction 
change between two adjacent vectors. 
Analysing the merit function (equation 1), it is easily concluded 
that the function E is a sum of sub-functions Ei depending only 
on three consecutive points (pi-1, pi, pi+1) of the polygon Pi, i.e, 
 

∑=
−

=
+−

1n

1i
1ii1ii )p,p,(pEE                                                       (3) 

 
Due to the structure of equation 3, where only six variables are 
interrelated simultaneously, the DP algorithm can be used to 
efficiently solve the optimisation process, which is transformed 
into a sequential decision-making process (Gruen and Li, 1997). 
The solution of this problem is a 2D polygon Pi= {p1, ..., pn} 
representing a user-selected road and corresponding to the 
maximum of merit function E. This function is appropriate to be 
used in semiautomatic road extraction process from low-
resolution images (road widths ranging from 1 to 3 pixels). 
Mainly in high-resolution images roads usually manifest as 
wide and homogeneous ribbons. As a result, the extracted 
polygons would hardly represent the corresponding road axes. 
In order to avoid this problem, Dal Poz and Vale (2003) 
proposed an improvement in equation 3. Basically, an edge 
constraint term was added to the original merit function, 
resulting in a function (equation 4) that is a sum of sub-

functions . Each sub-function depends only on three 
consecutive points (p

t
iE

i-1, pi, pi+1) of the polygon Pi and 
respective road widths (wi-1, wi, wi+1). 
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Equation 4 shows that the goal of the optimisation process by 
the DP algorithm is similar to the one based on equation 3. The 
basic difference is that the optimisation process should provide 
the polygon Pi= {p1, ..., pn} representing the road centreline and 
the road widths at the respective vertices. Equation 4 also shows 
that 9 variable are interrelated simultaneously. 
 
2.2  Object space road model 

 
As shown before, the image space road model has as unknowns 
the image co-ordinates (L, C) of polygon vertices representing 
the road and, in case of high-resolution images, the road width 
for every polygon vertex as well. Equation 3 or 4 can be 
modified in order to express roads in function of ground co-
ordinates. The resulting equation will be the basis for an 
optimisation problem by the DP algorithm. As a result, it needs 
to have an appropriate structure, like one of equation 3 or 4, 
thus allowing the DP algorithm to be advantageous for solving 
the optimisation problem. We show below that a merit function 
with these characteristics can be easily derived. 
We start below with the modification of the equation 3. The 
basic prerequisite to work in this direction is the selection of the 
object space reference system in which the 3D vertices of 
polygons representing roads are referred to. UTM (Universe 
Transverse Macerator) co-ordinates (E, N) plus the ellipsoidal 

height (h) is adopted as the ground reference system. Although 
this reference system (E, N, h) is not cartesian, it is well-known 
that a mathematical relation between an object point (P(E, N, 
h)) referred to it and the corresponding point in the image 
reference system (p(L, C)) can be established rigorously.  In 
order to establish this mathematical relation, many parameters 
are needed to be known, like the interior and exterior 
orientation parameters of  the sensor, the datum and UTM map 
projection parameters, beside others. 
For frame camera images, the relation between an image space 
point pi(Li, Ci) and the corresponding object space point Pi(Ei, 
Ni, hi) can be established in function of known parameters, such 
as usual ones listed below:  
• λcm is the longitude of the central meridian of a UTM fuse; 
• a and fe are respectively the semi major axis and the 

flattening of the ellipsoid; 
• φ0 ,λ0, and h0 are the geodetic co-ordinates (φ0 ,λ0) and the 

ellipsoidal height (h0) of the origin of the local vertical 
reference system; 

• κ, ϕ, ω, X0, Y0, and Z0 are the exterior orientation 
parameters of the camera, previously computed by an 
orientation procedure, taking as reference the local vertical 
reference system; 

• f is the focal length of the camera; 
• x0 and y0 are the co-ordinates of the principal point; 
• K1, K2, and K3 are the parameters of radial lens distortions; 
• P1 and P2 are the parameters of decentering lens 

distortions; 
• ε45 is a refraction coefficient for a standard atmosphere, 

depending upon the flying height above mean sea level 
and the orthometric height of the object point Pi. 

 
The mathematical relation that allows the transformation from 
object point Pi(Ei, Ni, hi) into image point pi(Li, Ci) is too 
complex to be presented here. In fact, it involves object space 
reference system transformations, projective transformation by 
the collinearity equations, image space reference system 
transformations, and introduction of systematic errors to the 
computed image space points. In addition, mathematical 
concepts and formulae are well-known. Assuming that Li and Ci 
image co-ordinates can be obtained from Ei, Ni, and hi object 
co-ordinates by f1 and f2 equations, respectively, we have, 
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where Par = (λmc, a, fe, φ0, λ0, h0, κ, ϕ, ω, X0, Y0, Z0, f, x0, y0, 
K1, K2, K3, P1, P2, ε45) and Vi= (Ei, Ni, hi). Since Par is known, 
an image space point can be expressed as a function of only Vi, 
i. e.: 
 
pi(Li, Ci)= pi(f1(Vi), f2(Vi))= pi(f1(Ei, Ni, hi), f2(Ei, Ni, hi))       (6)  
 
Expression 6 allows equation 3 to be rewritten as follows, 
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Equation 7 shows that it depends simultaneously on co-
ordinates of three successive object points of a polygon 
representing a road in the object space, i.e.: Pi-1(Ei-1, Ni-1, hi-1), 
Pi(Ei, Ni hi) e Pi+1(Ei+1, Ni+1, hi+1). This means that equation 7 
may be rewritten in the following way, 
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Equation 8 is ambiguous as in principle the energy value E can 
be the same for infinite object space polygons Po= {P1, ..., Pn}. 
This is a direct consequence of the well-known characteristic of 
the transformation given by equation 5, by which one can select 
infinite object points that map to the same image point. 
Consequently, equation 8 can not be used for extracting roads 
without imposing constraints to remove its ambiguity. This 
ambiguity can be removed if a DTM is available as roads can 
be enforced to lay on the DTM. This constraint takes the form 
hi=f(Ei,Ni), allowing equation 8 to be rewritten as follows, 
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The maximum of the energy E corresponds to a road runs on 
the DTM (figure 1), which can be efficiently found by the DP 
algorithm. Equation 9 shows that only six variables are 
interrelated simultaneously, implying a similar computational 
complexity when compared to the corresponding image space 
equation (equation 3). Equation 9 is the basis for road centreline 
extraction in the object space using a single low-resolution 
aerial image. In case of medium- and high-resolution aerial 
images, it is easily demonstrated that, starting from equation 4, 
the following equation form can be obtained,       
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where, Wi-1, Wi, and Wi+1 are the road widths at points Pi-1, Pi, 
and Pi+1, respectively. During the optimisation procedure by 
DP, object space road widths are sampled and the 
corresponding values in the image space are required for 
enforcing the edge constraint. This means that a mathematical 
relation between image and object space widths is necessary. 
This mathematical relation can be approximately stated by 
means of the relation between the local image scale and road 
widths in both spaces. A rigorous mathematical relation can be 
also stated, but the approximate relation is efficient and very 
attractive under the computational viewpoint. This relation is 
efficient because it needs only to discretize the image space 
road widths within intervals that contain the optimal road 
widths. However, a rigorous computation of the object space 
road widths from the corresponding ones optimised in the 
image space would require the rigorous projection of road width 
segments onto the DTM, which is a well-known procedure. 
Equations 9 and 10 are the bases for road extraction in the 
object space using a single aerial image. As commented before, 
these equations can be modified for other sensors. In this case, 
it is necessary to adapt equation 5 in accordance with sensor 
geometry. The solution of equation 9 or 10 by the DP 
optimisation can be compared to a mono-plotting process 
proposed by Makarovic (1973). This approach is based on two 

basic steps: 1- feature digitalisation in the image space; and 2- 
feature projection onto the DTM by the so-called inverse 
collinearity equations. In the proposed approach the road 
features are directly extracted in the object space. As illustrated 
in figure 1, the road is tracked on the DTM while useful 
photometric information are searched along roads in the image 
space. While in Makarovic's approach two well-defined 
mapping steps (i.e., feature extraction from an image and 
feature projection onto DTM) can be identified, in our approach 
both steps are accomplished simultaneously. 

DTM

E

N

h

 
Figure 1. Principle for road extraction in object space 

 
2.3 Strategy for DP optimisation 
 
When in an optimisation problem the variables of the merit 
function are not interrelated simultaneously, the efficient man-
ner for solving the problem is by applying the DP technique 
(Ballard and Brown, 1982). Equations 9 and 10 show a struc-
ture that meets that requirement, since they have respectively 
six and nine variables interrelated simultaneously. Below we 
present only the general strategy developed for extracting 3D 
polygons representing road centrelines in the object space using 
the DP algorithm. Mathematical foundations and algorithm as-
pects can be found in an extensive literature, as e.g. in Ballard 
and Brown (1982). 

E

N
h

 
Figure 2. Initialisation of the DP optimisation 
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No matter what the strategy is used to initialise the proposed 
methodology, the necessary information are seed points in the 
reference system where roads will be extracted. Figure 2 shows 
an illustrative example where three seed points in E, N, and h 
co-ordinates are used to coarsely describe a road centreline 
segment. The terrain surface is modelled by a polyhedral model 
obtained from a regular or irregular mesh. The seed points are 
collected on or transformed onto the polyhedron, just because 
the roads will be traced on it. 
Figure 3 shows the principle of DP optimisation. Basically, it 
starts with an initial 3D polygon defined by the user-supplied 
seed points (black dots in figure 3), which is progressively 
made dense and refined. In order to accomplish the first 
iteration, new equidistant vertices are linearly interpolated 
between every adjacent seed points. In illustrative example of 
figure 3 two new vertices (marked as circumference) are added. 
The resulting initial polygon is the reference for generating a 
search space composed by candidate polygons to accurately 
represent the road centreline. During the DP optimisation, every 
vertex may move around its initial position, generating a finite 
number of polygons. If m is the number of positions each vertex 
can take and n is the number of vertices defining each polygon, 
there will be mn polygons in search space. This means that m 
should be as small as possible to avoid a prohibitive search 
space. In order to meet this requirement, the candidates for each 
best vertex are searched on the polyhedron in direction 
perpendicular to the actual polygon at each vertex. At the 
beginning of the optimisation process (i.e., at first iteration) the 
actual polygon is the initial one. For other iterations, the actual 
polygon is the one optimised at the last iteration. Figure 3 
shows how the search windows are defined at the actual 
polygon vertices. Each search window is defined as the 
intersection between the polyhedron and the vertical plane that 
is perpendicular to the actual polygon at a given vertex. The 
intersection between each vertical plane and the plane h= 0 is a 
straight line segment, along which N and E co-ordinates are 
mathematically interrelated according to equation N= a.E + b, 
where a and b are the angular and linear coefficient of the 
straight line, respectively. Now remember that the constraint 
needed to remove the ambiguity of equation 8 takes the form h= 
f(E, N) and that the adopted terrain surface model is a 
polyhedron, the h co-ordinate can be mathematically expressed 
only in function of E co-ordinate, i.e., 
 
h= A.E + B.(a.E + b) + C                                                       (11) 
 
where, A, B, and C are plane coefficients of a polyhedron face. 
Equation 11 shows that the search windows' points can be 
sampled by only sampling their E co-ordinate. Two other 
components are computed internally. In our scheme E co-
ordinates are sampled on the plane h= 0 in a such way that the 
resulting points (E, N= a.E+b) are equally spaced. If the 
selected distance between sampled points (E, N) is d, E co-

ordinates must be sampled such that |Ei+1-Ei|= 1ad/ 2 +  or 
|Ei+1-Ei|= d for vertical straight lines. Corresponding points (E, 
N, h) in the search window are not equally spaced due to the 
varying slope. The advantage of using this strategy is the 
elimination of the variables N and h, remaining only 3 
simultaneous variable (Ei-1, Ei, Ei+1) in equation 9 or 6 (Ei-1, Ei, 
Ei+1, Wi-1, Wi, Wi+1) in equation 10. The drawback is that it does 
not work for horizontal road segments. However, a small 
rotation of the search window showed to be efficient to 
overcome that problem. The value of d is directly related to the 
resolution, size, and number of elements of the search window. 
Larger pull-in-range can be obtained by using low-resolution 

(larger d) and large-sized search windows at first iterations of 
the optimisation process. An iteration consists of adding new 
interpolated points to the polygon optimised at the last iteration 
and of applying to the resulting polygon a new DP optimisation. 
At last iterations high-resolution and small-sized search 
windows are used. This strategy allows the computational effort 
to be reduced properly. During each iteration, two curvature 
constraints are used to additionally reduce the computational 
effort. They consist in checking if the horizontal and vertical 
angles at each polygon vertices are below a given threshold. In 
order words, only smooth polygons are evaluated by the DP 
optimisation algorithm. Figure 3 shows that after first iteration 
the initial polygon is geometrically refined, but it does not 
accurately described the road centreline. Final result is obtained 
after checking the convergence of the optimisation process and 
it is expected to accurately represent the road centreline. 
Convergence checking consists in verifying after each iteration 
if all added points are collinear to neighbour points. When this 
condition is verified, the optimisation process is stopped. 
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Figure 3. Optimisation strategy 

 
 

3. RESULTS 

The proposed methodology was implemented using Borland 
C++ Builder 5 compiler for Windows XP. An image (9286 x 
9496 pixels) at the approximate scale of 1:9200 is used in 
experiments (figure 4). This is a high-resolution image, since 
the pixel footprint is about 26 cm. This image is from a region 
of Switzerland and is available in the LPS (Leica 
Photogrammetry Suite) system, along with the interior and 
exterior orientation parameters. DTM used in our experiments 
has a resolution of 5 m. 
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In order to initialise the road extraction methodology, a few 
seed points are measured along roads on the image and 
backprojected onto DTM. Resulting points are seed points 
needed to start the extraction of each road. Extracted roads in 
3D by the DP algorithm are projected into the image reference 
system (L, C) and overlaid on the input image. This allows a 
visual analysis of the geometric quality of the extracted road 
centrelines. Since the methodology depends on some 
information measured on the image, it is also possible to 
analyse its robustness against irregularities in the image 
content, like road obstructions from trees and shadows. Due to 
the high resolution of the test image, we present below only 
three selected windows (figures 5, 6, and 7) of it.  
 

 
Figure 4. Aerial image used in the experiments 

 
Figure 5 shows the first window where segments of a main road 
and secondary roads are presented. The results show that the 
extracted polygons are accurately positioned along the road 
axes. This is observed even at the road crossings along the main 
road, where some deficiencies could be expected. An important 
factor to extract accurate road centrelines is the existence of 
well-defined road edges, because it allows the edge constraint 
to be very effective. Places like road crossings, where one or 
both edges are not presented, can be extracted without 
deficiencies due to the global curvature constraint enforced in 
the merit function used in the DP optimisation. This geometric 
constraint imposes that the accumulate curvature along a road is 
minimum, implying smoothness to the extracted road 
centreline. As a result, a short segment of a road affected by 
some small anomalies (e.g., missing edges at road crossing or 
obstructions) tend to be represented after extraction by a road 
centreline segment that has similar curvature to adjacent ones. 
Although the secondary roads do not have a good contrast with 
adjacent regions, the road centrelines are accurately extracted. 
 

 
Figure 5. Results in the first window 

Figure 6 shows the results in the second window selected in the 
original image. This example shows two concurrent segments 
of road, one being straight and another being curved. Both 
roads have good contrast with adjacent regions and well-
defined edges. As in previous example, no significative 
displacement of road centrelines is observed along the road 
crossing region. Since for this type of road crossing both edges 
of each road are missed, the edge constraint almost vanishes. 
The effect can be better observed on the curved road, where the 
road centreline segment going through the road crossing region 
is straight. In general, both road centrelines are accurate, but 
they show a slight displacement in some parts of road 
centrelines. 
 

 
Figure 6. Results in the second window 

 
Figure 7 shows the third window where a curly segment of a 
road is presented. Even though the contrast of the road with 
backgrounds is good, some irregularities are visible along and 
close to the left road curve. The perspective obstruction from 
the house is very small, but it perturbed a little the extraction 
process. It is clearly observed that the road centreline changes 
direction slightly where the house is located. Consequently, 
along this road segment the extracted road centreline forms a 
corner and is closer to a road edge. The perspective obstruction 
caused by trees seems to be not critical to the extraction 
process. It is also possible to observe the tendency of the road 
centreline in approaching the internal road edge along road 
curves. This effect has been commonly observed in other tests. 
The possible cause is the global curvature constraint enforced in 
the merit function, by which the accumulate curvature along 
whole road centreline is minimum. In other words, that global 
constraint tends to slightly dominate local constraints (e.g., 
edge constraint). However, irregularities along road curves can 
disturb the result. 
 

 
Figure 7. Results in the third window 
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In order to access the accuracy of the proposed methodology, 
road centrelines were manually extracted and compared to 
corresponding ones extracted by the road extraction algorithm. 
The node positions of road centrelines were determined to be 
about 1.3 m in average from the manually extracted road 
centrelines. This accuracy corresponds to approximately one-
sixth of the main roads' mean width. 
 
 

4. CONCLUSIONS 

In this paper was proposed an object space road extraction 
methodology from a single image. It allowed the integration of 
two basic steps of data capturing for GIS system, i.e., the road 
extraction in the image space and the transformation of road 
features into a map projection. Different resolution aerial 
images can be handled by the proposed methodology. Terrain 
information in form of a polyhedron is also necessary to allow 
the solution of the extraction problem. In order to initialise the 
extraction procedure, a few seed points is necessary to be 
supplied on the polyhedron. We identify these points on the 
image and project them onto polyhedron. 
In order to evaluate the methodology one experiment was 
carried out using a high-resolution aerial image. The results 
obtained were projected into image space and overlaid on the 
input image. Three image windows are selected in the input 
image to analyse the performance of the methodology. In 
general, the methodology proved to be robust, since it handled 
irregularities like obstructions. The accuracy of extracted road 
centrelines is good, although some slight displacements are 
observed. 
Our future works on this subject may include the improvement 
of the proposed methodology, the development of the multiple 
image mode, and the development of new application. A 
possible improvement of the proposed methodology can be 
accomplished in the merit function. For example, a property not 
modelled in the merit function (equation 9 or 10) is the 
smoothness of the road centreline profile in the object space. It 
is also well-known that asphalt material has very low 
radiometric responses for laser scanner sensor, property that 
could be also modelled in the merit function. Consequently, 
these modifications would allow the integration of laser scanner 
data with image data for road extraction using DP optimisation. 
This integration could be carried out both in single image and 
multiple image modes. An interesting application of the single 
image methodology is in the refinement of pre-existing road 
database at smaller scale. In this case, the methodology can be 
initialised automatically by using pre-existing 3D roads as the 
first approximation for the DP optimisation. 
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Figure 1: Appearance of vehicles in optical high-resolution 

satellite imagery (Quickbird), GSD = 0.6 m 
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ABSTRACT:   
Vehicle detection is motivated by different fields of application, e.g. traffic flow management, road planning or estimation of air and 
noise pollution. Therefore, an algorithm that automatically detects and counts vehicles in air- or space-borne images would 
effectively support these traffic-related analyses in urban planning. Due to the small vehicle size in satellite images detection of 
single vehicles would deliver ambiguous results. Hence, our scheme focuses primarily on the extraction of vehicle queues, as the 
pattern of a queue makes it better distinguishable (as a whole) from similar objects. Hypotheses for queues are generated by 
sophisticated extraction of ribbons. Within these ribbons single vehicles are searched for by least-squares fitting of Gaussian kernels 
to the width and contrast function of a ribbon. Based on the resulting parameter values, false and correct hypotheses are discerned. 
The results show that the analysis of width and contrast information using least square optimization is able to extract single vehicles 
from queues with high correctness. Still, the completeness of the overall extraction is relatively low, since only queues can be 
extracted but no isolated vehicles. The results clearly show that the approach is promising but further improvements are necessary to 
achieve a higher completeness. 
 

1. INTRODUCTION 

1.1 Motivation 

There is an increasing demand for traffic monitoring of densely 
populated areas. The traffic flow on main roads can partially be 
measured by fixed installed sensors like induction loops, bridge 
sensors and stationary cameras. Traffic on smaller roads – which 
represent the main part of urban road networks – is scarcely 
monitored and information about on-road parked vehicles is not 
collected. Wide-area images of the entire road network can 
complement these selectively acquired data. New optical sensor 
systems on satellites, which provide images of 1-meter 
resolution or better, e.g. Ikonos and QuickBird, make this kind 
of imagery available. Hence new applications like traffic 
monitoring and vehicle detection from these images have 
achieved considerable attention on international conferences, 
e.g. (Bamler and Chiu, 2005; Heipke et al., 2005; Stilla et al., 
2005). The presented approach focuses on the detection of single 
vehicles by extracting of vehicle queues from satellite imagery. 
 
1.2 Related work 

Depending on the used sensors and the resolution of the imagery 
different approaches (Stilla et al., 2004) have been developed in 
the past. The extraction of vehicles from images with a 
resolution of about 0.15 m has already been comprehensively 
tested and delivers good results in many situations. Available 
approaches either use implicit or explicit vehicle models (Hinz, 
2003). The appearance-based, implicit model uses example 
images of vehicles to derive gray-value or texture features and 
their statistics, which are assembled in vectors. These vectors are 
used as reference to test computed feature vectors from image 
regions. Since the implicit model classification uses example 
images the extraction results depend strongly on the choice of 
representative images.  
Approaches using an explicit model describe vehicles in 2 or 3 
dimensions by filter or wire-frame representations. The model is 
then either matched "top-down" to the image or extracted image 
features are grouped "bottom-up" to create structures similar to 
the model. A vehicle will be declared as detected, whenever 
there is sufficient support of the model found in the image. 
These approaches deliver comparable or even better results than 
approaches using implicit models but are hardly applicable to 

satellite imagery since there vehicles only appear as blobs 
without any prominent sub-structures (see Fig. 1). 
Three different methods for vehicle detection from simulated 
satellite imagery of highway scenes are tested in (Sharma, 2002). 
The gradient based method and the method using Bayesian 
Background Transformation (BBT) deliver the best number of 
vehicle counts compared to ground truth. Since the number of 
false detections is lower using BBT, this method is more 
reliable. The performance of the third method using Principal 
Component Analysis (PCA) varies significantly with the noise 
level of the image. Furthermore, the method gives the lowest 
vehicle count. A manually created background image is 
mandatory for the PCA and BBT method, which requires 
extensive interactive work. Consequently, the approaches can 
hardly be generalized and are limited to images of the same 
scene.  
In (Gerhardinger et al., 2005) the commercial software Features 
Analyst® is used to implement an iterative learning approach by 
analyzing the spectral signature and the spatial context. The 
authors report that good results can be achieved if a very 
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Figure 2: Processing Scheme 

(a) (b) 

Figure 3: Queue model. a) original image, b) smoothed image 

accurate road GIS is available. However, this had to be derived 
by manual digitalization in their case. 
An encouraging approach for single vehicle detection is 
presented in (Jin and Davis, 2004). First, they use morphological 
filtering for a rough distinction between vehicle pixels and non-
target pixels, which are similar to vehicles. Then a 
morphological shared-weight neural network is used for 
extraction. The approach achieves good performance values 
under the condition that vehicles appear isolated. However, the 
approach is not designed for vehicle queues or traffic jams (Jin 
and Davis, 2004).  
The last mentioned approaches are designed for a resolution 
coarser than 0.5 m and limit their search space to roads and 
parking lots using GIS information. By this, the number of false 
alarms is significantly decreased. 
 
In dense traffic situations, traffic jams or parking lots, car 
groupings show quite evident regularities (see e.g. Fig. 1). 
Exploiting the knowledge about these repeating occurrences and 
the fact that cars rarely occur isolated is also referred to as global 
modeling in the filed of vehicle detection. Vehicle hypotheses 
extracted by a neural network classifier (Ruskoné et al., 1996) or 
a “spot detector” (Michaelsen & Stilla, 2001)  are collinearly 
grouped into queues while isolated vehicle hypotheses are 
rejected. Hinz & Stilla (2006) use a differential geometric blob 
detector for an initial extraction of car candidates followed by a 
modified Hough transform for accumulating global evidence for 
car hypotheses. Since these grouping schemes select hypotheses 
but do not add new hypotheses, these approaches need an over-
segmentation as initial input. They are designed for medium 
resolution images of approximately 0.5m ground sampling 
distance (GSD). 
When high resolution imagery is available a more promising 
strategy is to focus on reliable hypotheses for single vehicles first 
and complete the extraction afterwards by searching for missing 
vehicles in gaps of a queue using a less constrained vehicle 
model (Hinz, 2003). By this, not only queues but also isolated 
cars can be extracted as long as they belong to the set of reliable 
hypotheses. 
One of the few approaches focusing directly on vehicle queues – 
in particular military convoys – is presented in Burlina et al. 
(1997). They extract repetitive, regular object configurations 
based on their spectral signature. In their approach the search 
space is limited to roads and parking lots using accurate GIS-
information. This seems necessary since the spectrum will be 
heavily distorted, if adjacent objects gain much in influence – 
even if the spectrum is computed for quite small images patches. 
 
1.3 Overview 

Figure 3 shows the overall structure of our approach which is 
separated into three processing stages. In the pre-processing step 
(Fig. 2 I), GIS data is used to determine Regions of Interest 
(ROI). Afterwards we use a differential geometric approach 
followed by some post-processing to extract linear features as 
hypotheses of the queues (Sect. 2.2 and 2.3; Fig. 2 II). Finally, 
we determine single vehicles from these hypotheses by analyzing 
the width and contrast function using a least squares 
optimization (Sect.2.4; Fig. 2 III).  
 

2. QUEUE DETECTION 

 In Sect. 2.1 the used model will be presented. Sect. 2.2 
describes the extraction of vehicle queues using sophisticated 
line extraction. Then a number of attributes are calculated (Sect. 
2.3). The attributes are analyzed and checked for consistency to 

verify or falsify single vehicle hypotheses. This is done by a least 
square adjustment (discussed in Sect. 2.4) and by an iterative 
constrained search (see Sect. 2.5).  
 
2.1 Model of vehicle queues 

Generally, a vehicle queue is defined as ribbon with distinct 
symmetries along and across its local orientation. Basically, the 
model is similar to that defined in (Hinz, 2003); though, since 
this model is originally designed for aerial images, a number of 
modifications regarding the significance of different features 
have been applied: 
A vehicle queue  

• must have sufficient length, bounded width and low 
curvature; 

• shows a repetitive pattern along the centerline, both in 
contrast and width (Fig. 3a), while length and width of 
the individual replica correspond to vehicle 
dimensions; 

• collapses to a line in Gaussian scale space, i.e. when 
smoothing the image accordingly (Fig. 3b). 

 
Please note that this queue model differs from the above 
mentioned approaches in a way that – in particular through the 
scale-space description – the queue is modeled as a unique 
structure and not just as a composite of its underlying, smaller 
elements. At first glance, this seems of less importance. Still, it 
provides the basis for detecting a queue hypothesis as a whole 
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Figure 5: Resulting lines after merging, smoothing and 
filtering. 

Figure 4: Regions of Interest 

(even though at a coarser scale) rather than constructing it from 
smaller elements. Thereby global knowledge can be incorporated 
from the very beginning of the extraction. 
 
2.2 Extraction of vehicle queues  

Figure 4 illustrates the a priori information about road location 
and direction taken from a national core database. The positional 
accuracy is known to be approximately 2m. Neither the road 
sides are contained in the database nor the position of the 
individual lanes. Hence, the road width needs to be estimated 
from attributes like the number of lanes or the average width per 
road segment. Thus the generated regions of interest (ROI) can 
only be regarded as an approximation of the true road area. 
Line extraction is carried out by applying the differential 
geometric approach of Steger (1998). This algorithm is primarily 
based on the computation of the second image derivatives, i.e. 
the local curvatures of the image function. Parameters for the 
line extraction are chosen corresponding to the vehicle geometry 
(vehicle width: w) and radiometry (expected contrast to road: c).  
 
Thus, the necessary input parameters for line extraction σ,  �tBLB and 
tBH can be calculated as follows: 
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where σ defines the preliminary smoothing factor, calculated 
from the maximum expected width (e.g. 2.5 meter). tBLB and tBH 
define the hysteresis thresholds for the second partial derivative 
of the image at each point. If the value exceeds tBH a point is 
immediately accepted as line point. All points where the second 
derivative is smaller than tBLB are rejected. Points with a second 
derivative between tBH and tBLB are accepted if they can be 
connected to already accept points. In order to achieve initial 
hypotheses, the parameters for cBLB (minimum contrast to be 
accepted) and cBH (contrast for queues definitely to accept) are 
chosen quite relaxed.  
Additionally, the line extraction algorithm is supported by 
morphologically filtering the image with a directional 

rectangular structuring element oriented along the particular road 
segment. In doing so the queues are enhanced and disturbing 
substructures in bright cars are almost completely removed. The 
relaxed parameter settings lead to a huge number of false 
hypotheses but also return most of the promising hypotheses for 
vehicle queues. However, since the line extraction requires a 
minimum contrast between vehicles and the road surface, gray 
vehicles can not be extracted reliably, as they hardly emerge 
from their surroundings.  
Bright and dark lines are extracted separately. They are 
connected if they fulfill some distance and collinearity criteria. 
In our case a maximum distance of one vehicle length must not 
be exceeded. Additionally, one has to keep in mind that the 
merging of parallel lines would lead to significant positional 
errors and is therefore prevented. The final processing steps 
consist of geometrical smoothing by polygonal approximation, 
resampling (Ramer, 1972) and testing all resulting lines against a 
minimum length threshold and an upper limit for direction 
differences to the road. Results of the merging and filtering steps 
are illustrated in Fig. 5. 
 
2.3 Determining queue width and contrast 

After extracting lines as medial axes of a ribbon, width and 
contrast functions are determined. The algorithm to find the 
ribbon width in each line point is based on profiles spanned 
perpendicular to the local line direction, and determining each 
profile’s gray values by bilinear interpolation. Then, for each 
profile, local maxima are determined with sub-pixel precision by 
fitting a second-order polynomial to the first derivative of the 
gray value profile in each profile point. The first maximum value 
found on either side of centerline is supposed to correspond to 
the vehicle boundary, i.e., the distance between the two maxima 
yields the queue width. If no maximum is found, gaps in the 
width function are closed afterwards by linear inter- or 
extrapolation.  
 
Results of width determination are illustrated in Fig. 6. It can be 
seen that most edges correspond to vehicle sides. Because of 
weak contrast between vehicles and road surface a number of 
outliers are present, which are to remove by median filtering the 
width function. 
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Figure 6: Extracted ribbons: medial axis (cyan) and 
width function (white). 

Figure 7: Width and contrast function of a ribbon 

One can see that most edges correspond to vehicle sides. 
However, since the gradient image has quite weak contrast, the 
edges extraction results show also some irregularities, i.e. noisy 
boundaries. Therefore smoothing of the extracted edges is useful 
to reduce the number of outliers.  
Usually the irregularities are caused by other edges nearby the 
vehicle queue. In future implementations we intend to detect 
such outliers by a more sophisticated shape analysis of the 
boundary functions.  
 
To determine the contrast function of a ribbon, a reference gray 
value outside the vehicle regions must be defined. The actual 
gray values in the direct neighborhood of a vehicle, however, are 
often influenced by adjacent objects or shadows and are 
therefore no reliable estimates of the reference gray value. A 
better way to determine the contrast function is to estimate the 
median road surface brightness in the neighborhood of a vehicle 
queue and use this estimate as reference gray value. Assuming 
that – despite of the presence of some vehicles – the most 
frequent gray values in the RoI represent the road surface, and 
further assuming that in the center of a road less disturbances by 
vehicles and shadows occurs than at the road sides, the following 
simple procedure has been implemented to compute the road 
surface brightness: 

• project the start and end point of each extracted 
centerline onto the GIS road axis, thereby defining the 
relevant road section 

• dilate this section by approximately the width of one 
lane 

• calculate the median gray value of this image region in 
order to estimate the road surface brightness 

Since the gray values along the medial axes have already been 
extracted, the contrast function simply results from the absolute 
difference of these values and the reference gray value. In Fig. 7 
examples of width and contrast function of a ribbon are shown. 
It furthermore illustrates that both functions show mutually 
correlated repetitive patterns which will be used to detect single 
vehicles. 
 

2.4 Single vehicle determination by least squares 
optimization 

For extraction of single vehicles from a ribbon, Gaussian kernels 
are fitted to the width and contrast function (Fig. 7). Of course, 
different kernels like a second-order polynomial could be used 
instead. However, the estimated parameters of a fitted Gaussian 
kernel relate not only to the desired vehicle dimensions but also 
allow to establishing a link to the particular scale used for line 
extraction in Sect. 2.2. – especially the Gaussian kernels fitted to 
the contrast function. The rationale of the procedure outlined in 
the following should thus be understood as an attempt to embed 
the vehicle detection into the same scale-space framework as the 
line extraction approach. 
 
The calculation of the unknown parameters of each Gaussian 
kernel is done by a least squares fit. The notation corresponds to 
the work of Mikhail (1976).  
The functional model of a Gaussian function to fit to a 
predefined interval of the width functions has the following 
form: 
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with w(...) width as function of  aBwB, σBwB and µ 
        aBwB the amplitude of the fitted Gaussian kernel  
        σBwB  second-order moment of the Gaussian kernel 
        µ  first-order moment of the Gaussian kernel, i.e.   
 the position of maximum amplitude 
         x position of w along the interval under 
 investigation 
 
The functional model for the contrast function is quite similar: 
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with c(...) contrast as function of  aBcB, σBcB and µ 
        aBcB the amplitude of the fitted Gaussian curve  
       σBcB  second-order moment of the Gaussian curve 
       µ  first-order moment of the Gaussian kernel, i.e. 
 the position of maximum amplitude 
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Figure 8: Concepts of width functions' analysis 

        x position of value c along the interval under 
 investigation 
 
Since a vehicle should yield the maximum of both width and 
contrast function at the same position, µ is a shared parameter in 
both functions. Fig. 7 illustrates an example of the contrast and 
the width signal. The fitted Gaussian curves for the first interval 
are also included. These intervals are defined by two consecutive 
minima in a smoothed version of the function. It is also apparent 
from Fig. 7 that additionally introducing σ  as shared parameter 
would not lead to satisfactory results. The pronounced 
differences between the shapes of the two functions would cause 
the accuracy of the estimated unknown σ  to drop down 
significantly. 
The unknown parameters of the functional model (1) and (2) are 
summarized in the vector x: 

( )σ µ σ= w w c ca aTx  

It is easy to see that the functions (1) and (2) are nonlinear. 
Therefore the determination of the unknown parameters is an 
iterative process, where x needs to be calculated by (see 
(Mikhail, 1976):  

       (3)= +0x x ∆  
and  

( ) ( )( )1−
= −T T 0

∆ B B B l f x  

assuming the observations to be uncorrelated and of equal 
accuracy, i.e. neglecting the weighting matrix W. Vector l 
contains the observations of the current interval and f(x P

0
P) the 

width and contrast function derived from the initial values x P

0
P. ∆∆∆∆ 

are the corrections to the initial values and B is the Jacobian 
matrix containing the partial derivatives with respect to the 
unknowns of the Gaussian kernels. 
 
The vectors l and ( )0f x are defined by: 

( )
( ) ( ) ( ) ( )( )0 0 0 0 0 0 0 0σ µ σ µ σ µ σ µ

=

=

f l f l

w w w w c c c cf l f l

w w c c

( ) w a , , w a , , c a , , c a , ,

T

0 T

l

f x ⋯ ⋯

⋯ ⋯

 
where indices f (first value) and l (last value) indicate the 
boundaries of the interval under investigation. 
Values for x P

0
P are chosen considering that:  

• µP

0
P corresponds to the position of the maximum of the 

current interval 
• aP

0
PBcB is the contrast value at position µP

0
P   

• σP

0
PBwB = σP

0
PBcB is chosen according to the supposed vehicle 

length 

• aP

0
PBwB can be calculated by 2µ π σ= ⋅ ⋅w wa w where wBµ B 

is the width at maximum µ 
 
Now the unknowns x can be calculated according to Equ.3. If 

the L1-norm − 0x x  is greater than a predefined threshold, x P

0
P 

is replaced by x and ∆∆∆∆ will be calculated again until convergence 
or after a maximum number of iterations is reached.  
Furthermore the accuracy of the unknowns can be obtained from 
the diagonal of the C Bxx B matrix, which is calculated by: 
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Here n is the number of observations, u is the number of 
unknown parameters (here 5) and v contains the observations' 
residuals, which are calculated by: 

( )( )= ⋅ − − 0v B ∆ l f x  

If the width and the contrast functions exhibit the expected 
repetitive pattern, only a few iterations are necessary.  
As final result of the least squares adjustment, we obtain the 
parameters describing a fitted Gaussian kernel for a given 
interval including their accuracies. Thresholds are applied to 
these parameters to discern false and correct hypotheses. The 
required thresholds were acquired from test datasets.  
In some cases multiple detections of the same vehicle occur due 
to neighboring ribbons. Therefore, an overlap analysis is carried 
out in which all overlapping (or nearby) hypotheses are mutually 
tested for consistency. In case of conflicts the worse hypothesis 
is rejected. 
 
2.5 Single vehicle determination by iterative constrained 
search 

A second method to find single vehicles also uses the appearance 
of significant repetitive patterns in the width function (Figure 8). 
Here, maximum values in this function are assumed to 
approximately represent the centers of single vehicles whereas 
minimum values are assumed to represent gaps between two 
vehicles of a queue. 
 
The following parameters are used:   

• vmin ... minimum length of a single vehicle (SV) and 
    search interval (SI) 

• vmax ... maximum length of SV and SI 
• lmin ... position of the minimum width within SI 
• lmax ... position of the maximum width within SI 
• d ... distance between lmin and lmax 

 
 
A vehicle hypothesis is generated if the following condition is 

fulfilled: min maxv v
d

2 2
≤ ≤  
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Figure 9: Verification 

Figure 10: Extraction results I Figure 11: Extraction results II 

Figure 8 shows the flow chart of the width analysis scheme.  
Essentially, this algorithm tries to find local maxima and minima 
in the noisy width function and place the vehicle positions in 
such a way that vehicle hypotheses do not overlap. 
It is possible that more than one hypothesis is found for a single 
vehicle. This is caused by two or more maxima in the width 
function within size of a vehicle. Therefore we control the space 
between two hypotheses not to fall below a certain minimum 
distance. If more than one hypothesis is found within this 
minimum distance, the hypothesis with the highest maxima in 
the width function will be verified.  
Unlike the method described in Sect. 2.4, the contrast function is 
not used here. Rather, the contrast of the vehicle and the 
adjacent road surface is used for a simple verification after a 
hypothesis has been generated. Here the difference of the median 
gray values of the inner and the outer region is calculated (see 
Figure 9). 

3. RESULTS 

 In Figures 10 and 11, results achieved with the extraction 
approach from Sect. 2.4 are shown. Therefore, we processed an 
image scene covering an area of 0.1 sq. km. Cyan ellipses 
correspond to correct extractions, white ellipses represent 
misdetections. As can be seen, the ellipses of the correct 
extractions coincide quite well with the actual vehicles, clearly 
indicating that the fitting procedure works reliably. This is a very 
encouraging result, especially when recalling Figure 7, which 
gives an impression on the “noisiness” of the contrast and width 
function.  
However, there are also a number of misdetections, in particular 
at side-walks when dark objects are on either side of the side-

walk (see e.g. Fig. 11). Such failures could be overcome, for 
instance, by a more detailed analysis of neighborhood relations 
of extracted vehicles. A constellation as achieved for the right 
queue in Fig. 10 is very unlikely to happen; four vehicles are 
almost perfectly aligned in a row while each of the other two 
vehicles is located on a different side of this row. Incorporating 
this kind of reasoning into the approach would allow to further 
reducing the misdetection rate. 
Fig. 10 and 11 also show that a number of cars are not extracted, 
i.e. the completeness of this approach is quite fair. However, one 
has to keep in mind that vehicles do not always appear as queues 
and, furthermore, that the line extraction does not extract all 
existing queues. In fact, tests have shown that approximately 
60% of all vehicles are contained in the ribbons that serve as 
initial hypotheses. Besides this, also the edge detection 
procedure for determining a ribbon’s width could be improved 
to support convergence of the least squares adjustment. 
 
For numerical evaluation, manually created reference data sets 
have been utilized and the well-known criteria "correctness" and 
"completeness" values are calculated as evaluation measures: 

TP
   correctness

TP FP
TP

completeness
TP FN

=
+

=
+  

 
with    TP  true positives 
           FP  false positives 
           FN  false negatives 
Here true positives are correctly extracted vehicles, false 
positives are misdetections, and false negatives are missed 
vehicles with respect to the reference data. Table 1 summarizes 
the evaluation results depending on the type of reference data 
and the used method: 

a) all vehicles using least squares adjustment 
b) all vehicles using iterative constrained search 
c) only bright and dark vehicles, i.e. without gray 

vehicles (using least squares adjustment) 
d) only bright and dark vehicles, i.e. without gray 

vehicles (using iterative constrained search) 
 

Gray vehicles have been excluded from the reference in b) and 
d) since they almost show no contrast to their surroundings. We 
would like to mention in addition that the acquisition of 
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reference data for some vehicles is certainly not free of errors. 
Even a human observer is sometimes not able to identify all 
vehicles in an image scene with high confidence. Therefore our 
reference data can only be considered as a very good 
approximation of real “ground-truth”.  
 
It can be seen from Table 1, that on one hand both approaches 
deliver comparable results, although the iterative constrained 
search generally achieves higher completeness with better 
correctness at the same time. On the other hand the single 
vehicle determination by least square optimization gives 
statistical accuracy of all hypotheses. It is planned to use these 
values for internal evaluation, which is supposed to increase 
performance and reliability. 
 
 Reference data 

 (a) (b) (c) (d) 

Completeness [%] 31.1 34.1 36.1 40.3 

Correctness [%] 73.5 76.0 70.5 72.3 

Table 1: Numerical Evaluation 
 
Despite the weak completeness, the good correctness of the 
extracted vehicles allows to use them as starting point for 
searching additional vehicles. Therefore the next steps of 
implementation will include the search for isolated vehicles 
using the information from the previous queue detection. 
Preliminary investigations using a differential blob detector 
(Hinz, 2005) for accomplishing this task have already taken out. 
 
Concluding the discussion, vehicles with good or even medium 
contrast to the road surface can be extracted very accurately. 
Furthermore, the results show that the analysis of width and 
contrast information using least square optimization allows to 
extracting single vehicles from queues with high correctness. 
Still, the completeness of the overall extraction is relatively low, 
since only queues can be extracted but no isolated vehicles. The 
results clearly show that the approach is promising but further 
improvements are necessary to achieve a higher completeness. 
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ABSTRACT: 
 
The paper describes an approach to tree species classification based on features that are derived by a waveform decomposition of 
full waveform LIDAR data. Firstly, 3D points and their attributes are extracted from the waveforms, which yields a much larger 
number of points compared to the conventional first and last pulse techniques. This is caused by the detailed signal analysis and the 
possibility to detect multiple pulse reflections. Also, constraints are embedded into the mathematical model of the decomposition to 
avoid erroneous 3D points caused by the system electronics. Secondly, special tree saliencies are proposed, which are computed 
from the extracted 3D points. Subsequently, an unsupervised tree species classification is carried out using these saliencies. The 
classification, which groups the data into two clusters (deciduous, coniferous), leads to an overall accuracy of 80 % in a leaf-on 
situation. Finally, the results are shortly discussed. 
 

                                                                 
*  Corresponding author.  

1. INTRODUCTION 

Remote sensing techniques have great potential to 
automatically derive forest structures and parameters that are 
captured so far in time consuming campaigns with considerable 
manpower. Microwave sensors, optical sensors, and laser 
sensors record data that contain inherent object information as a 
result of the interaction of the sensor specific wavelength with 
the forest.  
 
Microwave sensor systems have the advantage to penetrate the 
forest structure, are weather independent and less expensive. 
Primarily due to the complex back scattering mechanism the 
application of both InSAR and PolInSAR in forest is restricted 
to the extraction of overall parameters like the biomass 
parameter and the generation of a crude DSM (Aulinger et al., 
2005). SAR tomography does not depend on assumptions about 
the spatial forest structure like PolInSAR and represents a true 
3D mapping technique, however is far from practicability 
(Reigber, 2001). 
 
Optical sensors map at a high ground sample distance the 
canopy surface in particular bands depending on the spectral 
resolution. The measured pixel value represents only the 
intensity that is directly reflected from the canopy surface 
element. The way the sun light photons are interacting with the 
entire tree structure is not recorded. Thus, spatial forest 
parameters can only be derived indirectly from surface 
parameters like the crown diameter. So far, most of the 
applications with optical sensors aimed at medium and small 
scale forest inventory (Hyyppä et al., 2000). New digital aerial 
cameras providing multi-spectral images with high geometrical 
resolution are promising.  DSM generation and tree height 
determination based on image correlation has been reported 
recently (Baltsavias et al., 2006). Also, tree species 

classification was demonstrated using the DMC digital aerial 
camera (Persson et al., 2004). 
 
LIDAR comprises several advantages for forest applications. 
The laser beam may penetrate the forest structure, and the 
technique provides 3D information at a high point density and 
intensity values at a specific wavelength. Since over a decade 
conventional LIDAR - recording the first and last pulse - has 
been widely used to successfully retrieve forest parameters 
(Hyyppä et al., 2004; Heurich et al., 2004). Holmgren (2003) 
shows that single trees like Norway Spruce and Pine can be 
delineated and classified using highly dense LIDAR data in 
forest structures which are typical for Scandinavian forests. 
However, conventional LIDAR data do not provide desirable 
forest features like young regeneration due to the limited range 
resolution and penetration rate. 
 
A conventional LIDAR system has limitations concerning the 
number of recordable pulse reflections. Also, the information 
about the reflecting object and its geometric and physical 
characteristics is not registered. New full waveform scanners 
overcome this drawback, since they record the entire laser pulse 
echo as a function of time. Therefore, detailed information 
about the geometric and physical characteristics of the tree 
structure can be derived and used to retrieve more sophisticated 
and precise forest structures. 
 
The presented work is focused on automated extraction of forest 
parameters. The overall goal is to replace time consuming and 
expensive methods of forest inventory by new techniques 
exploiting LIDAR data from new full waveform scanners. In 
this paper we report on an approach to waveform 
decomposition and tree species classification using full 
waveform LIDAR data. 

228



 

The paper is structured by five sections. Section 2 describes the 
decomposition of the waveform based on a robust adjustment 
scheme. Section 3 presents the approach to tree species 
classification. Section 4 shows results obtained from full 
waveform data collected in fall 2004 by the TopEye MK II 
system in the Bavarian Forest National Park. Finally, the results 
are discussed with conclusions in section 5 and 6. 
 

2. DECOMPOSITION OF FULL WAVEFORM DATA 

2.1 General Remarks 

Generally, the recorded waveform is influenced by the 
transmitted pulse, the atmosphere and the object. Wagner et al. 
(2003) present a theoretical model for the interaction of a single 
laser beam with topographic targets like leaves, power lines, 
roofs and trees. For simplification, it neglects the mitigation of 
the laser pulse when travelling through a tree volume. Several 
approaches to decompose a single waveform have been 
published. Hofton et al. (2000) suggest to fit several Gaussian 
distribution functions in a nonlinear least squares adjustment to 
the waveform. Likewise, Jutzi and Stilla (2005) model the 
waveform with Gaussians by a Gauss-Newton method. Finally, 
Persson et al. (2005) introduced another method based on the 
Expectation-Maximation algorithm.  
 
2.2 Approach 

Our approach to decompose the full waveform data is based - 
similar to Hofton et al. (2000) - on the assumption, that the 
transmitted pulse is of Gaussian type and the registered 
waveform is composed from several single laser returns that are 
also of Gaussian type. Thus, we model the waveform w(t) with 
a sum of single Gaussian distribution functions 
 

           
( )

∑
= ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
−+=

p

m

m
N

m
m

tt
Atw

1
2

2

2
exp)(

σ
ε     (1) 

with 

NP : Number of peaks  Am: Amplitude of the mth peak 

ε : Bias (noise level) tm : Time position of the mth peak 

σm : half width of the mth peak 
The nonlinear observation equation (1) is linearized with 
respect to the unknown model parameters xT = (ε, Am, tm ,σm) (m 
= 1,Np). A standard least squares adjustment estimates the 
unknown variables x by the normal equation system 
 

            PlTAxPATA =)(  (2) 
 
with A as the design matrix, P  as the weighting matrix and l as 
the observation vector.  
 
Since initial experiments showed that the standard least squares 
adjustment cannot clearly extract single returns from the 
registered waveform in case of overlaying return pulses, the 
Levenberg-Marquardt (LM) (Levenberg, 1944; Marquardt, 
1963) iteration scheme was added by replacing the normal 

equation matrix PATAN =  in (2) with  augmented normal 
equations N ′ , where 
 
           iiNiiN )1( λ+=′  and ijNijN =′  for ji ≠ . (3) 

 

The damping factor λ is initially set to 10-3 and is scaled down 
by the factor 10 as long as the solving of the normal equations 
shows a good convergence. In case of a divergence λ is 
multiplied by 10 and the normal equations are solved again. 
This process continues until the normal equation converges 
significantly. 
 
The initial values 0000 ,,, mmm tA σε  for the unknown parameters 
are derived as follows. The median of the waveform w(t) is used 
as starting value for ε, i.e. ))((0 twmedian=ε . Initial 

values 0
mA for the amplitudes and 0

mt for the time positions of the 
peaks are found by smoothing the original signal by a 1x3 
Gaussian filter and computing the first derivative of the 

smoothed curve. Possible time positions 0
mt of a peak are zero 

crossings of the first derivative of w(t). In order to distinguish 
between real returns and noise a threshold Cthreshold based on the 
median absolute deviation MAD=median(|w(t) - median(w(t))|) 
of the waveform w(t), which is a measure of dispersion of a 
distribution about the median (Rousseeuw and Leroy, 1987), is 
calculated. The threshold Cthreshold is set to 
 
         )4826.13)(( MADtwmedianCthreshold ⋅⋅+=    (4)    
  
in order to achieve consistency with the standard deviation for 
asymptotical normal distributions. We just select potential local 
maxima with amplitudes larger than the threshold Cthreshold. The 
initial values 0

mσ  are set to 0.25 m, which is equivalent to the 
standard deviation of the transmitting pulse (pulse length 5 ns) 
assuming that it is of Gaussian type.  
 
The internal accuracy of the estimated parameters are derived 
from the inverse normal equation matrix 1−N and the sigma 
naught σ0. Since the scan angle of the laser beam is rather small 
the standard deviation 

mtσ of the peak position is a good 
estimation of the height standard deviation of the corresponding 
3D point ),,( mmm

T
m zyxX = , i.e.

mm tz σσ ≈ . This value is used 

as a quality measure after the adjustment to discard possible 
weak points from any further analysis based on a certain 
threshold.  
 
2.3 Extraction of 3D points 

The estimated time positions tm of the Gaussian functions are 
used along with the starting point ),,( sss

T
s zyxX = , the 

direction vector sr and the start time ts of the waveform to 
generate the 3D points  of the waveform with        

),1()( pssmsm NmrttXX =−+= . Additionally, these points 

get the width Wm of the return pulse and the intensity related 
parameter Im of the reflection as attributes. The width mW  is set 
to twice the estimated standard deviation σm, i.e. 

mmW σ⋅= 2 .The parameter Im is derived from the integral of 
the Gaussian function that can be approximated 
with mmm AI ⋅⋅= σ2 and is equivalent to the pulse energy of the 
reflection. Note that the parameters Wm and Im are still sensor 
specific since they depend on the amplitude and pulse length of 
the emitted signal. Also, Im depends on the run length sm of the 
laser beam. Calibration is achieved by referencing Wm and Im to 
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eW  and eI  of the emitted Gaussian pulse and correcting Im 
with respect to a nominal distance s0 according to the radar 
equation (Wagner et al. 2003). This leads to calibrated 

parameters 
e
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= , which represent 

additional information about the reflections of the laser beam on 
targets and can be used in a tree species classification. 
 

3. TREE SPECIES CLASSIFICATION 

3.1 Concept 

Tree species classification is usually split up into three main 
steps. Firstly, individual tree crowns are delineated by a 
segmentation of the canopy height model, which describes the 
tree surface. Secondly, characteristic features of the individual 
trees are extracted. Thirdly, based on the extracted features tree 
species are classified using an appropriate classifier. So far, we 
have been concentrating on the second and third step and 
postponed the segmentation of the tree crowns. 
 
3.2 Feature extraction  

The finding of significant features describing the tree 
individually is a key issue in tree species classification. 
Assuming a given tree segment we have several waveforms 
intersecting the prismatic volume area from which in total n 3D 
points ),1(},,,,{ njWIzyxX c

j
c
jjjjj ==  can be derived 

containing the coordinates and the attributes of the waveform 
decomposition. 
 
The salient features },,{ Iigt SSSS =  of a tree t are subdivided 
into three groups reflecting the outer tree geometry by Sg, the 
internal geometrical tree structure by Si and the intensity-related 
tree structure by SI. 
 
For the group Sg we have developed two saliencies 

},{ 21
ggg SSS = . The first saliency 1

gS  consists of the 

parameters },{ ba  of a parabolic surface 

0
2

0
2

0 )()( zyybxxaz +−⋅+−⋅=  that is fitted to the 3D points 
of the crown shape. These points are found with a convex hull 
algorithm applied to the crown points. Crown points are 
selected from the tree segment points by discarding possible 
ground hits within a height bound of 1 m above the DTM and 
points below the crown base height hbase. The value for hbase is 
found by splitting the tree segment into height layers of 0.5 m 
and finding the lowest layer that contains more than 1% of the 
non-ground points. The parameters (x0, y0 ,z0) are either adjusted 
or are set equal to the coordinates of the highest point found in 
the tree segment.  
 
For the calculation of the second saliency 2

gS  we subdivide the 

tree in l tree layers (Figure 1). The saliency 2
gS  is composed of 

the mean radii ),1}({2 lkrS kg ==  that are determined as the 

mean distances ( ) ( ) ),1(1
2
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all Nk layer points to the tree trunk (x0, y0), which is set equal to 
the planimetric coordinates of the highest crown point (Figure 
1a).  

The saliency group },{ d
i

h
ii SSS =  describing the internal tree 

structure is inspired by metrics introduced for tree 
characterization (Naesset, 2004). The saliencies 

),1}({ lkhS k
h
i ==  are the percentiles of the LIDAR point 

height distribution in a tree segment and also referred to as 
height dependent variables (Figure 1b). The saliencies 

),1}({ lkdS k
d
i ==  are defined as the number of LIDAR points 

in 1 tree layers from height treehlk ⋅− )/)1((  to height 

treehlk ⋅)/(  normalized by the total number of LIDAR points 
in a tree segment (Figure 1c). 
 
The key idea to introduce the third saliency group 

},{ 21
III SSS =  is to use the intensity information the waveform 

decomposition provides for each point. We compute in l tree 
layers with Nk layer points the mean values 
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== ∑ =
 composing the saliency 

),1}({1 lkIS c
kI == . Additionally, we introduce the saliency 

}{2 c
meanI IS =  as the overall intensity related value for the 

entire tree segment.  

  

a b c

Figure 1: Tree layers a)-c) Different distributions 
 
3.3 Classification 

The tree species classification is a 2-step procedure beginning 
with a clustering of the tree species and a subsequent Bayes 
classification. Let },,{ Iigt SSSS =  be the salient features of a 

tree t to be classified and let },{ kkkT Σ= µ  be the density 
probability model (mean, covariance matrix) of the kth tree 
class. The probability that a tree t is a member of the kth tree 
class is given by   
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where d is the number of saliencies. 
 
The density probability models kT  are found by the 
Expectation-Maximization algorithm that approximates the 
distribution of a saliency subset S ε St by 
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with kπ  as the mixing coefficients, ),|( kkSN Σµ  as the 
multivariate Gaussian distribution and s as the number of 
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Gaussians. Note, if we just apply the clustering step (6) to the 
entire set of tree saliencies, we will receive the simple case of 
an unsupervised tree species classification. Otherwise, step (6) 
is the learning process of the Bayes classification (5). 
 

4. EXPERIMENTS 

Experiments were conducted in the Bavarian Forest National 
Park that is located in south-eastern Germany along the border 
to the Czech Republic. The waveform data have been collected 
by the new full waveform system MK II from TopEye, which is 
operating at a wavelength of 1550 nm and a PRF of 50 kHz. 
The scan angle varies within 14 and 20 degrees. The system 
was flown in late September 2004 at a flying height of 200 m 
resulting in a nominal point density of approximately 25 
points/m2. Due to the fixed sampling length of 128 samples, the 
waveform was limited to about 19 m. The sampling rate was 1 
GHz providing a vertical resolution to 15 cm. The pulse length 
of 5 ns created a pulse width with a standard deviation of 25 
cm. The emitted Gaussian pulse was not available. Finally, the 
footprint was 20 cm because of the beam divergence of 1 mrad. 
 

  

 
Figure 4: Aerial images of areas 1 and 2 in row 1; Points 
derived by the TopEye system in row 2, grouped in “First” and 
“Last” pulse points; Points derived from the waveforms in row 
3, grouped in “First” and “Last” pulse points and points 
between “First” and “Last” pulse (labelled as “Middle” points) 
 
The flown area is of size 500 m x 1700 m and is mainly 
characterized by Norway Spruce and European Beech. 
Segmented tree crowns have been derived from a canopy height 
model (CHM) by a watershed-based algorithm. The CHM was 

generated from an earlier laser scanning campaign (Heurich et 
al., 2004).  The total number of tree segments amounted to 
1000. Reference data for Norway Spruce and European Beech 
were available in 97 and 23 segments, respectively. In each 
segment we took the highest tree as the reference tree. 
 
In a first step we applied the waveform decomposition to four 
sample trees and one meadow area in order to demonstrate the 
potential of the approach. Firstly, an area of interest was 
defined in digital orthophotos by manually digitizing a polygon. 
Secondly, 3D points were generated from all the waveforms 
intersecting the corresponding prismatic volume segment. The 
resulting 3D points were grouped into the 3 classes “First”, 
“Last” and “Middle”. The classes “First” and “Last” contain all 
the points derived from the first and last detected peak (t1, tNp). 
All the other points referring to tm (m = 2, Np–1) were classified 
as “Middle”. For comparison, we selected also the first and last 
pulse points the TopEye system created conventionally with its 
standard detection procedure. Figure 4 illustrates graphically 
two sample trees and table 1 contains numerically the number 
of points extracted by the TopEye system and our waveform 
decomposition. Note that the single trees 1, 2 and 3 are free-
standing. Tree 4 refers to a group of trees in closed forest. 
 

Area 1 2 3 4 5 

Tree specie / 
object type 

Deci-
duous 
(leaf-
on) 

Deci-
duous 
(leaf-
off) 

Coni-
ferous 

Deci-
duous 
(leaf-
on) 
and 
coni-
ferous 

Mea-
dow 

Size [m2] 21.9 72.2 22.2 86.7 28.3 

Total 768 5594 1109 1602 362 

First 503 4168 882 1191 362 

Points 
from 
Top-
Eye 

Last 265 1426 227 411 0 

Total 943 7436 2555 3261 456 

First  
(%) 

553 
(59) 

4648 
(62) 

1483 
(58) 

1678 
(51) 

456 
(100) 

Last   
(%) 

280 
(30) 

1548 
(21) 

727 
(28) 

969 
(30) 

0     
(0) 

Points 
derived 
from 
wave-
forms 

Middle 
(%) 

110 
(11) 

1240 
(27) 

345 
(14) 

614 
(19) 

0     
(0) 

Table 1: Comparison of points derived by the TopEye system 
and by the waveform decomposition 
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Conif. [%] 86 94 54 69 79 80 80 80 

Decid. [%] 65 65 74 61 65 83 83 82 

Total [%] 81 88 58 67 77 81 81 80 
Table 2: Overall accuracy of tree species classification 
 
In the next step tree species classification was carried out for 
the two classes “Coniferous” and “Deciduous” by applying the 
saliencies },,{ Iigt SSSS =  of 1000 tree segments to the 
unsupervised clustering approach (6). We postponed the 
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supervised classification with (5) because of the few reference 
data for European Beech. The overall classification accuracy 
was derived from the reference data by determining error type I 
and error type II. We introduced 10 layers for the saliencies 

2
gS , d

iS  and 1
IS , and calculated height percentiles for h

iS  in 

steps of 10%. We only used the last values 10r  and 10I  for 2
gS  

and 1
IS . Table 2 summarizes the classification results. 

  
5. DISCUSSION 

The application of the waveform decomposition to the LIDAR 
data showed that on average 2 to 3 returns could be detected 
from a single emitted waveform. Thus, the overall point density 
of 25 pts/m2, which is a function of the flying height, the PRF 
and the flying speed, was increased to roughly 60 pts/m2.  
 

 
Figure 2: Separated overlaying returns 
 

 
Figure 3: Waveform from a roof with an erroneous peak and the 
fitted curve where this peak is ignored 
 
Interestingly, the LM iteration scheme (3) successfully 
separates overlaying returns. Figure 2 shows that three 
overlaying return pulses could be clearly split up. The 
corresponding peaks have a distance of 0.4 m and 0.7 m 
respectively, which is in the order of the nominal height 
separability derived from the pulse length of 5 ns (Wagner et al. 
2003). Note that conventional LIDAR systems can practically 
discern two return pulses with a distance of about 3 m. 
Furthermore, the adjustment approach evidences an excellent 
mean height standard deviation 

mtσ of about 2 cm for all points 

decomposed from the waveforms. This is roughly by the factor 
7 better than the nominal height resolution of 15 cm. 
 
Surprisingly, some waveforms contained erroneous peaks that 
are a typical effect of bandwidth limited receiver electronics 
called “ringing" and can be observed - most prominently - when 
the registered light intensity is high. In worst cases there might 
even occur 2 additional pseudo peaks after the dominant large 
peak that only results from one reflection. Figure 3 shows a 
typical example of a waveform resulting from a roof reflection. 
Two rules have been established to avoid the extraction of 
pseudo 3D points in that case. The second peak is ignored if it 
is closer than 1.5 m to the first peak and, secondly, if its 
amplitude is smaller than 1/5 of the amplitude of the first peak. 
 
Table 1 evidences that the waveform decomposition provides 
significantly more points than the standard TopEye detection 
mode. The smallest improvement of about 25% can be observed 
at tree 1, which is a small deciduous tree in a leaf-on situation. 
In the area of the coniferous tree 3 the waveform decomposition 
creates even more than 100% additional points. Two main 
reasons can be found for this. Firstly, the waveform 
decomposition decorrelates all the significant returns of the 
laser beam. Sometimes, up to four or even more points can be 
found between the first and last peak. Such points are totally 
ignored by a conventional system. The percentage of the 
“Middle” points to the total number of decorrelated points 
varies between 10% and 30%. Secondly, since the waveform 
decomposition can be flexibly controlled by tuning parameters, 
it also decorrelates points with a low intensity. Again, many of 
such points are not registered by a conventional system due to 
the internal threshold for signal detection. In other words, the 
higher sensitivity of the waveform decomposition generates 
much more points. This becomes especially apparent in area 5 
(=meadow), where only first pulse points occur.  
 
The classification results of table 2 show, that the saliencies i

gS  
describing the crown shape work best for the coniferous trees. 
Classification just using the saliencies d

iS  and h
iS  representing 

the internal geometrical structure results in a worse accuracy.  
The height dependent saliency h

iS  is better for deciduous trees, 

whereas the density dependent saliency d
iS  works better for 

coniferous trees. In comparison to this, classification with 
intensity related saliencies i

IS  yields better results. Especially, 

the saliency 2
IS  describing the mean intensity value of the 

segmented tree improves the classification of deciduous trees. 
However, the saliency 1

IS  describing the intensity related value 
in the upper tree layer is much worse with 65%. Interestingly, if 
we combine the best intensity related saliency 2

IS  with the 

crown shape saliencies gS  the classification results for both 
tree species is practically the same as with the intensity related 
saliency 2

IS . Obviously, the classification results are mainly 
influenced by the crown shape geometry and the mean intensity 
related value of the tree. Especially, the crown shape drives the 
classification for coniferous trees considerably. Height and 
density dependent saliencies are not as good as expected. 
Probably, the characteristic tree structures are not clearly 
reflected in these saliencies. The reasons are manifold. Firstly, 
the waveforms have just a limited length of 19 m and do not 
penetrate the lower parts of the trees. Secondly, since the data 
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collection was in September, the beeches were partly in nearly 
leaf-off or leaf-on situation. Possibly, this caused a different 
point distribution within one specie. Thirdly, the tree segments 
resulted from an earlier flight mission with lower point density. 
In some cases we could observe segments containing for 
instance several trees or artefacts. Also, smaller trees beneath 
the tree crown and branches from neighbouring trees may 
contribute to the tree structure and therefore falsify the 
saliencies. Notably, we could not clearly identify such cases by 
introducing a third class as an outlier class. The intensity 
information turned out to be as the parameter classifying both 
tree species practically with the same accuracy. Interestingly, 
just the mean intensity related value 2

IS  yielded the main 

contribution. Using the values of 1
IS  for all tree height layers 

resulted in a worse accuracy. Possibly, the number of detected 
return pulses was too small for the individual layers. 
 

6. CONCLUSIONS 

The presented study results show clearly the potential of full 
waveform data for the comprehensive analysis of tree 
structures. The number of extracted points is much larger if 
compared to conventional systems. Future research should 
evaluate (i) new saliencies for tree species classification based 
on the 3D points and the waveform signal, which clearly reflect 
micro structures of the trees like the stem and branches, (ii) 
waveform data with unlimited length, (iii) influence of point 
density and (iv) classification of tree sub classes. 
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ABSTRACT: 

Laser range data analysis is of high interest in photogrammetry. Range estimation for complex surface structures can be inaccurate. 
To overcome this drawback a method using a laser scanner capable of full-waveform analysis is proposed. For analysis the 
transmitted waveform of the emitted pulse is used to estimate the received waveform of the backscattered pulse for a known surface. 
We simulated a plane surface with different slopes and a sphere. Typical spatial beam distributions are considered for modeling, 
namely Gaussian and uniform. The surface response is determined and the corresponding received waveform is calculated. The 
normalized cross-correlation function in between the simulated and the measured waveform is used for precise range measurement. 
Additionally the position on the surface can be determined. 
 

1. INTRODUCTION 

The automatic generation of 3-d models for a description of 
man-made objects, like buildings, is of great interest in 
photogrammetric research. Laser scanner systems allow a direct 
and illumination-independent measurement of the range. Laser 
scanners capture the range of 3-d objects in a fast, contact free 
and accurate way. Overviews for laser scanning systems are 
given in (Huising & Pereira, 1998; Wehr & Lohr, 1999; 
Baltsavias, 1999). A general overview on how to develop and 
design laser systems can be found in textbooks (Jelalian, 1992; 
Kamermann, 1993). 

Current pulsed laser scanner systems for topographic mapping 
are based on time-of-flight techniques to determine the range of 
the illuminated object. The elapsed time between the emitted 
and backscattered laser pulses is typically determined by a 
threshold detection with analog electronics. Some systems 
capture multiple reflections caused by objects which are smaller 
than the laser beam footprint located in different ranges. Such 
systems usually record the first and the last backscattered laser 
pulse. 

First pulse as well as last pulse exploitation is used for different 
applications like urban planning or forestry surveying. While 
first pulse registration is the optimum choice to measure the 
hull of partially penetrable objects (e.g. canopy of trees), last 
pulse registration should be chosen to measure non-penetrable 
surfaces (e.g. ground surface below vegetation). 

Beside the first or last pulse exploitation the complete 
waveform in between is of interest, because it includes the 
backscattering characteristic of the illuminated field. 
Investigations on the waveform analysis were done to explore 
the vegetation concerning the bio mass, foliage or density (e.g. 
trees, bushes, and ground). NASA has developed a prototype of 
the Laser Vegetation Imaging Sensor (LVIS) recording the 
waveform to determine the vertical density profiles in forests 
(Blair et al., 1999). This experimental airborne system operates 
at altitudes up to 10 km and provides a large footprint diameter 
(up to 80 m) to study different land cover classes. 

The spaceborne Geoscience Laser Altimeter System (GLAS) on 
Ice, Cloud and land Elevation Satellite (ICESat) determines 

changes in range through time, height profiles of clouds and 
aerosols, ice sheet and land elevations, and vegetation (Brenner 
et al., 2003; Zwally et al., 2002). It operates with a large 
footprint diameter (70 m) on Earth and measures elevation 
changes with decimeter accuracy (Hoften et al., 2000). 

Beside large footprint systems first developments of small 
footprint systems were done for monitoring the nearshore 
bathymetric environments with the Scanning Hydrographic 
Operational Airborne Lidar Survey system (SHOALS). 
SHOALS has been in full operation since 1994 (Irish & 
Lillycrop, 1999; Irish et al., 2000). Recent developments of 
commercial airborne laser scanner systems led to systems that 
allow capturing the waveform: LITEMAPPER 5600, OPTECH 
ALTM 3100, TOPEYE II, and TOPOSYS HARRIER 56. The 
systems mentioned above are specified to operate with a 
transmitted pulse width of 4-10 ns and allow digitization and 
acquisition of the waveform with approximately 0.5-
1 GSample/s. 

To interpret the received waveform of the backscattered pulse, a 
fundamental understanding of the physical background of pulse 
propagation and surface interaction is important (Jutzi et al., 
2002; Wagner et al., 2003). The influence of the surface on the 
transmitted waveform is discussed by Steinvall (2000) for 
objects with different shapes taking into account different 
reflection characteristics. Gardner (1982) and Bufton (1989) 
investigated the pulse spreading by the impact of the surface 
structure, e.g. surface slope and vertical roughness within the 
laser footprint. 

The recording of the received waveform offers the possibility to 
use different methods for the range determination, e.g. peak 
detection, leading edge detection, average time value detection, 
constant fraction detection. This topic was investigated by 
different authors, e.g. Der et al., 1997; Steinvall & Carlsson, 
2001; Jutzi & Stilla, 2003; Thiel & Wehr, 2004; Wagner et al., 
2004; Vandapel et al., 2004. The analysis of the pulse shape 
increases the reliability, accuracy, and resolution. 

The range estimation is further improved by the comparison 
between the transmitted and the received waveform. This can 
be done by signal processing methods (e.g. cross-correlation, 
inverse filtering), if the sampling of the waveform is done with 
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a high sampling rate. The maximum of the cross-correlation 
between the transmitted and received signal estimates the range 
value with a higher reliability and accuracy than considering the 
received waveform only (Hofton & Blair, 2001; Jutzi & Stilla, 
2005; Thiel et al., 2005). 

Beside the range determination further surface features can be 
studied by waveform analysis, namely reflectance, slope and 
roughness. This specific surface features have an influence on 
the amplitude and width of the received waveform (Brenner et 
al., 2003; Jutzi & Stilla 2002; Steinvall et al., 2004; Wagner et 
al., 2006). For a parametric description of the pulse properties a 
Gaussian decomposition method on the waveform can be used 
(Hofton et al., 2000; Jutzi & Stilla 2005; Persson et al., 2005; 
Söderman et al., 2005). Nowadays, waveform analysis is more 
and more established for remote sensing applications especially 
in forestry (Hug et al., 2004; Reitberger et al., 2006). 

Depending on the application different surfaces have to be 
analyzed, e.g. for urban objects we have to deal with different 
elevated objects. In rural environment we have to deal with 
statistically distributed natural objects. The impact of the scene 
on the received waveform will be discussed using some 
standard examples (Figure 1). Different elevated object surfaces 
within the beam corridor lead to a mixture of different range 
values. A simple situation is given by a horizontal plane surface 
which will lead to a small pulse (Figure 1b). A plane which is 
slanted in relation to the viewing direction shows different 
range values within the footprint. This range interval which is 
given by the size of the footprint and the orientation of the 
plane leads to a spread of the pulse width (Figure 1c). A 
deformation of the pulse form can also be caused by 
perpendicularly oriented plane surfaces shifted by a small step 
in viewing direction (Figure 1d). A large step leads to two 
separate pulses (Figure 1e). Several surfaces with different 
range within the beam can result in multiple pulses. Randomly 
distributed small objects (e.g. by vegetation) spread over 
different range values within the beam leads as well to a spread 
of the pulse width (Figure 1f). These examples show the 
influence on the waveform by standard surface situations. The 
energy distribution within the beam was not considered. For 
predicting received waveforms of more complex surfaces and 

different energy distributions a modeling and simulation of the 
process is required. 

The modeling of the received waveform can be done when the 
surface is known. A typical situation where known surfaces can 
be used is for registration of multiple scans received from 
different positions or at a different time. In these cases typically 
retro-reflective markers in form of spheres, cylinders or planes 
are used (Dold, 2005) and a precise range estimation of the 
known surfaces are helpful for the registration process. Beside 
this the surface has not to be known in advance, it can be 
estimated by previous measurements. Then a possible 
refinement of each range value can be done under consideration 
of the surface geometry in the close neighborhood. 

In Section 2, an overview on the simulation setup is given. We 
simulated the surface response for different slopes and a 
spherical surface, which is shown in Section 3. For known 
surface structures corresponding received waveforms can be 
calculated and compared with measured waveforms, which is 
presented in Section 4. By proofing these waveforms for 
similarity the position on the surface and the precise range 
value can be determined. 

2. SIMULATION 

The simulation is necessary to estimate the received waveform 
of the backscattered pulse received from a known surface. For 
the transmitted waveform of the emitted pulse a measured or a 
modeled waveform can be used. 

By the use of a 3-d object representation for the object model 
(Figure 2-1) and the extrinsic orientation parameter for sensor 
position and orientation (Figure 2-2), the model is sampled to 
get a high-resolution range and reflectance image (Figure 2-3). 
The resolution has to be higher than the scanning grid we want 
to simulate for further processing. Considering the transmitted 
waveform of the emitted pulse and the spatial energy 
distribution of the laser beam for temporal and spatial laser 
pulse properties is relevant for modeling the laser pulse 
(Figure 2-4). To simulate the scanning of the laser system, the 
values of grid spacing and the divergence of the laser beam are 
used for convolving the high-resolution range image with the 
transmitted waveform and convolving the high-resolution 
reflectance image with the spatial energy distribution of the 
beam (Figure 2-5). For a range depending 1-d surface 
representation, the surface response is determined by the spatial 
undersampling of the high resolution range and intensity image 
(Figure 2-6). By convolving the surface response with the 
transmitted waveform the received waveform is determined at 
the receiver (Figure 2-7). 

For simulating the received waveform of the backscattered 
pulses an object model (Section 2.1) and a sensor model 
(Section 2.2) is required. 

2.1 Object modeling 

For a 3-d object representation, our simulation setup considers 
geometric and radiometric features of the illuminated surface in 
the form of 3-d object models with homogeneous surface 
reflectance. 

The object model with homogeneous surface reflectance is then 
sampled higher than the scanning grid we simulate and process, 
because with the higher spatial resolution we simulate the 
spatial distribution of the laser beam. Considering the position 
and orientation of the sensor system we receive a high-
resolution range image and reflectance image. Depending on 
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Figure 1. Effects of the surface on the received waveform. 

a) transmitted waveform, 
b) plane surface, 
c) sloped surface, 
d) two slightly different elevated areas, 
e) two significantly different elevated areas, 
f) randomly distributed small objects. 
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the predetermined position and orientation of the sensor system, 
various range images can be captured. 

2.2 Sensor modeling 

The sensor model takes into account the specific properties of 
the sensing process: the position and orientation of the sensor, 
the laser pulse description, the scanning process and the 
electrical receiver properties. To simulate various aspects, a 
description of the extrinsic orientation of the laser scanning 
system with a GPS/INS system is used. 

The emitted laser pulse of the system is characterized by 
specific pulse properties (Jutzi et al., 2003). We assume radial 
symmetric uniform spatial distributions and radial symmetric 
Gaussian distributions for the beam profile, which are typical 
for the most laser systems. For this simulation we use measured 
transmitted waveforms to have a realistic description, where the 
bandwidth of the receiver to capture the waveform is 6 GHz and 
the data is sampled with 20 GSample/s. The transmitted 
waveform of the used system shows strong intensity 
fluctuations from pulse to pulse (Figure 3). The high sampling 
rate provides detailed information about the shape of the 
waveform with at least 100 sampling points for the typical 
length of the pulse (5 ns at Full-width-at-half-maximum). 

Depending on the scan pattern of the laser scanner system, the 
grid spacing of the scanning process, and the divergence of the 
laser beam, a sub-area of the high-resolution range and 
reflectance images is processed. Therefore, the sub-area of the 

high-resolution reflectance image is convolved with the spatial 
energy distribution of the laser beam (distribution at the grid 
line ±2σ) to take into account the amount of backscattered laser 
light for each reflectance value. By focusing the beam with its 
specific properties on the detector of the receiver, the spatial 
resolution is reduced and this is simulated with a spatial 
undersampling of the sub-areas. Therefore the received high-
resolution intensity and range image is processed by spatial 
undersampling to gain a weighted 1-d range distribution, which 
we call surface response. The determined surface response is 
convolved with the transmitted waveform to gain the received 
waveform of the backscattered pulse. 
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Figure 3. Two samples of the transmitted waveform. 
 

3. CALCULATING THE SURFACE RESPONSE 

The received waveform of a laser pulse depends on the 
transmitted waveform s[t], the impulse response h[t] of the 
receiver unit, the spatial beam distribution of the used laser 
P[x,y], and the illuminated surface S[x,y,z]. The received 
waveform r[x,y,z,t] can be expressed by a convolution of the 
relevant terms mentioned above and we get 

 [ , , , ] [ ]* [ ]* [ , ]* [ , , ]=r x y z t s t h t P x y S x y z , (1) 

where (*) denotes the convolution operation. The impulse 
response is mainly effected by the used photodiode and 
amplifier, the spatial beam distribution has typically the shape 
of a Gaussian or uniform, and the surface characteristic can be 
described by its geometry and reflectance properties (mixture of 
diffuse and specular). We assume to have a receiver unit 
consisting out of an ideal photodiode and amplifier with an 
infinite bandwidth and a linear frequency characteristic. The 
3-d surface characteristic can be reduced to a range depending 
1-d signal S[z], which we call in this paper surface response. 
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Figure 4. Examples of two surface responses for a slope with 25 
degrees and different spatial beam distributions: 
a) uniform, 
b) Gaussian. 

 

To study the surface response received from different surfaces, 
we simulated a plane surface which can be adjusted for various 
slopes illuminated by a beam with a spatial uniform beam 
distribution and a Gaussian beam distribution. Further surface 
responses from a small sphere with a radius of 0.3 m are 
determined by illuminating the surface of the sphere at different 
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Figure 2. Simulation setup for calculating the received 
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positions. For the simulation, the laser beam divergence is set to 
1 mrad and the spatial range spacing for processing the surface 
response is 7.5 mm, which is equivalent to 20 GSample/s. 

3.1 Plane surface with slope 

We simulated a system illuminating a plane surface with 
different slopes. Therefore a high-resolution range image with 
300x300 pixels of the sloped surfaces is calculated to determine 
the surface response. For surface reflectance a homogenous 
surface with 100% reflectance was assumed. The distance to the 
surface center is 100 m. 

Examples of the calculated surface response S[z] in dependence 
of the range z for a slope of 25 degrees received from an 
uniform beam distribution and a Gaussian beam distribution is 
shown in Figures 4a and 4b. The maximum of the surface 
response is at the range of 100m. 

3.2 Spherical surface 

A high-resolution range image with 300x300 pixels of a small 
sphere with its origin at the coordinate (0, 0, 100 m) and a 
radius r = 0.3 m is generated. Assuming a Gaussian beam 
distribution the surface response is calculated for five sampling 
positions [p0, p1, p2, p3, p4] distributed equidistantly from the 
center p0 to the boundary of the sphere. For the spacing of the 
sampling we chose 0.5 mrad, which is approximately equivalent 
to 1/6 of the radius r. 

The Figure 5 shows at the top row the position of the beam on 
the sphere, where the boundary of the sphere is visualized by a 
bright line. The diagrams in the middle show the corresponding 
surface response. With the calculated surface response the 
estimated received waveform for the different positions is 
calculated by convolving the surface response with the 
transmitted waveform. For exemplary waveform we selected 
the transmitted waveform which is depicted in Figure 3a. The 
received waveforms are shown in Figure 5 at the lower row. If 
the footprint is located at the sphere center (Figure 5a, top row) 
the received waveform (Figure 5a, lower row) is very similar to 
the transmitted waveform (Figure 3a). By shifting the footprint 

away from the sphere center the received waveform 
(Figure 5b-e, lower row) is getting more and more smeared. 

4. ESTIMATING THE POSITION AND RANGE 

First the transmitted and the received waveform has to be 
measured (Figure 6-1) with the receiver unit of the laser system. 
Then by the use of the transmitted waveform and the 
determined surface response (Figure 6-2) for each position on 
the surface the estimated received waveform (Figure 6-3) can 
be calculated by a convolution. These estimated received 
waveforms calculated for different positions on the surface are 
compared with the measured waveform by determining 
different normalized cross-correlation functions. With the 
maximum coefficient of the normalized cross-correlation 
functions the most likely position and the accurate range of the 
surface can be determined (Figure 6-4). Figure 6 depicts a 
schematic description of the processing chain. 

4.1 Matched filter 

The data analysis starts with the detection of the backscattered 
pulses in the temporal signal. Usually this signal is disturbed by 
various noise components: background radiation, amplifier 
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Figure 6. Processing chain to estimate position and range. 
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  a b c d e 
Figure 5. Position of the beam on the sphere (top row), corresponding surface responses (middle row); and the estimated received 

waveform (bottom row). 
 a) p0 = 0 (center), b) p1 = 1/6 r, c) p2 = 2/6 r, d) p3 = 3/6 r, e) p4 = 4/6 r. 
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noise, photo detector noise etc. Detecting the received 
waveform of the backscattered pulse in noisy data and 
extracting the associated travel time is a well-known problem 
and is discussed in detail in radar techniques (Skolnik, 1980) 
and system theory (Papoulis, 1984). Due to this problem 
matched filters are used. 

To improve the range accuracy and the signal-to-noise ratio 
(SNR) the matched filter for the waveform of the backscattered 
pulse has to be determined. In practice, it is difficult to 
determine the optimal matched filter. In cases where no optimal 
matched filter is available, sub-optimum filters may be used, 
but at the cost of decreasing the SNR. If the temporal 
deformation of the received signal can be neglected and the 
waveform is uniformly attenuated (isotropic attenuation by 
reflection or transmission of the pulse) the transmitted 
waveform of the emitted pulse is the best choice for the 
matched filter coefficients determination. In practice, the 
temporal deformation by the surface is common phenomenon 
(Figure 1). In this paper, we focus on determining this optimal 
filter by calculating the estimated received waveform, which 
can be expected from a known surface. 

Let us assume that the noise components of the system 
mentioned above are sufficiently described by white noise with 
the constant factor N. Furthermore the signal energy of the 
pulse is defined as E. The maximum SNR occurs if the signal 
and the filter match. In this case the associated travel time t of 
the delayed pulse is τ and the SNR is described by 

 
2

[ ] =
E

SNR
N

τ  (2) 

An interesting fact of this result is that the maximum of the 
instantaneous SNR depends only on the signal energy of the 
emitted pulse and the noise, and is independent of the shape. 

Generally the matched filter is computed by the normalized 
cross-correlation function Rsr between the transmitted 
waveform s[t] of the emitted pulse and the estimated received 
waveform ˆ[ , , , ]r x y z t  of the backscattered pulse. Assuming 
zero-mean waveforms, we obtain the output signal k[t] with a 
local maximum at the delay time τ 
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where M is the length of the correlation function [ ]k τ . 

Then the output signal k[t] with improved SNR is analyzed by a 
detection filter searching for the local maximum to determine 
the travel time of the pulse. By using the correlation signal to 
calculate the travel time, a higher accuracy is reached than by 
operating on the waveform, because exploiting the shape of the 
pulse waveform instead of a single value increases the accuracy 
(Jutzi & Stilla, 2005). This is because the specific pulse 
properties (e.g. asymmetric shape, intensity fluctuations) are 
taken into account and so less temporal jitter for range 
estimation can be expected. 

4.2 Processing the position and range 

The waveform received from an unknown position on the 
surface is given by the measurement. To determine the position 
on the surface, the normalized cross-correlation functions 
between the measured waveform and a sample of estimated 
waveforms for different positions on the surface is calculated. 
With the maximum coefficient of the normalized cross-
correlation functions, the most likely position is determined. 
This estimated position can be refined by calculating additional 
normalized cross-correlation functions and the corresponding 
maximum coefficients in close neighborhood. This procedure is 
repeated until the highest maximum coefficient is found. Then 
the position on the known surface and the precise range value to 
the surface is determined. 

Because of the radial symmetry of the sphere, which is 
investigated in Section 3.2, the position on the surface delivers 
a circle of possible positions around the center of the sphere 
surface. If the radius of the sphere is known, then at least one 
additional position on the surface has to be estimated to 
determine the correct sphere position. 

The processing time for the position and range mainly depends 
on calculating the surface response. The surface response is 
determined by the spatial undersampling of the high resolution 
range and intensity image. The high-resolution range image 
with 300x300 pixels does not have any practical relevance if it 
is sufficiently large to not induce errors in a higher magnitude 
as those incurred by our discretized beam distribution. To 
decrease the processing time, a smaller high-resolution range 
image might be sufficient on the cost of less accuracy for the 
range estimation. 

5. CONCLUSION 

In this work we have presented a scheme to estimate the precise 
range and position of a known surface. We simulated the 
surface response for different slopes and a spherical surface. 
Estimated waveforms received from different positions on the 
sphere surface are shown. The data generation and analysis we 
carried out are general investigations for a laser system which 
records the full-waveform of laser pulses. The method remains 
to be tested with real data, and expanded to handle more 
complex geometries. 
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ABSTRACT:

With TerraSAR-X and RADARSAT-2, two dual-channel SAR satellites will belaunched in the next months. Both sensors allow for
detecting moving objects, and, by this, enable traffic monitoring from space. This paper revises the theoretical background of traffic
monitoring with space-based SARs and presents concepts for the TerraSAR-X traffic monitoring system. Compared to previous work
an extensive analytical and empirical accuracy analysis is included forboth vehicle detection and velocity estimation. The accuracy
analysis includes a theoretical accuracy evaluation and a validation with real data.

1 INTRODUCTION

Since the launch of new optical satellite systems, e.g. Ikonos and
QuickBird, satellite imagery with 1-meter resolution or higher is
commercially available and a number of approaches have been
developed to detect or track vehicles in this imagery (see e.g. ref-
erences in (Leitloff et al., 2005)). Traffic monitoring based on
optical satellite systems, however, is only possible at daytime and
cloud-free conditions. Two high-resolution Spaceborne RADAR
systems, TerraSAR-X (Germany) and RADARSAT-2 (Canada),
which will be launched this year will overcome this limitations.
Yet there are other difficulties inherent in the SAR imaging pro-
cess that must be solved to design a reasonably good approach
for traffic monitoring using spaceborne Radar.

The task of detecting moving vehicles with SAR sensors (ground
moving target indication (GMTI)) has been addressed in several
scientific publications. The method of choice in GMTI is to use a
Radar or SAR sensor with at least 3 channels and use space-time
adaptive processing (STAP) for target detection. Further refer-
ence to that topic can be found e.g. in (Klemm, 1998, Living-
stone et al., 2002, Gierull, 2004). Unfortunately, civilian space
borne SAR systems with 3 or more channels are currently not
available. The upcoming TerraSAR-X mission as well as the
Canadian RADARSAT-2 mission will be equipped with a single
channel SAR that can be switched to an experimental mode with
two channels to enable along-track interferometric applications
like traffic monitoring. Although the use of a 2-channel system
is not optimal for detecting vehicles, some methods exist that al-
low detection under certain conditions. The classical approach to
do so is to use the displaced phase center array (DPCA) method.
Along-track interferometry (ATI) is another method that can be
used. The issue of detecting moving targets using ATI is for in-
stance discussed in (Gierull, 2001, Sikaneta and Gierull, 2005).
In (Gierull, 2002) special emphasis is put on the probability den-
sity functions associated with this detection. The influence of
vehicle acceleration is discussed in (Sharma et al., 2006). Traffic
monitoring from space is quite rare so far. But as shown in (Breit
et al., 2003, Meyer and Hinz, 2004, Meyer et al., 2005) first en-
deavors have already been carried out.

Based on a revision of the effects of moving objects in SAR Data

we present a concept of detection and velocity estimation of vehi-
cles, thereby considering the restrictions ofcivilian SAR satellite
systems. The main focus of this paper, finally, lies on the perfor-
mance characterization of the main components of this concept,
in order to predict and validate the expected results of the system
for TerraSAR-X. The performance analysis includes both a the-
oretical accuracy evaluation and a validation with real airborne
SAR data.

2 MOVING OBJECTS IN SPACEBORNE SAR IMAGES

Before outlining the concepts for vehicle detection and veloc-
ity estimation we briefly summarize the effects of moving ob-
jects in spaceborne SAR images. Here, only the resulting formu-
lae are included; a derivation of the formulae can be found, e.g.
in (Meyer et al., 2005), while a comprehensive overview on SAR
image processing is given in (Cumming and Wong, 2005).

2.1 Object Motion Effects in SAR — A Summary

The position of a Radar transmitter on board a satellite is given
by Psat(t) = [xsat(t), ysat(t), zsat(t)] with x being the along-
track direction,y the across-track ground range direction andz
being the vertical. A point scatterer is assumed to be at posi-
tionPmover = [xmover(t), ymover(t), zmover(t)], and the range
to this arbitrarily moving and accelerating point target from the
radar platform is defined byR(t) = Psat(t) − Pmover(t).

Omitting pulse envelope, amplitude, and antenna pattern for sim-
plicity reasons, and approximating the range historyR(t) by a
parabola, the measured echo signalu(t) of a static point scatterer
can be written as

ustat(t) = exp{jπFMt2} (1)

with

FM = −
2

λ

d2

dt2
R(t) = −

2

λR
vsatvB (2)

being the frequency modulation (FM) rate of the azimuth chirp.
Azimuth focussing of the SAR image is performed using the
matched filter concept(Bamler and Schättler, 1993, Cumming and

240



Wong, 2005). According to this concept, an optimally focused
image is obtained by complex-valued correlation ofustat(t) with
the filter s(t) = exp{−jπFMt2}. To constructs(t) correctly,
the actual range history of each target in the image, and thus,
the position and motion of sensor and scatterer, must be known.
Usually, the time dependence of the scatterer position is ignored
yielding Pmover(t) = Pmover. This concept is commonly re-
ferred to asstationary-world matched filter(SWMF). Because of
this definition, a SWMF does not correctly represent the phase
history of a significantly moving object, which eventually results
in image deteriorations.

We first evaluate targets moving with velocityvy0 in across-track
direction. This movement causes a change of range history pro-
portional to the projection of the motion vector into the line-of-
sight direction of the sensorvlos = vy0 · sin(θ), with θ being
the local incidence angle. In case of constant motion during il-
lumination the change of range history is linear and causes an
additional linear phase trend in the echo signal. The resulting
signal of an object moving in line-of-sight direction with velocity
vlos is consequently:

u(t) = exp{jπFMt2} · exp{−j
4π

λ
vlost} (3)

If u(t) is focused with the SWMFs(t) defined above, the linear
phase term in Equ. (3) is not compensated for, and remains in the
phase of the focused signal. This linear phase term corresponds
to a shift of the signal in space domain, which is given by

∆az = −R
vlos
vsat

[m] (4)

According to Equ. (4), across-track motion results in an along-
track displacement of the moving object. It is displaced in flying
direction if the object moves towards the sensor and reverse to
flying direction if the movement is directed away from the sen-
sor. When inserting the TerraSAR-X parameters into the above
formulae, one can see, that moving vehicles are displaced sig-
nificantly from their real position even for small across-track ve-
locities (about1 km for 50 km/h at 45◦ inc. angle). This effect
strongly hampers the recognition of cars in TerraSAR-X images
as their position is not anymore related to semantic information,
e.g. streets. A detailed analysis and illustration of these effects is
given in (Meyer et al., 2005).

The target is now assumed to move with velocityvx0 in along-
track. In this case the relative velocity of sensor and scatterer
is different for moving objects and surrounding terrain. Thus,
along-track motion changes the frequency modulation (FM) rate
of the received scatterer response. The FM rateFMmt of a target
moving in along-track with velocityvx0 is defined byFMmt =
FM

(
1 −

vx0
vB

)
. If the echo signal of this object is focused with

a SWMFs(t), a quadratic phase component remains in the fo-
cused signal leading to a spread of the signal energy in time or
space domain. The width of the focused peak as a function of the
object’s along-track velocityvx0 can be approximated by

∆t ≈ 2TA

√
vsat
vB

vx0
√
vsatvB

[s] (5)

with TA being the aperture time. Interpretation of Equation (5)
shows that a moving vehicle is smeared by twice the distance it
moved along track during the illumination timeTA. Note that the
approximation in Equation (5) only holds forvx0 ≫ 0. As the
backscattered energy of the moving object is now spread over a
larger area the peak value of the signal drops down. Using the

parameter set of TerraSAR-X, it is obvious that blurring and peak
power decrease are quite drastic. The strong blurring distributes
the backscattered energy and results in a drop of50% peak power
or more if vx0 ≥ 15 km/h (Meyer et al., 2005). Thus, nearly
all ground moving targets suffer from energy dispersion, which
decreases the signal-to-clutter ratio and renders target detection
more difficult.

Similar analyses are conducted for first order accelerations. Such
effects not only appear if drivers physically accelerate or brake
but also along curved roads, as the object’s along-track and across-
track velocity components vary during illumination time. The
analysis is based on a third order Taylor series expansion of the
rangeR(t) to an accelerating and isotropic point scatterer. The
scatterer is assumed to be at position(0, y0, 0) at azimuth time
t = 0 and to move with velocity(vx0, vy0, 0) and acceleration
(ax, ay, 0). With R0 being the range at azimuth timet = 0 the
third order Taylor series expansion ofR(t) calculates to:

R(t) ≈ R0 +
y0vy0
R0

t− 1
2R0

[
y0vy0(vx0−vsat)

2+y0v
3
y0

R2
0

]
t3 +

1
2R0

[
y0ay0

(
1 −

y2
0

R2
0

)
+ (vx0 − vsat)ax0

]
t3 +

1
2R0

[
(vx0 − vsat)

2 + v2
y0

(
1 −

y2
0

R2
0

)
+ y0ay0

]
t2 (6)

It can be seen in Equation (6) that acceleration components ap-
pear in the quadratic and the cubic term of the Taylor series ex-
pansion. The acceleration in across-track direction (ay) causes a
quadratic phase component, which results in a spread of the sig-
nal energy in time or space domain. Considering the TerraSAR-
X system parameters it comes clear that image degradation due
to across-track accelerations is significant foray > 1 m

s2
, which

is commonplace for traffic on roads or highways (Meyer et al.,
2005). On the other side, along-track accelerationax appears
only in the cubic term of Equation (6) and results in an asymme-
try of the focused point spread function. For TerraSAR-X, this
effect is very small even for unrealistic accelerations, and can be
neglected.

2.2 Detection Approaches

On one hand, all the above described effects of moving objects
hinder the detection of cars in conventionally processed SAR im-
ages. On the other hand, these effects are mainly deterministic
and can be exploited to not only detect vehicles but also measure
their velocity. Our system for moving object detection consists
of two major components: a detection and a velocity estimation
component. Both components make use of a-priori knowledge
in form of a road database and expectation values for the aspect-
angle dependent Radar cross-section of vehicles. In the follow-
ing sections we discuss the approaches employed in the system
in more detail.

In order to detect moving objects in SAR data one has to pre-
dict their appearance in the image. Thus, the main tasks to solve
are theestimationof the blurring, the displacement, and the in-
terferometric phase values associated with the particular moving
object. The solution to this typical inverse problem can be facil-
itated when incorporating a priori knowledge about the appear-
ance, location, and velocity of vehicles. Hence, we will first turn
to the integration of a priori knowledge (Sect. 2.2.1) before de-
scribing different detection approaches in Sects. 2.2.2, 2.2.3 and
2.2.4.
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2.2.1 Integration of A-priori Information Assuming objects
being point scatterers and given the SAR- and platform parame-
ters, the displacement effect in the along-track direction can be
predicted when real position, velocity, and motion direction of
the vehicle are known. Because of the functional relation of in-
terferometric phase and object velocity in across-track direction,
also the interferometric phase of a displaced moving object can
be derived (see below).

In our case, road network databases serve as basic source for ac-
quiring a priori knowledge. Typically, these databases contain
road axes in form of polygons and attributes like road class, road
width, maximum velocity, etc. attached to each polygon. Using
this information a number of ”maps” representing the a priori in-
formation can be derived (i.e. displacement map, velocity map,
and interferometric phase map). Figure 1 shows an example for
the different maps derived for a single road segment.

(a) (b)

(c) (d)
Figure 1: Example for maps derived from a single road segment
associated with travelling direction (see (a)): (b) Displacement
map, (c) velocity map, (d) phase map.

Besides the information about the phase, also a priori informa-
tion about the vehicle’s radar cross section strongly supports de-
tection. As it is well known, significant variations of radar cross
section exist over different aspect angles of cars. An example of
radar cross section variations as a function of aspect angleα for
a Volkswagen Golf car derived from experimental measurements
of DLRs airborne SAR system E-SAR is shown in Fig. 2. The
analysis of the RCS curve shows that cars have quite high RCS
values if their front, rear or side faces the sensor. RCS values
for the angles around 45◦ and 135◦ are significantly lower. It
also can be seen that the RCS is subject to high variation even
for small changes of aspect angle. Such information is incorpo-
rated into the detection scheme with the help of a road database,
since—given the sensor and platform parameters—the aspect an-
gle under which a car must have been illuminated by the sensor
can be calculated for each road segment.

2.2.2 Along-Track Interferometry In along-track interferom-
etry (ATI) an interferogramI is formed from two original SAR
images acquired with a short time lag in along-track direction.
The interferogram phase can be related to object motion by:

ψ =
4π

λ
∆R =

4π

λ
vlost =

4π

λ
vlos

∆l

vsat
(7)

Figure 2: Radar cross section depending on aspect angle. Exper-
imental data of a VW Golf car in X-band.

wheret is the temporal separation of the aquisitions defined by
the satellite motion and the effective distance∆l between the
phase centers of the two antennas. Since both interferometric
phaseψ and azimuth displacement∆az are caused by across-
track motion, an analytic relation between both measurements
can be established:

∆az = −R
vlos
vsat

= −Rψ
λ

4π∆l
(8)

To design a constant false alarm rate (CFAR) detection scheme,
the probability density distributions of vehicles and background
in interferometric data need to be known. Here, we follow the
derivation presented in (Lee et al., 1994) and (Joughin et al.,
1994). For all stationary targets the interferometric phase values
are assumed to be statistically distributed around the expectation
valueE [ψ] = 0. Using the underlying assumption of jointly
Gaussian-distributed data in the two images, the joint probabil-
ity density function (pdf)fc (η, ψ) of amplitude and phase of an
interferogram is given by:

fc(η, ψ)= 2nn+1ηn

πΓ(n)(1−|ρ|2)
exp

(
2nη|ρ| cos(ψ)

1−|ρ|2

)
Kn−1

(
2nη

1−|ρ|2

)
(9)

wheren is the number of looks (effectively the amount of aver-
aging),Γ (·) is the gamma function andKn (·) is the modified
Bessel function of thenth kind. For medium resolution SAR the
jointly Gaussian assumption has been validated for most agricul-
tural and vegetated areas (Ulaby and Dobson, 1989). As outlined
in Sect. 2.2.1 it is possible to derive expectation values for po-
sition, interferometric phase, and aspect-dependent radar cross
section of vehicles using ancillary data. Hence, from these data
also a pdf for ”clutter+mover”fc+m (η, ψ) should be established.
An approximation valid forn ≫ 1 has been derived in (Gierull,
2002) and is given by:

fc+m (η, ψ) =
2nn+1η((η−δ cos(ζ))2+δ2 sin(ζ)2)

n−1
2

πΓ(n)(1−|ρ|2)
·

exp
(
2nρ(η cos(ψ)−δ cos(ϑ))

1−ρ2

)
Kn−1

(
2n
√

(η−δ cos(ζ))2+δ2 sin(ζ)2

1−ρ2

)
(10)

while the moving target’s signal is assumed to have a peak ampli-
tudeβ, and withδ = β

η
andζ = ψ−ϑ. Using this approximation

as an alternative hypothesis,fc+m (η, ψ) allows to define a like-
lihood ratio to which a threshold can be applied.

Figure 3a) shows a typical example offc (η, ψ) assuming a co-
herency of|ρ| = 0.95, n = 1 and a expected signal amplitude of
E [η] = 1, while Fig. 3b) shows an example offc+m (η, ψ) and
a corresponding curve of separation.

2.2.3 Displaced Phase Center Array Method In a similar
way one may derive a CFAR detector based on the displaced
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(a) (b)
Figure 3: PDFs for background only (a) and background as well
as moving objects (b). The dashed line is an example for curve of
separation.

phase center array (DPCA) technique, where the two coregistered
images are simply substracted, yielding

IDPCA = I1 − I2 = |IDPCA| · (e
jφ1

− ejφ2)

= 2|IDPCA|sin(
φ1 − φ2

2
)e
j

(
φ1−φ2

2
+π

2

)
(11)

Here, only the magnitude2|IDPCA|sin(φ1−φ2

2
) of the signal is

evaluated for classification. Hence, the above pdf’s simplify to a
one-dimensional case. The magnitude ofIDPCA is high when-
ever moving objects cause a phase shift between the two images
and low if the observed surface elements are stable.

2.2.4 Frequency Modulation Method The approaches out-
lined so far can only be applied if displacement or interferomet-
ric phase occurs at all. This does not happen for objects mov-
ing purely in azimuth (along-track) direction. As explained in
Sect. 2.1 such vehicles appear defocussed in the image. Focusing
these objects is however possible when choosing a FM rate that
corresponds to the relative velocity of platform and object. Our
strategy for finding the correct FM rate relies on hypothesizing a
series of FM rates and analyzing a pixel’s ”sharpness function”
over these FM rates (see (Weihing et al., 2006) for details). Since
blurring occurs only in azimuth direction, searching the correct
FM rate for a given pixel reduces to a 2D-problem. Moreover, the
known location of roads as well as the expected range of vehicle
velocities allow to further restrict the search space to a limited
number of FM rates. For extracting the energy peak, we imple-
mented a simple but effective blob detection scheme that ana-
lyzes the local curvatures in azimuth- and FM-direction, thereby
incorporating a certain amount of smoothing depending on the
expected noise level of the images. Combining local curvature
maxima and peak amplitude by the geometric mean yields the fi-
nal decision function, from which the maximum is selected (see
(Hinz, 2005) for details). The FM-rate at the extracted peak cor-
responds to the correct along-track velocity – assuming that target
acceleration can be neglected for a first guess.

2.3 Velocity Estimation

The estimation of the velocity of detected vehicles can be done
based on all effects moving objects cause in SAR images and
SAR interferograms. Thus, approaches may usei) the interfer-
ometric phase values,ii) the displacement of detected vehicles
from their corresponding roads, andiii) the along-track defocus
caused by along-track motion and/or across-track acceleration.
All possible approaches have their advantages and disadvantages
and differ in the accuracy of their results (see Sect. 4). The pres-
ence of several methods for estimating velocities leads to an over-
determination of the estimation problem. This redundancy might

be used to estimate across-track acceleration in addition to the
vehicle’s velocity. However, this has not yet been realized in the
current implementation of the system.

3 PERFORMANCE ANALYSIS OF DETECTION

In order to assess the detection performance for varying scenar-
ios, three different approaches have been used:i) an analytical
performance analysis based on analytical pdf’s and Receiver Op-
erator Characteristic (ROC) curves obtained therefrom (Sect. 3.1);
ii ) a numerical performance analysis derived from simulations
(Sect. 3.2); andiii ) a performance analysis based on data from
airborne SAR experiments. The system parameters are tuned to
produce images that correspond to the expected space-borne data.
In the following, we concentrate mainly on the detection based on
the across-track components of vehicle motion. Analyses of the
FM-Rate method described in Sect. 2.2.4 are given in (Weihing
et al., 2006).

3.1 Analytical Performance Analysis of Detection

The analytical performance analysis is based on the pdf’s given
in Equs. 9 and 10 and shown in Fig. 3b). These pdf’s allow for the
calculation of detection and false-alarm probabilities for a given
line of separation, i.e. a predefined likelihood ratio, see Fig. 4a).
Thereby each parameterization of the pdf’s corresponds to dif-
ferent characteristics of background and vehicle appearance. Fi-
nally, ROC-curves are obtained when varying the likelihood ra-
tio. Figure 4a) depicts an example for a typical parameterization
of the pdf’s and Fig. 4b) shows the corresponding ROC curve.
However, one has to keep in mind that a number of simplifica-
tions have been necessary to obtain the analytical pdf’s, most no-
tably the restriction to more than 3 looks and the precondition of
Gaussian distributed clutter. Hence, although this approach al-
lows for maximum flexibility, a ROC curve derived this way is
only valid for open and rural areas.

(a) (b)

Figure 4: Analytical Detection Characterization: (a) Analytic
PDFsfc(η, ψ), fc+m(η, ψ) and varying curves of separation. (b)
Corresponding ROC curve.

3.2 Numerical Performance Analysis of Detection

To extent the analysis and to overcome some of the above limita-
tions, a simulator for ATI and DPCA has been developed, which
can be parameterized in such a way that a priori information about
the interferometric phase and amplitude can be integrated. To
generate a random sample, the whole process of data acquisi-
tion is simulated for both vehicles and clutter, i.e., the SAR-Data-
Acquisition process, multilooking if required, and the generation
of interferograms. Then, for each set of random samples a his-
togram is computed substituting the probability density functions.
As above, to evaluate the performance of the detectors, a thresh-
old is varied and the probability of detection and probability of
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false alarm are determined for each step of this variation. Fig-
ure 5 illustrates the detection probability using ATI (a) and DPCA
(b) over different vehicle velocities (i.e. phases) for certain vehi-
cle brightnesses as well as fixed background and false alarm rate.
As can be seen, for low velocities and bright vehicles ATI delivers
generally better results while for faster vehicles it is outperformed
by DPCA. The reason for this behavior is that DPCA purely re-
lies on the interferometric phase, i.e., for low phase values the
detection is strongly influenced by noise, which leads to the sig-
nificant decrease of performance. In contrast, ATI makes also use
of the amplitude so that, for low velocities, one additional feature
is still left to detect a vehicle.

(a) (b)

Figure 5: Numerical Detection Characterization: Detection Prob-
abilities for given Background Clutter (bushes) and fixed False
Alarm Rate (10e-5) calculated for varying vehicle brightnesses
(RCS). (a) Results for ATI. (b) Results for DPCA.

3.3 Performance Analysis Based on Airborne Data

The validity of the simulation results has been assessed using real
data of flight campaigns. Besides of this, tests on real data sets
also allow to discover bottlenecks of the techniques employed and
to reveal unforeseen problems. An additional goal is to simulate
TerraSAR-X data for predicting the performance of the extraction
procedures. To this end, an airborne Radar system has been used
that has been modified so that the resulting raw data is compa-
rable with future satellite data of TerraSAR-X. We followed two
different ways of assessment:i) using real background data and,
to have a ”ground-truth”, vehicles that have been artificially im-
painted into the background (Sect. 3.3.1) , andii ) detection of real
vehicles in scenes for which optical data has been simultaneously
acquired.

3.3.1 Background Data and Impainted Vehicles Figure 6a)
shows a larger SAR scene composed of different types of back-
ground. In two test areas, vehicles in form of point targets have
been impainted. The appearance of a vehicle (amplitude and
phase) has been randomized using a random generator. Since in
this case ground-truth is available one is able to obtain complete-
ness and correctness curves when varying the detection threshold,
which replace the detection and false alarm rates before. Fig-
ure 6b) shows these curves for a typical image background using
a fixed vehicle velocity, statistically distributed vehicle bright-
ness and DPCA as detection method. Although not being directly
comparable with Fig. 5b), the typical behavior of DPCA is con-
firmed also by this evaluation, i.e., there is a striking lock-in of
the quality of the results depending on the detection threshold.

3.3.2 Vehicle Detection in Airborne Data In the following,
results of a flight campaign are shown during which images over
real-life traffic scenarios on highways were acquired. To eval-
uate the results of SAR-based vehicle detection, time series of
aerial photographs have been taken – almost synchronized with
the SAR acquisition.

(a) (b)

Figure 6: Detection Characterization based on airborne back-
ground image (a) and impainted vehicles withRCS = 3dB ±

8dB and phase according to 65km/h: Curves for completeness
(red) and correctness (green) for agricultural area obtained by
DPCA with varying thresholds.

Figure 7: Experiments with airborne SAR: Detection results and
velocity estimation for a dense traffic scenario

First encouraging results have been achieved with the system de-
scribed above, although we have to admit that too few scenes have
been processed up to now to give reliable and statistically con-
firmed statements about the system’s performance. The used ex-
perimental proccesing system includes a combination of an ATI
and a DPCA detector, and allows for an automatic integration of
a-priori knowledge (NavTeq road data). It performs velocity esti-
mation based on ATI phase and on along-track displacement. The
incorporated road data not only enables displacement measure-
ments but also the prediction of displacement intervals and thus a
limitation of the search space. Typical results are depicted in Fig-
ure 7. It shows the detector performance for rather dense traffic.
Although simultaneously acquired optical images are available
for this scene, it was–due to unknow time delays–unfortunately
not possible to match the car reference data form optical images
uniquely to the detection results. Yet the evaluation of these re-
sults based on traffic flow parameters has shown that flow pa-
rameters can be derived precisely, although the completeness of
detected cars is only moderate ((Suchandt et al., 2006)).

Figure 8 illustrates the detection of vehicle by FM-rate variation.
The azimuth direction points from bottom to top, thus, along-
track velocity components of vehicles travelling along the main
road in the center of the image are quite small and moving vehi-
cles are both blurred and displaced. At the bottom of Figure 8 a)
the marked image patch is focused with FM rates corresponding
to 0km/h and15km/h (assuming absence of acceleration). As
can be seen, the background of the image blurs for the second
case, while one bright point gets sharp (marked by red arrows).
Figure 8 b) shows the corresponding FM-slice, the detected peak,
and an estimated along-track velocity of approx.10km/h as-
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suming zero acceleration. Considering a road orientation of 15
degree the vehicle velocity computes to approximately40km/h,
which fits reasonably well to the velocity computed from the dis-
placement (37km/h).

(a)

(b)

Figure 8: (a) Image patch (blue rectangle) focused with two dif-
ferent FM-rates (bottom). Red arrows mark azimuth line in which
the sharpened point lies. (b) FM slice computed for this azimuth
line (top) and detected peak (bottom).

4 PERFORMANCE ANALYSIS OF VELOCITY
ESTIMATION

For each of the three approaches for velocity estimation, i.e.i)
via interferometric phase,ii) via displacement, andiii) via along-
track blurring, the corresponding accuracy values are derived, and
at the end of this section, an example for accuracy when combin-
ing approaches is given.

4.1 Velocity Estimation based on the Interferometric Phase

The interferometric phase allows for a direct access to the objects
line-of-sight velocity component without the need of auxiliary
information. Still, information about the relative orientation of
the road axis corresponding to the particular vehicle is needed in

order to derive the real heading velocity of vehicles from their
line-of-sight motion. If we assume that a detected vehicle acts
as point scatterer, the standard deviationσψ of its interferometric
phase is defined by

σψ − ψ ≈
1

√
2 · SCR

(12)

with SCRbeing the signal-to-clutter ratio of a point like target.
SCR values can be determined based on RCS measurements of
vehicles, which are shown in Sect. 2.2.1. Given Equation (12),
the standard deviation of the derived across-track velocity esti-
matev̂ψy results in

σ
v̂
ψ
y

=
sin(θinc) · λ · vsat
√

2 · SCR · 4π · ∆l
(13)

Given the system parameters of TerraSAR-X and assuming aSCR
of 5 dB we get a standard deviationσ

v̂
ψ
y

of approximately 30 km/h

for the center of the TerraSAR-X swath. Clearly, for an analysis
of traffic behavior and traffic dynamics, this accuracy level is only
marginally sufficient.

4.2 Velocity Estimation from Along-track Displacement

Besides of the above mentioned approach, the heading velocity
of a moving vehiclêvmt can be derived by measuring its along-
track displacement from its corresponding road segment. The
functional relation is given by

v̂∆az
mt =

∆̂az · vmt
R · sin(α̂road) · sin(θinc)

(14)

where∆̂az = |x̂road − x̂mt| is the along-track displacement.
The accuracyσv̂∆az

mt
of the velocity estimate is a function of the

quality of the displacement measurement|x̂road − x̂mt|, and the
accuracy of the road’s heading angleα̂road relative to the satellite
track.σv̂∆az

mt
is calculated by error propagation.

σv̂∆az
mt

=

√(
∂v̂∆az

mt

∂xobj

)2

σ2
xobj+

(
∂v̂∆az

mt

∂xroad

)2

σ2
xroad+

(
∂v̂∆az

mt

∂αroad

)2

σ2
αroad

(15)
From empirical evaluations of the peak detection approach we
assessed the accuracy of the target’s along-track position to be
σxobj = 1 m. The standard deviation of the road axis position
σxroad of the NavTeq data was estimated by comparing the vec-
tor data with precisely geocoded aerial images. The mean dis-
tance of the NavTeq axes from their corresponding reference was
determined to beσxroad = 3.5 m (this result holds for high level
roads like motorways). From this value, and by assessing the av-
erage length of the NavTeq polygon pieces, the accuracy of the
road heading angleσαroad was deduced. For motorways its stan-
dard deviation results inσαroad = 2◦.

The accuracy of velocity estimatesσv̂∆az
mt

is derived by inducting
these empirical error measures into Equation (15). The resulting
errorσv̂∆az

mt
/vmt is shown in Figure 9 as a function of heading

angleαroad and normalized with the real target velocityvmt. It
can be seen from Figure 9 that the vehicles heading velocityvmt
can be estimated with a high accuracy ofσv̂∆az

mt
/vmt ≤ 10% if

they were moving on roads with a heading angle ofαroad ≥ 4◦.
For roads running nearly in along-track direction (αroad < 4◦)
this approach fails to provide reliable velocity measures.
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Figure 9: Relative velocity errorσv̂∆az
mt

/vmt estimated from
along-track displacement as a function of heading angleαroad.
Note the logarithmic scale.

4.3 Velocity Estimation from Along-track Blurring

Both of the already presented estimation methods fail to give a re-
liable velocity estimate for vehicles moving almost in along-track
direction. To fill the gap we propose to use the along-track blur-
ring effect for estimating along-track velocities. The functional
dependence of the velocity estimate on unknown or uncertain pa-
rameters is given by:

v̂xmt = −

√
(vsat − vmt) · cos(α̂)2 + y0 · ây · sin(α̂) + vsat

(16)
As explained in Section 2.1 both along-track velocityvx = vmt ·
cos(α) and across-track accelerationay give rise to peak broad-
ening in along-track. Usually, it is assumed that the accelera-
tion of vehicles is zero during the time of illumination. As a
consequence, actual occurring across-track accelerations intro-
duce errors to the velocity estimates. According to empirical
studies based on inertial navigation system measurements with
cars driving on city streets and highways, accelerations up to
ay = 2 m/s2 are likely to happen in common traffic scenarios.
Thus, we assumeσay = 2 m/s2 as a ”worst case” error source
for the following calculations. Besides of possible acceleration,
the standard deviation of the road heading angleσαroad = 2◦

influences the accuracy of the velocity estimateσv̂x
mt

.

σv̂δFM
mt

=

√(
∂v̂δFMmt

∂αroad

)2

σ2
αroad +

(
∂v̂δFMmt

∂ay

)2

σ2
ay (17)

Figure 10a) showsσv̂δFM
mt

as a function of real target velocityvmt
and real road headingαroad. The standard deviation of the veloc-
ity estimate is dominated by acceleration influences and increases
with αroad. The dependence onvmt is merely a secondary effect.
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Figure 10: a) Standard deviationσv̂x
mt

of vehicle velocities esti-
mated from along-track blurring as a function of target velocity
vmt and heading angleαroad. σv̂x

mt
is given in km/h. b) relative

velocity errorσv̂x
mt
/vmt.

Forαroad < 4◦, i.e. for the heading angles of interest (see Sect.
4.2), the standard deviationσv̂δFM

mt
reaches up to 22 km/h. The

relative error of the estimated velocities is indicated in Figure
10b). It indicates that the velocity of slow moving targets cannot
be reliably estimated even for very small heading anglesαroad,
whereas the speed of fast moving targets can be estimated with
better relative accuracy.

Sections 4.1 to 4.3 show that several possibilities exist to estimate
the velocity of moving vehicles from TerraSAR-X data. Accord-
ing to the quality of the velocity estimates the usage of along-
track displacement is the most promising approach for a wide
range of heading anglesαroad. If vehicles move nearly in along-
track, the accuracy of velocity estimates is fair for all estimators.
Still, the use of along-track blurring gives best results.

4.4 Examples

To demonstrate the quality of the velocity estimation for real live
scenarios we calculated the expected standard deviation of the
estimated velocityσv̂mt for a road network north of Munich. In
this area three large motorways are situated which are highly fre-
quented during rush hours. We applied two different velocity esti-
mators to this test, the displacement-based and the blur-based es-
timator. Real TerraSAR-X orbit and sensor parameters have been
used in this simulation and an average speed of 100 km/h was as-
sumed. The orientation of the motorways relative to the choosen
TerraSAR-X orbit and the resultingσv̂mt values for both estima-
tors are show in Figures 11a) to 11c) (the corresponding flight
direction of the satellite is indicated as well. The standard devia-
tion of the displacement-based velocity estimateσv̂∆az

mt
is shown

in Figure 11a) in km/h for all three motorways. It can be seen
that vehicle velocities can be estimated with high accuracy for
large parts of the road network. However, in areas where the road
is oriented nearly in along-track, the estimation error increases
dramatically. Figure 11b) shows that the second detector, which
is based on the blurring of the impulse response, provides better
results for this areas. Thus, in order to get an optimal estima-
tion quality, we combine both methods depending on the relative
orientation of road and satellite track. The performance of the
combined estimator is shown in Figure 11c). With the presented
algorithm velocities can be estimated with an accuracy better than
10 km/h for about 80 % of the investigated road network.

5 SUMMARY

A system to detect moving vehicles from TerraSAR-X data and
to estimate their respective velocities has been presented. Besides
a detailed description of the methods used, performance analyses
are shown in addition. The detection of fast moving traffic seams
to be very promissing, whereas slow moving cars are hard to dis-
tinguish from non moving background. The estimation of the
velocity of detected vehicles can be done with high accuracy for
nearly all possible observation geometries. All approaches are
subject to further improvement and a more detailed performance
analysis will be presented as soon as the satellite is in its orbit.
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Figure 11: Simulation ofσv̂mt for a road network north of Mu-
nich (vmt = 100 km/h assumed). a) shows the estimation accu-
racy for a displacement-based detector, b) for a blur-based detec-
tor, and c) indicates the estimation quality if both detectors are
combined.
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ABSTRACT  
Automated image orientation is still a key problem in close-range photogrammetry, in particular if wide baseline images are 
employed. Nowadays, within the image-based modeling pipeline, the orientation step is the one which could be fully and reliably 
automated, exploiting the potentiality of computer and image processing algorithms. In this paper, we summarize recent 
developments in this field and apply them in three different workflows to automatically extract markerless tie points from close-
range images of different types (video sequence, large and wide baseline images). Furthermore we compare the results obtained from 
bundle block adjustment using the automatic tie points with the results obtained by manual measurements and show how the 
accuracies of the automatic tie point extraction can further be improved by including least squares matching techniques. 
 

1. INTRODUCTION 

Image orientation is the first and thus very important step 
within the 3D modeling pipeline. To achieve the best results 
together with accuracy estimates the image orientation is 
usually performed by means of a bundle block adjustment. In 
order to speed up the entire modeling pipeline an automation of 
the orientation step is necessary. This has to operate on two 
issues: (i) the automatic measurement of tie points (without 
requiring to stick markers (i.e. signalized targets) on the object) 
and (ii) the automatic provision of initial orientation parameters 
for the bundle block adjustment. Whereas (ii) is nowadays 
easily solved – once the image correspondences are given – 
using perspective [Cronk et al., 2006] or projective [Hartley 
and Zisserman, 2001] geometry based formulations of the 
relative orientation of calibrated and uncalibrated images, the 
automatic measurement of markerless tie points is still a 
challenging topic especially in close-range images. 

Commercial photogrammetric digital stations have some tools 
for the automated and markerless relative orientation of stereo 
pairs (HATS from Helava/Leica, ISDM from Z-I, MATCH-AT 
from Inpho). These systems, however, are mainly designed for 
(aerial) images acquired in the photogrammetric normal case 
and thus they generally fail with tilted close-range images. On 
the other hand, systems able to automatically calibrate and 
orient a set of close-range images using signalized coded target 
are already available (e.g. iWitnessTM). Commercial systems for 
automatic measurement of markerless tie points in close-range 
images, however, are still missing.  

In the literature a lot of work on automated markerless tie point 
extraction from images can be found [Beardsley et al., 1996; 
Fitzgibbon and Zisserman, 1998; Pollefeys et al., 1999; Roth 
and Whitehead, 2000; Nister, 2001; Mayer, 2005]. Most of 
these point-based systems rely on very short baseline between 
consecutive frames and work only based on cross-correlation 
matching procedures. On the other hand, wide baseline images 
are also receiving great attention [Matas et al., 2002; Lowe, 
2004; Georgescu and Meer, 2004; Tuytelaars and Van Gool, 
2004]. Although the reported methods seem to be successfully 
applied on images with very large baselines and with wide 
intersection angles, still further research in this area is needed. 
Therefore automated markerless sensor orientation is one of the 

most attractive and difficult research themes in close-range 
photogrammetry and computer vision, in particular if wide 
baseline images are used.  

In this paper we show how the current methods can be applied 
on three different scenarios and how the accuracy can be 
improved using Least Squares Matching (LSM) [Gruen, 1985]. 
In this way we check the feasibility and accuracy of automated 
extraction of markerless correspondences from different data 
sets. The found correspondences are then imported in a bundle 
adjustment software to retrieve the orientation parameters. We 
also compare the automated results with those coming from 
manual tie point measurements.  

We consider the following three scenarios: ‘short-range 
motion’, ‘long-range motion’ and ‘wide baseline’ images. 
‘Short-range motion’ sequences have a very short baseline 
between the images and are typically acquired with a video-
camera. ‘Long-range motion’ sequences contain a significant 
baseline compared to the distance between camera and scene. 
Wide baseline images present a very large baseline and the 
intersection angle of homologues rays can be wider than 20-25 
degrees. Different tests have been performed, using self-
acquired images with a still-video or a video-camera as well as 
digitized movies without imposing any hard restriction on the 
camera motion.  

In these images natural tie points are automatically extracted by 
different strategies with increasing complexity (depending on 
the base-to-distance ratio). This is to show that, depending on 
the application, simpler or more involved extraction and 
matching routines should be applied. 

The workflows in these three different scenarios require no or 
only little manual intervention. The main sources for manual 
measurements are control point measurements, if required, to 
define the global scale and orientation of the image block and 
an initial guess about the disparity between the analyzed frames 
(only for the long-range motion images). 

In all these scenarios we work with calibrated cameras or with 
fixed interior parameters. Although the interior orientation can 
be determined by self-calibration using the extracted tie points, 
the geometry of the images acquired for 3D modeling often 
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does not allow for an adequate (i.e. accurate and reliable) 
determination of the interior parameters. In fact typical 
sequences include images acquired in only one direction or the 
imaged object shows no depth variation. A weak determination 
of the interior orientation also deteriorates the accuracy of the 
object reconstruction. Therefore, in practical cases, rather than 
carrying out the calibration and reconstruction simultaneously, 
it may often be better first to determine the camera calibration 
(including the non-linear distortion parameters) using the most 
appropriate network (with or without control points) and 
afterwards recover the object geometry using the calibration 
parameters.  

 
2. ORIENTATION OF SHORT-RANGE MOTION 

IMAGE SEQUENCES 

Sequences with a ‘short range motion’ between consecutive 
frames present a very small parallax (often in one unique 
direction) which can be exploited during the search of the 
correspondences. Usually these images are acquired with a 
video-camera and all the frames are analyzed. Due to the small 
camera displacement, given the location of a feature in the 
reference image, the position of the same feature in the 
consecutive frame is found with a tracking process, as long as 
the feature is visible and matchable. When the frame-to-frame 
displacement is larger than a few pixels, the tracking process 
must be replaced with a more robust stereo matching. Optical 
flow techniques and feature tracker methods are widely used in 
the vision community if sufficiently high time frequency 
sequences are used. One of the most known feature tracker is 
the one developed by [Shi and Tomasi, 1994], based on the 
results of [Lucas and Kanade, 1981] and [Tomasi and Kanade, 
1991]. More recent works were presented in [Nister, 2001]. 

We developed a feature tracker based on interest points and 
Least Squares Matching (LSM). The procedure tracks interest 
points through the images according to the following steps: 

1. Extraction of interest points from the first image: different 
operators like [Förstner and Gülch, 1987], [Harris and 
Stephens, 1988], [Heitger et al., 1992] or [Smith and Brady, 
1997] can be employed. 

 

2. Prediction of the position in the next frame: due to the very 
short baseline, the images are strongly related to each other 
and the image position of two corresponding features is very 
similar. Therefore, for the frame at time t+1, the predicted 
position of a point is the same as at time t. 

 

3. Research of the position with cross-correlation: around the 
predicted position a search box is defined and scanned to 
identify the position which has the highest cross-correlation 
value. This position is considered only as an approximation 
for the corresponding point in frame at time t+1. 

 

4. Establishment of the precise correspondence’s position: the 
approximation found with cross-correlation is refined using 
LSM, which provides a more precise sub-pixel location of the 
feature. 

 

5. Replacement of the lost features with new interest points: new 
interest points are extracted in the areas where the matching 
process has failed or if a feature is no more visible in the 
image. 

At the end of the tracking process, the correspondences which 
are visible in at least 2 frames are used for the successive 
bundle adjustment to recover the camera parameters.  

Some commercial software is available to automatically solve 
the feature tracking problem [e.g. 3D EquilizerTM, 
MatchMoverTM, BoujouTM]. They work properly with 
sequences acquired with a video-camera (high frame-rate and 
very short baseline) and they can reliably extract the image 
correspondences if there are no rapid changes of the camera 
position. They are mainly used in the film industry (movies, 
advertisements) and industrial design. Once the features are 
extracted, the camera poses are recovered and a virtual object 
can be seamlessly inserted into the sequence and rendered for 
special effects. 

2.1 Experiments 

A video digitized from the television was used to test the 
tracking system and recover the camera poses. The images are 
acquired from a helicopter which is flying above a hotel (Figure 
1). The hotel is approx. 30 m wide and 10 m high while the 
mountain in background is ca. 60 m far away from the hotel. 

   

   
Figure 1: Six images of a sequence digitized from the Swiss TV 
(SF1) consisting of 240 frames (720x576 pixel). 
 
The tracking process extracted approximately 1900 
correspondences which were then used to recover the camera 
exterior parameters within a bundle adjustment (Figure 2). The 
project was scaled using the width of an hotel’s window. 

 
Figure 2: Top view (above) and front view (below) of the 
recovered camera poses of the sequence acquired from the 
helicopter. 
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The final average theoretical precision of the computed object 
coordinates is σx = 0.27 m, σy = 0.15 m, σz = 0.21 m. As 
depicted in Figure 2, the smooth trajectory of the helicopter 
could be successfully recovered. The recovered average 
distance between two consecutive projection centers is ca 0.5 
m. The average distance between the camera and the hotel 
resulted as ca 45 m while the average distance with the 
background mountain is ca 120 m. 

 
3. ORIENTATION OF LONG-RANGE MOTION  

IMAGE SEQUENCES 

Long-range motion image sequences contain a significant 
baseline compared to the distance between camera and scene. 
They can be acquired with a video-camera (but not all the 
frames are used) or a still-video camera. The approaches for 
automatically orienting such image sequences (typically called 
‘shape-from-video’ or ‘video-to-3D’) [Van Gool and 
Zisserman, 1996; Fitzgibbon and Zisserman, 1998; Pollefeys et 
al., 1999; Läbe and Förstner, 2006] require large overlap and 
good features. In practical situations, such conditions are not 
always satisfied, due to occlusions, illumination changes and 
lack of texture.  

Our approach, after an initial guess of the average disparity 
between the images, extracts automatically corresponding 
points based on the following 5 steps:  

1. Interest points identification. A set of interest points or 
corners in each image of the sequence is extracted using 
detectors like [Förstner and Gülch, 1987], [Harris and 
Stephens, 1988] or [Heitger et al., 1992]. According to the 
image size, a threshold on the number of corners extracted is 
defined and a good point distribution is assured by sub-
dividing the images in small patches (e.g. 9x9 pixel on an 
image of 1600x1200) and keeping only the points with the 
highest interest value in those patches.  

 
2. Features matching. All extracted feature points between 

adjacent images are matched at first with cross-correlation 
and then the results are refined using least squares matching 
(LSM). The point with biggest correlation coefficient is used 
as approximation for the LSM matching process. Cross-
correlation alone cannot always guarantee the correct match 
while LSM, with patch rotation and reshaping, provides more 
accurate results. The process returns the best match in the 
second image for each interest point in the first image. 

 
3. Epipolar geometry between image pairs. A pairwise relative 

orientation and an outlier rejection are performed afterwards. 
Based on the coplanarity condition, the fundamental matrix is 
computed with the Least Median of Squares (LMedS) 
method. Because LMedS estimators solve non-linear 
minimization problems by minimizing the median of the 
squared residuals, they are very robust in case of false 
matches or outliers due to false localisation. The computed 
epipolar geometry is then used to refine the matching process 
of step 2, which is now performed as guided matching along 
the epipolar line. 

 
4. Epipolar geometry between image triplets. Not all the 

correspondences that support the pairwise relative orientation 
are necessarily correct. In fact a pair of correspondences can 
support the epipolar geometry by chance (e.g. a repeated 
pattern aligned with the epipolar line). These kinds of 

ambiguities and blunders are reduced considering the epipolar 
geometry between three consecutive images. A linear 
representation for the relative orientation of three frames is 
represented by the trifocal tensor T [Shashua, 1997]. T is 
represented by a set of three 3x3 matrices and is computed 
using image correspondences without knowledge of the 
motion or calibration of the cameras. In our process, the 
tensor is computed with a RANSAC algorithm [Fischler and 
Bolles, 1981] using 7 correspondences that support two 
adjacent pairs of images and their epipolar geometry. 
RANSAC is a robust estimator, which fits a model (tensor T) 
to a data set (triplet of correspondences) starting from a 
minimal subset of the data. The found tensor T is used (1) to 
verify whether the image points are correct corresponding 
features between three views and (2) to compute the image 
coordinates of a point in a view, given the corresponding 
image positions in the other two images. This transfer is very 
useful in case not many correspondences were found in one 
view. As result of this step, for each triplet of images, a set of 
corresponding points, supporting the related epipolar 
geometry, is recovered.  

 
5. Tracking image correspondences through the sequence. 

After the computation of the trifocal tensor for each 
consecutive triplet of images, we consider all the overlapping 
tensors (e.g. T123, T234, T345, ...) and we look for those 
correspondences which support consecutive tensors. That is, 
given two adjacent tensors Tabc and Tbcd with supporting 
points (pa, pb, pc) and (qb, qc, qd), if (pb, pc) in the first tensor 
Tabc is equal to (qb, qc) in the successive tensor Tbcd, this 
means that the point in the images a, b, c and d is the same 
and therefore this point must have the same identifier. Each 
point is tracked as long as possible in the sequence and the 
obtained correspondences are used as tie points for a 
subsequent bundle adjustment. 

 
3.1 Experiments 

For the 3D modeling of the empty niche of the Great Buddha of 
Bamiyan, Afghanistan, five images were acquired with a Sony 
Cybershot F707. The camera was pre-calibrated in the 
laboratory. For the image orientation, the tie points were firstly 
measured semi-automatically by means of LSM and then 
imported in a bundle adjustment to recover the orientation 
parameters. Then, the results were used as reference and 
compared with the results achieved by extracting the tie points 
automatically. 

   
Figure 3: Three (out of five) images (1920x2560 pixel) of the 
empty niche of the Great Buddha of Bamiyan, Afghanistan, 
approximately 60 m high and 20 m wide. 
 
The automated procedure, run with the [Förstner and Gülch, 
1987] operator, could extract a high number of correspondences 
(388 points) which were then used for the image orientation. 
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Figure 4: The camera poses recovered using the automatically 
extracted tie points. 
 

After the adjustment, the estimated theoretical precision of 
the computed 3D object coordinates turned out to be the same 
for the manual and for the automatic measurements (Table 1). 
This suggests that for normal network configurations and good 
image contents, automated markerless orientation procedures 
can be as good and reliable as manual measurements. 
 

 Manual Automated 
Numb. of  images 5 5 
Numb. of tie points 24 388 
Points in 2 images - 253 
Points in 3 images 24 135 
STD X [m] 0.014 0.012 
STD Y [m] 0.017 0.019 
STD Z [m] 0.021 0.021 

Table 1: Comparison between manual and automated tie point 
measurements. Number of extracted points and estimated 
theoretical precisions (STD) are reported. 
 
 

4. ORIENTATION OF WIDE BASELINE                 
IMAGE SEQUENCES 

In some applications, due to acquisition constraints or 
occlusions, images are acquired from substantially different 
viewpoints. In this cases, the baseline between the images is 
very large (e.g. Figure 6) and the intersection angle between 
homologues rays may be larger than 25 degrees. A standard 
automated tie point extraction procedure, based on corner 
detectors, would fail because of the big perspective effects 
generated by the large camera displacement. Due to these 
effects interest points (e.g. points or corners simply described 
with their image location) cannot be correctly matched across 
the images, as:  

– The patches in the search image ought to have large enough 
size in order to contain enough signal information. Due to the 
big perspective effects, however, the transformation of large 
patches between template and search image can no longer be 
described by a simple affine transformation. A small patch 
would probably allow the matching process, but it might not 
contain enough signal information to perform correctly the 
matching. 
– The initialization of an LSM refinement will not work, as 
LSM requires rather precise approximate values for the 
parameters. 
 
For these reasons, different researchers tried to solve the 
challenging problem of automatically orienting widely 
separated views and interest point detectors have been replaced 
with region detectors and descriptors [Pritchett and Zisserman, 
1998; Baumberg, 2000; Matas et al., 2002; Schaffalisky and 
Zisserman, 2002; Xiao and Shah, 2003; Georgescu and Meer, 

2004; Lowe, 2004; Mikolajczyk and Schmid, 2004; Tuytelaars 
and Van Gool, 2004; Mikolajczyk et al., 2005]. Indeed while 
corners might be occluded, regions could still be visible and 
matchable. Generally local features are extracted independently 
from the images, then characterized with invariant descriptors 
and finally matched (by means of the Euclidean or Mahalanobis 
distance between the descriptor elements). These descriptors 
(usually a vector of attributes) are invariant under affine 
transformation and illumination changes and can help in 
matching homologues points in widely separated views.  

[Mikolajczyk and Schmid, 2003] have shown experimentally 
that the Lowe operator [Lowe, 2004] is the most robust 
algorithm for wide baseline matching and different applications 
[Roth, 2004; Roncella et al., 2005; Läbe and Förstner, 2006] 
have also shown its great potentiality. 

For the automated orientation of images acquired with a very 
wide baseline, a strategy has been developed according to the 
following steps: 

1. Interest regions identification by means of Lowe detector 
and SIFT descriptor [Lowe, 2004]; 

 
2. Using the vector of attributes extracted by the descriptor, 

matching of corresponding points (centroid of the extracted 
regions) is done by searching for points with minimal 
Euclidean distance between their attribute vectors; 

 
3. Wrong matches removal by robust computation of the 

epipolar geometry (described by the fundamental matrix) 
between image pairs;  

 
4. Guided matching by exploiting the epipolar geometry 

constraint and increasing the localisation accuracy by 
applying LSM on previously matched regions.  

 
5. Retrieve the epipolar geometry between image triplets by 

means of the trifocal tensor and further refined checking of 
extracted correspondences. 
 

As shown in [Remondino, 2006] the orientation derived from 
correspondences based on region detectors/descriptors has 
worse accuracy than from correspondences based on point 
detectors. The reason is that, although the correct regions are 
found to be corresponding, the centroids of the regions (i.e. the 
points used for computing the image orientation) might be 
shifted due to perspective effects. However, refining the 
centroid using LSM, the location accuracy can be improved. 
LSM requires approximations for the affine transformation 
parameters. These can be derived from the regions descriptors, 
which usually include an ellipse representation, whose 
parameters (major and minor axis and inclination) are derived 
from the eigenvalues of the second moment matrix of the 
intensity gradient [Lindeberg, T., 1998; Mikolajczyk, K. and 
Schmid, C., 2002]. LSM can cope with different image scales 
(up to 30%) and significant camera rotations (up to 20 degrees), 
if good and weighted approximations are used to constraint the 
estimation in the least squares adjustment. An example is 
shown in Figure 5: given a detected affine region in the 
template image and its ellipse parameters, LSM is computed in 
the search image without and with initial approximations, 
showing the improved matching results depending on the 
approximations. 
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Figure 5: Detected affine regions in the template image (left). 
Wrong LSM results in the search image (center) with strongly 
deformed image patches (white patch), initialized by the 
centroid of the region detector (red patch) and without 
approximations for the affine transformation parameters. 
Correct LSM results (right) obtained using the approximations 
derived from the region descriptors. 
 
 
4.1 Experiments 

A building (Figure 6) has been imaged with two widely 
separated views. The base-to-distance ratio is approximately 
1:0.77 and the camera interior parameters are known. The tie 
points are automatically extracted as previously described by 
means of region detectors and descriptors and the extracted 
correspondences (Figure 7) are used for the relative orientation 
of the image pair (Figure 8). The final mean RMSE of the 
image residuals of the computed object coordinates is 0.17 
pixels. 

A second example consists of three images (Figure 9), 
representing a Bayon Buddha statue [Gruen et al., 2001], 
acquired with an analogue Minolta camera and digitized 
afterwards. Due to the large baseline, there is a very small 
overlap between the first (A) and the third image (C). The 
images were firstly processed with the Wallis filter [Wallis, 
1976] for radiometric equalization and especially contrast 
enhancement. The filter enables a strong enhancement of the 
local contrast by retaining edge details and removing low-
frequency information in an image. 

For the automated image orientation, the extracted regions are 
matched between the two adjacent pairs and then the epipolar 
geometry between the triplet is computed (Table 2). 

All the extracted tie points are afterwards imported in a bundle 
adjustment to retrieve the exterior parameters (Figure 10). A 
total of 1047 object points are computed and the final RMSE of 
the image residuals is 0.71 pixels. 

  
Figure 6: Two widely separated images (courtesy of S. El-
Hakim, NRC Canada). The base-to-distance ratio is 
approximately 1:0.77. 

Figure 7: The 55 correspondences, which where automatically 
extracted using the Lowe region detector and used for the 
orientation procedure. 
 
 

  
Figure 8: Top and side view of the recovered camera poses of 
the two widely separated views. 
 
 

   
  (A)                                                (B)                                            (C) 

Figure 9: The three analyzed images of the smiling Buddha in 
Angkor Wat, Cambodia, after the Wallis filter enhancement. 
 

 
 A B C 

Extracted regions 18122 16778 17715 
Matched A-B 197  
Matched B-C  902 

New matched A-B after guided 
matching 16  

New matched B-C after guided 
matching 

 7 

Points in 3 images 10 
Total number of 3D points 1047 

Table 2: Results of the tie point extraction between the three 
widely separated images of Figure 9. 
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Figure 10: Recovered camera poses of the three widely 
separated views. The two relative rotation angles between the 
images are approximately 37 and 31 degrees. 
 
 
 
 

5. CONCLUSIONS AND OUTLOOK 

In this article we gave an overview on recent developments in 
automated orientation of close-range images and demonstrated 
their applicability on different data sets of real images.  

The methods for automated image orientation have to deal with 
two issues: (i) the automatic measurement of markerless tie 
points and (ii) the provision of initial orientation parameters for 
the bundle block adjustment. The second issue is nowadays 
simply solved (once the correspondences are known) e.g. using 
orientation methods based on projective geometry (fundamental 
matrix and trifocal tensor) or with robust relative orientation 
procedures based on Monte Carlo type strategy [Cronk et al., 
2006] – even for uncalibrated images. Although image 
orientation and calibration are often combined in the literature, 
we argue that both should be separated if possible. Image 
sequences acquired for object reconstruction usually do not 
allow for a proper calibration and consequently, the accuracies 
of the results will deteriorate. Therefore we prefer to work with 
calibrated images.  

The automatic measurement of markerless tie points, however, 
is still a difficult and active research topic in close-range 
photogrammetry and computer vision. A clear fact is that no 
commercial solutions are still available. Depending on the 
baseline length between consecutive images, the approaches for 
automatic tie point extraction can be divided in point and 
region-based procedures. Whereas the point-based procedures 
apply simple and well-known extraction and matching 
techniques, the region-based procedures require more 
processing time and involved techniques, however, with the 
benefit that they are able to deal also with wide baseline 
images. Although the region-based techniques are the most 
general and are thus also applicable for short baselines, the 
original results do not exploit the full accuracy potential. 
However, by using LSM to refine the extracted features, it was 
shown that the accuracies can be significantly improved 
[Remondino, 2006]. 

We can safely conclude that the success of automatically 
orienting close-range images depends on the following main 
issues: (i) image arrangement (baselines and viewing 
directions) and (ii) the imaged scene properties (geometry and 
texture, even if it was shown that the image content can be 
enhanced for tie point extraction by image preprocessing). 

Even if the image orientation step can be fully automated, 
within the 3D image-based modeling pipeline some user 
interaction is still required – especially in the subsequent 

modeling-phase – as the extracted features, even if well 
distributed for the orientation, are not sufficient for the object 
reconstruction, as not located in the salient object areas. 

Although the presented examples show the applicability of 
automated image orientation to a variety of image 
configurations, in the future we plan to conduct more tests to 
further investigate the feasibility and limitations of present 
methods – especially with respect to wide baseline images. 
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ABSTRACT 
 
Relative orientation in a stereo pair (establishing 3D epipolar geometry) is generally described as a rigid body transformation, with 
one arbitrary translation component, between two formed bundles of rays. In the uncalibrated case, however, only the 2D projective 
pencils of epipolar lines can be established from simple image point homologies. These may be related to each other in infinite varia-
tions of perspective positions in space, each defining different camera geometries and relative orientation of image bundles. It is of 
interest in photogrammetry to also approach the 3D image configurations embedded in 2D epipolar geometry in a Euclidean (rather 
than a projective-algebraic) framework. This contribution attempts such an approach initially in 2D to propose a parameterization of 
epipolar geometry; when fixing some of the parameters, the remaining ones correspond to a ‘circular locus’ for the second epipole. 
Every point on this circle is related to a specific direction on the plane representing the intersection line of image planes. Each of 
these points defines, in turn, a circle as locus of the epipole in space (to accommodate all possible angles of intersection of the image 
planes). It is further seen that knowledge of the lines joining the epipoles with the respective principal points suffices for establishing 
the relative position of image planes and the direction of the base line in model space; knowledge of the actual position of the princi-
pal points allows full relative orientation and camera calibration of central perspective cameras. Issues of critical configuration are 
also addressed. Possible future tasks include study of different a priori knowledge as well as the case of the image triplet.  
 
 
 

1. INTRODUCTION 
 
In photogrammetric textbooks a typical definition of the task of 
relative orientation (RO) is that of establishing the relative posi-
tion of two – already formed – homologue bundles of rays (in-
volving 5 independent parameters). The object may then be re-
constructed by bundle intersection in an arbitrarily oriented and 
scaled model space. In this sense, certain explicit or implicit as-
sumptions are made: 

• In order to establish RO, the camera interior orientation (IO) 
must be fully known beforehand. Knowledge of IO is also a pre-
requisite for linear algorithms for estimating RO – in fact equi-
valent to the computation of the ‘essential matrix’, as it came to 
be known in computer vision literature – which have been pre-
sented in photogrammetry (Thompson, 1959; Stefanovic, 1973; 
Khlebnikova, 1983). 

• Determination of epipolar lines presupposes knowledge of 
both IO and RO. For instance: “If relative orientation is known 
for a given stereo pair, the coplanarity condition can be used to 
define epipolar lines” (Wolf & DeWitt, 2000). Or: “The epipolar 
lines can be determined after the photographs have been relati-
vely oriented” (Mikhail et al., 2001).  
 
Thus, most photogrammetric textbooks (rather understandably, 
in the context of routine mapping tasks using metric cameras) 
restrict the definition of RO to that for calibrated images. Cur-
rently, however, a more general view on RO is also adopted. For 
instance, according to the new edition of the Manual of Photo-
grammetry (McGlone, 2004) “the relative orientation of two un-
calibrated straight-line-preserving cameras is characterized by 7 
independent parameters. An object can be reconstructed only up 
to a spatial homography”. It is also noted there that, 150 years 
ago, M. Chasles had detected the 1D homography between cor-
responding pencils of epipolar lines, whose 3 parameters com-
bine with the 4 parameters defining the epipoles to yield the to-
tal of 7 independent parameters required for establishing RO in 
the uncalibrated case. It is further stated that 7 pairs of homolo-
gue points allow finding RO in uncalibrated stereopairs. It needs 
to be noted that ‘relative orientation’ stands here for something 

more general than the conventional photogrammetric concept 
(since no unique spatial relationship between the two images is 
fixed); it actually means ‘recovery of 2D epipolar geometry’. 
 
Clearly, it is thanks to extensive research in the field of com-
puter vision that this point of view is being (re)introduced into 
the photogrammetric literature. In particular, Faugeras (1992) 
and Hartley (1992) have demonstrated that the 2D epipolar geo-
metry of an image pair may still be established even with un-
known IO. The ‘fundamental matrix’ F – having 7 independent 
parameters, found from simple point homologies – establishes 
the epipolar constraint on the uncalibrated pair and allows pro-
jectively distorted, i.e. non Euclidean, 3D reconstructions (Hart-
ley & Zisserman, 2000, Faugeras & Luong, 2001). 
 
Undoubtedly, the notion of the fundamental matrix has allowed 
a deeper insight into the structure of the stereopair. In fact – al-
though somehow obscured in the many decades of technologi-
cal advance and massive photogrammetric production – this ge-
neralization of the term ‘relative orientation’ to include the un-
calibrated case (and thus signify the establishment of 2D epipo-
lar geometry) is not unfamiliar to photogrammetry. Thus, in the 
framework of projective geometry Bender (1971) had formula-
ted the equivalent of the fundamental matrix, which represents 
“the most general relative orientation of two photos”. He also 
explained that use of one arbitrary camera matrix leads to con-
struction of a model space related to the real object via a 3D 
projectivity. He concluded that its 15 parameters, added to the 7 
of relative orientation, yield the 22 parameters (two DLT matri-
ces), which fully relate two individual images to object space. 
Yet, it was Sebastian Finsterwalder who – in one of his remark-
able publications – had already shown that, given the two epi-
poles, one can reconstruct an ‘auxiliary’ 3D object which is col-
linear to that depicted on the images, since all straight lines of 
the real object also correspond to straight lines on the two per-
spective projections from which this ‘auxiliary’ object is recon-
structed. He pointed out that, assuming central perspective ca-
meras, ∞5 such projective reconstructions are possible from an 
uncalibrated image pair (Finsterwalder, 1899). 
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Notwithstanding the elegance and ‘compactness’ of essentially 
algebraic approaches, it is believed that the more geometric rea-
soning of Finsterwalder (also adopted in Rinner & Burkhardt, 
1972) is indeed also useful to photogrammetry. It might help 
further illuminate the actual 3D geometry of the stereo pair, by 
indicating the countless combinations of relative – in its con-
ventional meaning – and interior orientations embedded in one 
and the same 2D epipolar geometry. Besides, it could also fur-
ther clarify why partial knowledge of interior orientation can al-
low recovering camera geometry from simple image point cor-
respondences. It is from this point of view that the authors wish 
to address here certain aspects of two-image geometry. 
 
 

2. THE GENERAL CASE 
 
The base line o, defined by the projection centres O1 and O2 of 
a stereopair, intersects the two image planes ε1, ε2 in the respec-
tive epipoles e1 and e2 (Fig. 1). Epipolar planes, defined by the 
base and each imaged object point (such as P), intersect the im-
age planes in homologue epipolar lines passing through the epi-
poles. Corresponding epipolar lines intersect on the intersection 
line (g) of the two image planes; the pencils of epipolar rays in 
both images are, therefore, projective (Hallert, 1960). 
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Figure 1. Epipolar geometry. 

 
When only a sufficient number of image point correspondences 
are at hand, determination of the fundamental matrix allows es-
tablishing the epipoles (and consequently the projective pencils 
of epipolar lines). Once these two pencils are brought to some 
position in which they are perspective to each other, it is seen in 
Fig. 1 that changes of angle ϑ between the two image planes do 
not affect the perspective position of the pencils (they still inter-
sect on g) and the coincidence of the epipolar planes. Thus, one 
may for the moment address the problem in 2D (i.e. set ϑ = π). 
 
First, it is assumed that the two image planes are not parallel (g 
is not at infinity) and that no image is parallel to the base line o 
(no epipole is at infinity). Thus, referring to Fig. 2, the pencil of 
e1 may be intersected with any line g on image plane ε1 not 
passing through e1. No generality is lost if only lines through 
some fixed point K are considered, since the position of K only 
affects scale. For convenience, K is fixed on some epipolar ray 
through e1 and all lines g are characterised by the angle δ they 
form with this ray. A line g(δ) intersects two other epipolar rays 
of e1 in points A and B. Epipole e2 can be constructed as the in-
tersection of the two circular arcs ca and cb which see segments 
KA and KB under the respective angles α2 and α2+β2 of the 
epipolar pencil of the second image. All other couples of homo-
logue epipolar rays also intersect on g (cross ratio constraint). 
 
It is to note that a valid second location also exists for e2, on the 

other side of line g, as the intersection of the circular arcs ca and 
cb if these are mirrored with respect to g. However, this could 
be disregarded since it corresponds to ϑ = 0. A further remark is 
that, for some direction δ of line g, any translation of K (point 
of rotation of g) simply slides the position of e2 along e1e2 (i.e. 
direction δ defines a line through e1 as the locus of e2). 
 
Following Fig. 2, it can be also shown that the geometric locus 
for epipole e2 is a circle ck (which also contains e1). Consider, 
for instance, the intersections M and N of epipolar lines e1A and 
e1B with ca and cb, respectively. In ca point A views chord KM 
under the angle α1+δ, while e2 sees it under the supplementary 
angle. In cb point B views chord KN under the angle α1+β1+δ, 
while e2 sees it under the supplementary angle. Thus, the angu-
lar difference Ke2M−Ke2N = KBN−KAM, namely segment MN 
is seen from e2 under the fixed angle β1 (or, if e2 lies between M 
and N, under angle π−β1). 
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Figure 2. Epipolar geometry on the plane. 

 
Thus, quite independently from the direction δ of line g, every 
point K fixes a circle ck as the geometric locus of the epipole e2. 
This circle can be constructed from e1 and the two points M, N 
which are fixed by angles α2 and β2 of the pencil through e2. In-
deed, as seen from Fig. 2, M views segment KA under angle α2 
regardless of δ, i.e. of the actual position of A on epipolar line 
e1A; the same is true for point N, which sees segment KB under 
angle α2+β2 regardless of the position of B on epipolar line e1B. 
Fixing K also fixes these two points (and all other similarly de-
fined points corresponding to other epipolar lines of the pencil 
through e1) and, as a consequence, ck can be constructed. 
 
Thus, the 7 degrees of freedom in 2D epipolar geometry (funda-
mental matrix) may be parameterized in the following way. The 
epipoles on ε1 and ε2 are fixed with 4 parameters. The remain-
ing 3 degrees of freedom on the plane, which bring the two pen-
cils of epipolar rays in perspective position (they intersect on a 
line g of direction δ rather than on a conic section), may be geo-
metrically described as follows. For a fixed point K – its loca-
tion only affects scale and is irrelevant to relative orientation – 
2 parameters define with epipole e1 the circle ck, whose points 
are valid locations of epipole e2. The third parameter is the rota-
tion which, for any valid e2, brings the corresponding epipolar 
ray to pass through K. This constrains the intersection of the 
two projective pencils on a line g(δ). In this sense, and disre-
garding scale, all possible positions of epipole e2 can be grasped 
as a circular movement of all points of ck around their corre-
sponding line g(δ) and normal to it. This includes all possible 
angles of intersection of the image planes (0 < ϑ < 2π, ϑ ≠ π) 
for each individual direction δ (cf. Fig. 3). 
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Thus, two further parameters δ, ϑ (9 in total) are required to de-
termine in 3D the relative orientation of the two pencils of epi-
polar lines. These represent the direction of the second image 
plane relative to the first, i.e. a given 2D epipolar geometry in-
cludes, in principle, all possible directions. As discussed in the 
following section, knowledge of the line through the epipoles 
and the corresponding principal points allows establishing full 
relative orientation of the image planes. Then the base line o is 
also fixed in model space. Since a full relative orientation of an 
uncalibrated pair from central perspective cameras involves 11 
independent parameters, the additional knowledge of one image 
coordinate (c, xo or yo) of the projective centre of each image 
provides full relative orientation of the pair. 
• Note: Two special cases are pointed out. First, the two pencils 
of rays are identical, while the epipoles are not at infinity. This 
occurs if image planes are parallel but not coplanar (and o is not 
parallel to them); if image planes are coplanar but the camera 
constants differ; if epipoles are equidistant from the intersection 
of image planes. In such a case, circle ck degenerates to a point 
coinciding with e1. For every line g, a circle through e1 about g 
and on a plane normal to it is the locus of e2. Here, nonetheless, 
ϑ = 0 is a valid angle referring to parallel image planes (g at in-
finity). Second, the epipolar lines of one image run parallel to 
each other, which occurs if this image is parallel to the base line 
o. It can be shown that, if epipole e1 is at infinity, circle ck de-
generates to line MN (which can also be constructed). 
 
 

3. PARTLY CALIBRATED IMAGES 
 
Contrary to a typical photogrammetric approach, even in order 
to perform RO in its conventional sense (namely, allowing met-
ric reconstruction) one does not need to assume already formed 
bundles; indeed, recovery of RO is possible together with partial 
camera calibration. Chang (1986) had given an early illustration 
of the possibility to find the IO parameters with a simultaneous 
adjustment of independent stereo pairs from the same camera. 
Faugeras et al. (1992) showed that assumption of common IO in 
an image pair produces two independent conditions among the 
elements of F and the IO parameters. Hence, if certain camera 
elements are considered as known, partial self-calibration is fea-
sible from a single stereo pair. By fixing the principal point, for 
instance, one may recover the constant of a central perspective 
camera even if it varies between the two views (Hartley, 1992). 
Non-iterative algorithms have been reported for estimating one 
or two camera constants from the fundamental matrix, while cri-
tical configurations have also been demonstrated (Newsam et 
al., 1996; Sturm, 2001; Sturm et al., 2005). 
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Figure 3. A possible relative position of images in 3D. 

In order to address this issue here, it is referred to Fig. 3, which 
presents one out of the possible relative orientations of two im-
ages ε1, ε2 given their line of intersection g. The rotation of an 
image plane about g by a change in angle ϑ does not affect the 
epipolar lines or the coplanarity constraint. As mentioned, such 
rotations move epipoles e1, e2 on two parallel circles, which are 
normal to both image planes and their intersection g. In Fig. 3 
line segments e1a, e2′b represent the projections of the two cir-
cles on image plane ε1, and e2b, e1′a are their projections on ε2. 
 
Any two points on line o (e1e2) which joins the two epipoles can 
be chosen as projection centres. Camera constant and principal 
point corresponding to each projection centre can be determined 
through its normal to the respective image plane. As a conse-
quence, for a particular angle ϑ the locus of the principal point 
on each image is a line through its epipole. One of them (e1d) is 
constructed through the projection d of e2 on plane ε1; in a simi-
lar way, the line e2c of the principal point may be found on ε2. 
The two right triangles e1ac and e2bd are then similar since their 
angles e1ac and e2bd are equal to angle ϑ of the image planes. 
Hence, ac/e1a = bd/e2b = cosϑ. Since e1a = e1′a and e2b = e2′b 
(radii of circles) it also holds that ac/e1′a = bd/e2′b = cosϑ. Con-
sequently, the change of angle ϑ affects on both images the di-
rection of the line through the epipole and the principal point. 
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Referring now to Fig. 4, which shows the inclination on image 
plane ε1, the line e1d of the principal point of the first image has 
to intersect segment e2e2′. Thus, for a given δ only a part of the 
image plane represents a valid location for the principal point. 
The same holds for the second image. But if the principal point 
of the first image, or simply the direction of line e1d, is known, 
then line e2c of the principal point of the other image is further 
constrained to intersect segment e1e1′ at a specific point c such 
that ac/e1a = bd/e2b. From the isosceles trapezium e1e1′e2e2′ it 
can be shown that equality of these two ratios exists only when 
the intersection of lines cd and e1e2 lies on line g. To summa-
rize, if line e1d is known, then for every angle δ the line of the 
principal point of the second image as well as the angle ϑ of the 
two images can both be found. It is further observed that the di-
rection of e1d also constrains angle δ to those values which give 
segments e2e2′ that can be intersected by e1d, which means that 
only part of circle ck represents now valid positions for e2. 
 
If in addition to e1d also line e2c of the other principal point is 
known, the constraint that the two lines must intersect segments 
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e1e1′ and e2e2′ to equal ratios allows finding the compatible an-
gle δ, since random selections of δ will not produce ratios ac/e1a 
and bd/e2b which are equal1. The fact that both ratios also equal 
cosϑ finally provides the 2 missing parameters, thus allowing a 
full estimation of relative orientation of the two image planes 
and, consequently, fixing through the two epipoles the base line 
o in space. It is noted, however, that ϑ only establishes the an-
gle between the image planes. Thus, cosϑ provides the four an-
gles ϑ, π−ϑ, π+ϑ, 2π−ϑ, which in fact represent the four possi-
ble solutions for relative orientation2. 
 
From the above it is seen that if not only the directions of these 
two lines (loci of the principal points) but the principal points 
themselves are known, the camera constant of the two images 
may be found through the projections of the respective principal 
points onto the base line o in space. This is in agreement to the 
knowledge that, in general, fixed principal points allow compu-
tation of the camera constants from the fundamental matrix. 
 
• Note: In case of coplanarity of the optical axes3 their common 
plane will be perpendicular to both images and their line of in-
tersection g. In such a case the two circles of Figs. 3 and 4 will 
be coplanar and the two principal point lines (e1d, e2c) will co-
incide with segments e1e1′ and e2e2′. In this situation none of the 
two ratios mentioned above can be determined and a rotation ϑ 
will not affect the coplanarity of the two axes. If the principal 
points themselves are known, for every ϑ there emerge different 
camera constants. Thus, coplanarity of image axes renders par-
tial camera calibration impossible (Newsam et al., 1996). Yet, if 
the images are assumed as having identical camera constants, it 
is indeed possible to find that angle ϑ which will result to equal 
camera constants (Sturm, 2001). This will not hold if the two 
principal points are equidistant from the intersection g of image 
planes since then all angles ϑ produce equal values for the two 
camera constants. For identical camera constants this, of course, 
is equivalent with the equidistance of projection centres from g, 
also including parallelism of the optical axes, which is the criti-
cal geometry pointed out by Sturm (2001). 
 
 

4. CONCLUDING REMARKS 
 
In photogrammetric literature two distinct definitions of relative 
orientation of a stereopair coexist. The one presents it strictly as 
a separate 5-parameter orientation step following camera cali-
bration (six parameters for two central perspective cameras) and 
founded on the intersection in 3D space of corresponding rays, 
which thus permits the metric reconstruction of object shape. A 
much wider view (embodied in the fundamental matrix, as ela-
borated in the computer vision literature) bypasses the camera 
calibration step and conceives relative orientation also as the 7-
parameter 2D task of establishing homologue pencils of epipolar 
lines, which then allows object reconstruction up to a 3D pro-
jective transformation. Along with the relative position of (not 
known) bundles of rays which created the original image pair, 
the second group of parameters apparently incorporates ∞4 com-
binations of interior and relative image orientations. The authors 
feel that photogrammetric literature needs to further scrutinize 
this ground between 2D and 3D epipolar geometry in a Eucli-
dean framework. 

                                           
1 To this point, however, it is not known to the authors whether more 
than one solution for δ is possible. 
2 At this stage the criterion that reconstructed points should be in front 
of both cameras (Stefanovic, 1973) cannot be applied, since the princi-
ple point could be on either side of the epipole in both images. 
3 If the principal points or the lines connecting them with the epipoles 
are known, a way to distinguish whether the optical axes are coplanar or 
not is to check whether these lines are also homologue epipolar lines. 

This is the motivation behind the attempt made here to handle 
existing degrees of freedom in a more directly geometric man-
ner and illustrate how these are constrained once partial knowl-
edge of interior orientation is available. Besides further elabora-
tion of the approach presented here, future tasks include similar 
studies of the case when only the camera constants are regarded 
as known and, also, of the possible image configurations if an 
identical interior orientation of the image pair is assumed. Fur-
ther, it is intended to investigate in this framework the possibil-
ity of other factorizations of epipolar geometry with some prac-
tical use. Finally, study of overlapping image triplets in a simi-
lar manner is also within the authors’ intentions. 
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ABSTRACT:

We suggest altering the fundamental strategy in Fundamental or Essential Matrix estimation. The traditional approachfirst estimates
correspondences, and then estimates the camera geometry onthe basis of those correspondences. Though the second half of this
approach is very well developed, such algorithms often failin practice at the correspondence step. Here, we suggest altering the strategy.
First, estimate probability distributions of correspondence, and then estimate camera geometry directly from these distributions. This
strategy has the effect of making the correspondence step far easier, and the camera geometry step somewhat harder. The success of our
approach hinges on if this trade-off is wise. We will presentan algorithm based on this strategy. Fairly extensive experiments suggest
that this trade-off might be profitable.

1 INTRODUCTION

The problem of estimating camera geometry from images lies at
the heart of both Photogrammetry and Computer Vision. In our
view, the enduring difficulty of creating fully automatic meth-
ods for this problem is due to the necessity to integrate image
processing with multiple view geometry. One is given imagesas
input, but geometry is based on the language of points, lines, etc.
Bridging this gap- using image processing techniques to create
objects useful to multiple view geometry- remains difficult. In
both the Photogrammetric and Computer Vision literature, the
object at interface between image processing and geometry is
generally correspondences, or matched points. This is natural
in Photogrammetry, because correspondences are readily estab-
lished by hand. However, algorithmically estimating correspon-
dences directly from images remains a stubbornly difficult prob-
lem.

One may think of most of the previous work on Essential or
Fundamental matrix estimation as falling into one of two cate-
gories. First, there is a rather mature literature on Multiple View
Geometry. This is well summarized in Hartley and Zisserman’s
recent book (Hartley and Zisserman, 2004), emphasizing theun-
calibrated techniques leading to Fundamental Matrix estimation.
Specifically, there are techniques for estimating the Fundamental
Matrix from the minimum ofseven correspondences (Bartoli and
Sturm, 2004). In the calibrated case, the Essential Matrix can be
efficiently estimated from five correspondences (Nistér, 2004).
Given perfect matches, it is fair to say that the problem is nearly
solved.

The second category of work concerns the estimation of the corre-
spondences themselves. Here commonly a feature detector (e.g.
the Harris corner detector (Harris and Stephens, 1988)) is first
used to try to find points whose correspondence is most easily
established. Next, matching techniques are used to find probable
matches between the feature points in both images (e.g. normal-
ized cross correlation, or SIFT features (Lowe, 2004)). These are
active research areas, and progress continues up to the present.

Nevertheless, no fully satisfactory algorithm exists. Current al-
gorithms often suffer from problems such as change in scale or
surface orientation (Schmid et al., 2000). Furthermore, there are
many situations in which it is essentiallyimpossible to estimate
correspondences with out using a higher-level understanding of
the scene. These include repeated structures in the image, the
aperture effect, lack of texture, etc. When humans estimatecor-
respondences, they use this high-level information. Nevertheless,
it is unavailable to algorithms.

Research in multiple view geometry, of course, has considered
the difficulties in the underlying algorithms for correspondence
estimation. As such, robust techniques such as RANSAC (Fis-
chler and Bolles, 1981) are traditionally used to estimate acam-
era geometry from a set of correspondences known to include
many incorrect matches. These techniques are fairly successful,
but because even ’inlying’ correct matches include noise there is
a difficulty in discriminating between inlying matches withnoise,
and outlying, ’wrong’, matches. When simultaneously adjusting
the camera geometry, and 3-D points in a final optimization, bun-
dle adjustment methods frequently use more sophisticated noise
models which smoothly account for error due to both noise, and
’outlying’ matches (Triggs et al., 1999).

In this paper, we suggest that it is worth stepping back and re-
considering if correspondences are the correct structure to use at
the interface between image processing and multiple view geom-
etry. Point correspondences are natural in Photogrammetrybe-
cause they are easily estimated by humans. Nevertheless they
are very difficult to estimate algorithmically. Here, we suggest
instead usingcorrespondence probability distributions. We can
see immediately that this makes the image processing side ofthe
problem much easier. If repetitive structure or the aperture effect
presents itself, it is simply incorporated into the probability distri-
bution. We will present a simple, contrast invariant, technique for
estimating these correspondences from the phase of tuned Gabor
filters.

The more difficult side of this strategy concerns multiple view
geometry. One must estimate the camera geometry from only dis-
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tributions of correspondence. As we will see, one can quite easily
define aprobability for any given camera motion, from only these
distributions of correspondence. We then present a heuristic non-
linear optimization scheme to find the most probable geometry.
In practice, this space has a similar structure to the least-squares
epipolar error space, (Oliensis, 2005) in that it contains relatively
few local minima.

1.1 Previous Work

Other work has asked similar questions. First, there are tech-
niques which generate from images feature points, and localim-
age profiles, with out estimating an explicit correspondences (Maka-
dia et al., 2005). These techniques then find motions which are
compatible with these features, in the sense that each feature
tends to have a compatible feature along the epipolar line inthe
second image.

Other work has created weaker notions of correspondences, such
as the normal flow. If a point is along a textureless edge in one
image, local measurements can only constrain it to lie alongthe
same edge in the second image. This constraint is essentially the
normal flow, and algorithms exist to estimate 3-D motion directly
from it (Brodsky et al., 2000). Though these techniques willnot
suffer from the aperture effect, they cannot cope with situations
such as repeated structures in the images. It is also important to
notice that the normal flow will give up information unnecessarily
at points which do not happen to suffer from the aperture effect.

2 CORRESPONDENCE PROBABILITY
DISTRIBUTIONS

Given a pointq in the first image, we would like the probability
that this correspondences most closely to each pixels in the sec-
ond image. It is important to note that there is no obvious way
to use traditional matching techniques here. Whereas traditional
techniques try to find the most probably point correspondingto
q, we require the relative probabilities ofall points.

Our approach is based on the phase of tuned Gabor filters. Let
φl,γ(s) denote the phase of the filter with scalel and orientation
γ at points. Now, given a single filter,(l, γ), we take the prob-
ability that s corresponds to a given point̂q to be proportional
to

exp((φl,γ(s) − φl,γ(q̂))2) + 1. (1)

Combining the probability distributions given by all filters then
yields the probability thats corresponds tôq, which we denote
by ρs(q̂).

ρs(q̂) ∝
∏

l,ω

exp((φl,γ(s) − φl,γ(q̂))2) + 1. (2)

Note here that̂q corresponds to a particularpixel in the second
image. Since we are computing probabilities over a discretegrid,
we approximate the probability thats corresponds to an arbi-
trary point, having non-integer coordinates, though the use of a
Gaussian function.

ρs(q) ∝ max
q̂

ρs(q̂) exp(−|q − q̂|2) + α (3)

Here,α represents the probability that the information given by
the Gabor filters is misleading. This would be the case, for ex-
ample, were the points to become occluded in the second image.
Notice that adding the constant ofα is equivalent to combining
the distribution with the ’flat’ distribution in which all points q
are equally likely. In all experiments described in this paper, we
have usedα = 1.

Correspondence distributions for several images are shownin
Figure 2.

Figure 1: Correspondence Probability Distributions. Left: First
image, with point in consideration marked. Center: Second im-
age: Right: Probability distribution over the points in thesecond
image, with probability encoded as color.

3 ESSENTIAL AND FUNDAMENTAL MATRIX
ESTIMATION

Given the correspondence distributions, we will define natural
distributions over the space of the Fundamental and Essential Ma-
trices. Because the space of these matrices are of high dimension
(7 and 5 respectively), it is impractical to attempt to calculate a
full distribution, by sampling. It is possible that future work will
directly use these distributions. Nevertheless, we use a simple
heuristic optimization to maximize the probability in the Essen-
tial or Fundamental Matrix space. This makes it possible to ex-
amine the behavior of these distributions more easily.

3.1 Fundamental and Essential Matrix Probability

Given the correspondence distribution for a single points, ρs(·),
we define a distribution over the space of fundamental matrices.
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ρ(F ) ∝ max
q:qT F s=0

ρs(q) (4)

Thus, the probability of a given Fundamental MatrixF is pro-
portional tothe maximum probability correspondence compati-
ble with the epipolar constraint. Now, to use all correspondence
distributions, simply take the product of the distributions given
by each points.

ρ(F ) ∝
∏

s

max
q:qT F s=0

ρs(q) (5)

Substituting our expression forρs(q) from Equation (3), we ob-
tain

ρ(F ) ∝
∏

s

[ max
q:qT F s=0

max
q̂

ρs(q̂) exp(−|q − q̂|2) + α]. (6)

Rearranging terms, this is

ρ(F ) ∝
∏

s

[max
q̂

ρs(q̂) max
q:qT F s=0

exp(−|q − q̂|2) + α]. (7)

Notice here, that we do not need to explicitly find the pointq.
Only required ismaxq:qT F s |q − q̂|. Notice that this is exactly
the minimum distance of the pointq̂ from the lineFs. Therefore,
we can write the probability ofF in it’s final form.

ρ(F ) ∝
∏

s

[max
q̂

ρs(q̂) exp(−(q̂T l(F,s))
2) + α] (8)

Here,l(F,s) is the lineFs normalized such thatrT l(F,s) gives the
minimum distance betweenr and the lineFs on the planez = 1.
If Fi is theith row ofF , then

l(F,s) =
Fs

√

(F1s)2 + (F2s)2
. (9)

When searching for the most probableF , a parameterization of
the fundamental matrices is required. We found it convenient to
use three parametersf , px, andpy representing the focal length,
and x and y coordinates of the principal point. Next, keepingthe
magnitude of the translation vectort fixed to one, we took two
parameters to parameterize its axis and angle. Finally, we used 3
parameters to represent the rotation vectorω. This corresponds
to a rotation of an angle|ω| about the axisω/|ω|.

K =

[

f 0 px

0 f py

0 0 1

]

(10)

E = [t]×R(ω) (11)

F = K−T EK−1 (12)

Notice there are a total of 8 free parameters, despite the fact that
the Fundamental Matrix has only 7 degrees of freedom. Though
this presents no problem to the estimation ofF , it does mean that
an ambiguity is present in the underlying parameters.

To extend this to the calibrated case, we takeK to be known.
Thus, there are now 5 free parameters: 2 for the translationt, and
3 for the rotationω. It would be trivial to extend this to the case
that only certain calibration parameters were known, or to include
a constant for camera skew.

3.2 Optimization

To explore the behavior of the probability distributions over the
Fundamental and Essential Matrices, we will use a heuristicopti-
mization to try to findarg maxF ρ(F ) andarg maxE ρ(E), re-
spectively. The optimization proceeds as follows: First, select
N random points in the Fundamental or Essential matrix space.
Evaluateρ(E) or ρ(F ) at each of these points. Next, take the
M highest scoring points, and run a nonlinear optimization, ini-
tialized to each of these points. We have used both Simplex and
Newton’s type optimizations, with little change in performance.
The final, highest scoring point is taken as the max.

For the calibrated case, we have found that usingN = 2500 and
M = 25 was sufficient to obtain a value very near the global
maximum in almost all cases. As in the case for the standard
least-squares error surface (Oliensis, 2005) (Tian et al.,1996),
there are generally several, but only several local minima.Usu-
ally, a significant number of the nonlinear searches lead to the
same (global) point.

In the uncalibrated case, we usedN = M = 100. (Thus searches
are taken from 100 random points.) We found that it was neces-
sary to increaseM to 100 to obtain reasonable certainty of ob-
taining the global maximum. At the same time, we found that
increasingN did not improve results, and may even be counter-
productive. Still, the space ofρ(F ) appears to have more local
minima, and even this increased method does not always appear
to achieve the global maximum.

4 EXPERIMENTS

To analyze the performance of the framework, we prepared three
different 3-D Models with the POV-Ray software. Each model
was chosen for its difficulty, including repetitive structure, lack
of texture, or little image motion. The use of synthetic models
makes the exact motion and calibration parameters available. For
each model, we generated two different image sequences- one
with a forward motion, and one with a motion parallel to the im-
age plane.

For each image pair, 10,000 correspondence probability distrib-
utions were created. Next, the calibrated and uncalibratedalgo-
rithm were both run across a range of input sizes. For each input
size, 100 random subsets of the correspondences were generated,
and the algorithm was run on each input.

In the calibrated case, the measurement of error is simple. Let
the true translation vector bet0, normalized so that|t0| = 1.
Let the vector parameterizing the true rotation matrix beω0. The
error metrics we use are simply the Euclidean distance between
the estimated and true motion vectors,|t − t0|, and |ω − ω0|
respectively. For each input size, means are taken over the errors
for all resulting motion estimates.
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In the uncalibrated case, we must measure the error of a given
fundamental matrixF . Commonly used metrics such as the Frobe-
nius norm are difficult to interpret, and allow no comparisonto
the calibrated case. Instead, we use the known ground truth cali-
bration matrixK to obtainE. (Hartley and Zisserman, 2004)

E = KT FK (13)

Next, Singular Value Decomposition is used to decomposeE into
the translation and rotational components,E = [t]×R(ω). From
this, it is simple to recover the underlying motion parameters, t
andω. The error is then measured in the same way as the cali-
brated case.

Results for the ’Cloud’, ’Abyss’, and ’Biscuit’ models are shown
in figures 2, 3, and 4 respectively. Several observations areclear
from the data. First, motion estimation is always more accurate
when the epipole is in the middle of the image than when it is par-
allel to it. Surprisingly, perhaps, neither the calibratednor uncal-
ibrated approach clearly outperforms the other. The performance
of the uncalibrated approach relative to the calibrated approach is
better when the epipole is further from the image.

Two frames from the ’Castle’ sequence, along with the epipolar
lines are shown in Figure 5. Two frames from the popular ’Ox-
ford Corridor’ sequence are shown in Figure 6. In both cases,ap-
proximately 2000 correspondence distributions were used.Though
no ground truth calibration or motion is available, the reader can
observe the close correspondence among epipolar lines.

The running time of the algorithm is dominated by the time to
generate correspondence distributions. In practice, the motion
estimation step runs on the order of a minute on a modern laptop.

5 CONCLUSIONS AND FUTURE WORK

With real cameras, neither the fully calibrated, nor fully uncali-
brated approach is fully realistic. In practice, one has some idea
of the calibration parameters, even if only from knowledge of typ-
ical cameras. At the same time, even when a camera is calibrated,
the true calibration is not foundexactly. It would be quite natural
to extend this paper’s work to create a unifying approach between
the two cases.

Write the prior distribution over the focal lengths byρ(f). Sim-
ilarly, we can write the prior distributions of the principal point
by ρ(px, py). Now, we can make the Bayesian nature of this ap-
proach more explicit by writing 14 as

ρ(E|f, px, py) ∝ max
q:qT K−T EK−1s=0

ρs(q) (14)

Now, in the optimization step, instead of seeking

arg max
F

ρ(F ), (15)

the optimization would be over

arg maxE,f,px,py
ρ(E|f, px, py)ρ(f)ρ(px, py). (16)

In this way, in one step, the most likely calibration parameters
would be found as well as the most likely motion. This could be
particularly useful in the common case that the camera calibration
is approximately known, but the focal length changes, perhaps
due to change of focus.
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Figure 2: ’Cloud’ model, and mean errors for two different mo-
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Figure 3: ’Abyss’ model, and mean errors for two different mo-
tions.
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Figure 5: Two frames from the ’Castle’ sequence, with epipolar
lines overlaid
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ABSTRACT:

In this paper we investigate the status of bundle adjustment as a component of a real-time camera tracking system and show that with
current computing hardware a significant amount of bundle adjustment can be performed every time a new frame is added, even under
stringent real-time constraints. We also show, by quantifying the failure rate over long video sequences, that the bundle adjustment is
able to significantly decrease the rate of gross failures in the camera tracking. Thus, bundle adjustment does not only bring accuracy
improvements. The accuracy improvements also suppress error buildup in a way that is crucial for the performance of the camera
tracker. Our experimental study is performed in the setting of tracking the trajectory a calibrated camera moving in 3D for various
types of motion, showing that bundle adjustment should be considered an important component for a state-of-the-art real-time camera
tracking system.

1 INTRODUCTION

Bundle adjustment is the method of choice for many photogram-
metry applications. It has also come to take a prominent role in
computer vision applications geared towards 3D reconstruction
and structure from motion. In this paper we present an experi-
mental study of bundle adjustment for the purpose of tracking the
trajectory of a calibrated camera moving in 3D. The main pur-
poses of this paper are

• To investigate experimentally the fact that bundle adjust-
ment does not only increase the accuracy of the camera tra-
jectory, but also prevents error-buildup in a way that de-
creases the frequency of total failure of the camera tracking.

• To show that with the current computing power in standard
computing platforms, efficient implementations of bundle
adjustment now provide a very viable option even for real-
time applications, meaning that bundle adjustment should be
considered the gold standard for even the most demanding
real-time computer vision applications.

The first item, to show that bundle adjustment can in fact make the
difference between total failure and success of a camera tracker,
is interesting because the merits of bundle adjustment are more
often considered based on the accuracy improvements it provides
to an estimate that is already approximately correct. This is nat-
urally the case since bundle adjustment requires an approximate
(as good as possible) initialization, and will typically not save
a really poor initialization. However, several researchers have
noted (Fitzgibbon and Zisserman, 1998, Nistér, 2001, Pollefeys,
1999) that in the application of camera tracking, performing bun-
dle adjustment each time a new frame has been added to the es-
timation can prevent the tracking process from failing over time.
Thus, bundle adjustment can over time in a sequential estimation
process have a much more dramatic impact than mere accuracy
improvement, since it improves the initialization for future esti-
mates, which can ultimately enable success in cases that would
otherwise miserably fail. To our knowledge, previous authors
have mainly provided anecdotal evidence of this fact, and one of

This work was supported in part by the National Science Founda-
tion under award number IIS-0545920, Faculty Early Career Develop-
ment (CAREER) Program.

Figure 1: Top: Feature tracking on a ’turntable’ sequence created
by rotating a cylinder sitting on a rotating chair. Middle Left:
When bundle adjusting the 20 most recent views with 20 itera-
tions every time a view is added, the whole estimation still runs
at several frames a second, and produces a nice circular camera
trajectory, Middle Right: Without bundle adjustment, the estima-
tion is more irregular, but perhaps more importantly, somewhat
prone to gross failure. Here we show an example of the type of
failure prevented by bundle adjustment. Bottom Left and Right:
Although there is some drift, the bundle adjusted estimation is
much more reliable and relatively long term stable. Here two
views of multiple laps are shown. All the laps were estimated
as full 6 degree of freedom unsmoothed motion and without at-
tempting to establish correspondences to previous laps.
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our main contributions is to quantify the impact of bundle ad-
justment on the failure rate of camera tracking. In particular, we
investigate the impact on the failure rate of n iterations of bun-
dle adjustment over the last m video frames each time a frame is
added, for various values of n and m.

The second item, to show that bundle adjustment can now be con-
sidered in real-time applications, is partially motivated by the fact
that bundle adjustment is often dismissed as a batch-only method,
often when introducing another ad-hoc method for structure from
motion. Some of the ’re-invention’ and ’home-brewing’ of ad-
hoc methods for structure from motion have been avoided by
rigorous and systematic exposition of bundle adjustment to the
computer vision community, such as for example by (Triggs et
al., 2000), but it is still an occurring phenomenon. Several re-
searchers have previously developed systems that can perform
real-time structure from motion without bundle adjustment, see
e.g. (Davison and Murray, 2002, Nistér et al., 2006).

Admittedly, it is typically not possible in real-time applications
to incorporate information from video frames further along in the
sequence, as this would cause unacceptable latency. However,
bundle adjustment does not necessarily require information from
future video frames. In fact, bundle adjustment of as many frames
backwards as possible each time a frame is added, will provide
the best accuracy possible using only information up to the cur-
rent time. If such bundle adjustment can be performed within
the time-constraints of the application at hand, there is really no
good excuse for not using it. We investigate the computation
time required by an efficient implementation of bundle adjust-
ment geared specifically at real-time camera tracking when vari-
ous amounts of frames are included in the bundle adjustment. We
then combine the failure rate experiments with our timing experi-
ments to provide information on how much the failure rate can be
decreased given various amounts of computation time, showing
that bundle adjustment is an important component of a state-of-
the-art real-time camera tracking system.

2 THEORETICAL BACKGROUND AND
IMPLEMENTATION

In this section we describe the bundle adjustment process and the
details of our implementation. For readers familiar with the de-
tails of numerical optimization and bundle adjustment, the main
purpose of this section is simply to avoid any confusion regard-
ing the exact implementation of the bundle adjuster used in the
experiments. For readers who are less familiar with this mate-
rial, this section also gives an introduction to bundle adjustment,
which seems appropriate given that this paper argues for bundle
adjustment.

A very large class of minimization schemes try to minimize a
cost function c(x) iteratively by approximating the cost func-
tion locally around the current (M -dimensional) position x with
a quadratic Taylor expansion

c(x + dx) ≈ c(x) +∇c(x)>dx +
1

2
dx>Hc(x)dx (1)

where ∇c(x) is the gradient

∇c(x) =
[

∂c
∂x1

(x) . . . ∂c
∂xM

(x)
]>

(2)

of c at x and Hc(x) is the Hessian

Hc(x) =




∂2c
∂x1∂x1

(x) . . . ∂2c
∂x1∂xM

(x)

...
. . .

...
∂2c

∂xN ∂x1
(x) . . . ∂2c

∂xN ∂xM
(x)


 (3)

of c at x. By taking the derivative of (1) and equating to zero, one
obtains

Hc(x)dx = −∇c(x), (4)

which is a linear equation for the update vector dx. Since there
is no guarantee that the quadratic approximation will lead to an
update dx that improves the cost function, it is very common to
augment the update so that it goes towards small steps down the
gradient when improvement fails. There are many ways to do
this since any method that varies between the update defined by
(4) and smaller and smaller steps down the gradient will suffice
in principle. For example, one can add some scalar λ to all the
diagonal elements of Hc(x). When improvement succeeds, we
decrease λ towards zero, since at λ = 0 we get the step defined
by the quadratic approximation, which will ultimately lead to fast
convergence near the minimum. When improvement fails, we
increase λ, which makes the update tend towards

dx = − 1

λ
∇c(x), (5)

which guarantees that improvement will be found for sufficiently
large λ (barring numerical problems).

Typically, the cost function is the square sum of all the dimen-
sions of an (N -dimensional) error vector function f(x):

c(x) = f(x)>f(x). (6)

Note that the error vector f can be defined in such a way that the
square sum represents a robust cost function, rather than just an
outlier-sensitive plain least squares cost function.

We use, as is very common, the so-called Gauss-Newton approxi-
mation of the Hessian, which comes from approximating the vec-
tor function f(x) around x with the first order Taylor expansion

f(x + dx) ≈ f(x) + Jf (x)dx, (7)

where Jf (x) is the Jacobian

Jf (x) =




∂f1
∂x1

(x) . . . ∂f1
∂xM

(x)

...
...

...
∂fN
∂x1

(x) . . . ∂fN
∂xM

(x)


 (8)

of f at x. Inserting (7) into (6), we get

c(x + dx) ≈ f>f(x) + 2f>Jf (x)dx + dx>J>f Jf (x)dx, (9)

which by equating the derivative to zero results in the update
equation

Jf (x)>Jf (x)dx = −Jf (x)>f(x). (10)

By noting that 2Jf (x)>f(x) is the exact gradient of (6) and com-
paring with (4) one can see that the Hessian has been approxi-
mated by

Hc(x) ≈ 2Jf (x)>Jf (x). (11)

The great advantage of this is that computation of second deriva-
tives is not necessary. Another benefit is that this Hessian approx-
imation (and its inverse) is normally positive definite (unless the
Jacobian has a nullvector), that is

dx>Jf (x)>Jf (x)dx > 0 ∀dx 6= 0, (12)

which opens up more ways of accomplishing the transition to-
wards small steps that guarantee improvement in the cost func-
tion. For example, instead of adding λ to the diagonal, we can
multiply the diagonal of Jf (x)>Jf (x) by the scalar (1 + λ),
which leads to the Levenberg-Marquardt algorithm. This is guar-
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anteed to eventually find an improvement, because an update dx
with a sufficiently small magnitude and a negative scalar product
with the gradient is guaranteed to do so, and when λ increases,
the update tends towards

dx = − 1

λ
diag(Jf (x)>Jf (x))−1Jf (x)>f(x), (13)

(where diag(.) stands for the diagonal of a matrix), which is mi-
nus the gradient times a small positive diagonal matrix. Yet an-
other update strategy that guarantees improvement, but without
solving the linear system for each new value λ, is to upon failure
divide the update step by λ, resulting in a step that tends towards

dx = − 1

λ
(Jf (x)>Jf (x))−1Jf (x)>f(x), (14)

which is minus the gradient times a small positive definite matrix.
With this strategy, only the cost function needs to be reevaluated
when λ is increased upon failure to improve, which can be an
advantage if the cost function is cheap to evaluate, but the linear
system expensive to solve. In our implementation, we use the
Levenberg-Marquardt variant.

The core feature of a bundle adjuster (compared to standard nu-
merical optimization) is to take advantage of the so-called pri-
mary structure (sparsity), which arises because the parameters
for scene features (in our case 3D points) and sensors combine to
predict the measurements, while the scene feature parameters do
not combine directly and the sensor parameters do not combine
directly. More precisely, the error vector f consists of some re-
projection error (some difference measure between the predicted
and the measured reprojections), which can be made robust by
applying a nonlinear mapping that decreases large errors, and the
Jacobian Jf has the structure

Jf =
[

JP JC

]
, (15)

where JP is the Jacobian of the error vector f with respect to the
3D point parameters and JC is the Jacobian of the error vector f
with respect to the camera parameters. This results in the Hessian
approximation

H =

[
J>P JP J>P JC

J>C JP J>C JC

]
, (16)

which in the linear system may possibly have an augmented di-
agonal. The whole linear equation system becomes

[
HPP HPC

H>
PC HCC

][
dP
dC

]
=

[
bP

bC

]
, (17)

where we have defined HPP = J>P JP , HPC = J>P JC , HCC =
J>C JC , bP = −J>P f ,bC = −J>C f to simpify the notation, and
dP and dC represent the update of the point parameters and the
camera parameters, respectively. Note that the matrices HPP

and HCC are block-diagonal, where the blocks correspond to
points and cameras, respectively. In order to take advantage of
this block-structure, a block-wise Gaussian elimination is now
applied to (17). First we multiply by

[
H−1

PP 0
0 I

]
(18)

from the left on both sides in order to get the upper left block to
identity, resulting in

[
I H−1

PP HPC

H>
PC HCC

][
dP
dC

]
=

[
H−1

PP bP

bC

]
, (19)

Then we subtract H>
PC times the first row from the second row in

order to eliminate the lower left block. This can also be thought
of as multiplying by

[
I 0

−H>
PC I

]
(20)

from the left on both sides, resulting in the smaller equation sys-
tem (from the lower part)

(HCC −H>
PCH−1

PP HPC)︸ ︷︷ ︸
A

dC = bC −H>
PCH−1

PP bP︸ ︷︷ ︸
B

(21)

for the camera parameter update dC. For very large systems,
the left hand side is still a sparse system due to the fact that not
all scene features appear in all sensors. In contrast to the pri-
mary structure, this secondary structure depends on the observed
tracks, and is hence hard to predict. This makes the sparsity less
straightforward to take advantage of. Typical options are to use
profile Cholesky factorization with some appropriate on-the-fly
variable ordering, or preconditioned conjugate gradient to solve
the system. We use straightforward Cholesky factorization. As
we shall see, for the size of system resulting from a few tens
of cameras, the time required to form the left hand side matrix
largely dominates the time necessary to solve the system with
straightforward Cholesky factorization. This occurs because the
time taken to form the matrix is on the order of O(NP l2), where
NP is the number of tracks and l is a representative track length.
Since NP is typically rather large, and l on the order of the num-
ber of cameras NC for smaller systems, this dominates the order
of O(N3

C) time taken to solve the linear system, until NC starts
approaching NP or largely dominating l.

Once dC has been found, the point parameter updates can be
found from the upper part of (19) as

dP = H−1
PP bP −H−1

PP HPCdC. (22)

Since an efficient implementation of the actual computation pro-
cess corresponding to this description is somewhat involved, we
find it helpful to summarize the bundle adjustment process in
pseudo-code in Table 1.

The main computation steps that may present bottlenecks are

• The computation of the cost function (which grows linearly
in the number of reprojections).

• The computation of derivatives and accumulation over tracks
(linear in the number of reprojections).

• The outer product over tracks (which grows with the square
of the track lengths times the number of tracks, or thought
of another way, approximately the number of reprojections
times a representative track length).

• Solving the linear system (which grows with the cube of the
number of cameras, unless secondary structure is exploited).

• The back-substitution (linear in the number of reprojections).

Accordingly, these are the computation steps for which we mea-
sure timing in the experiments, as well as a total computation
time.

We use a calibrated camera model in the experiments, so that the
only camera parameters solved for are related to the rotation and
translation of the camera. The parameterization used in bundle
adjustment is straightforward, with three parameters for transla-
tion of each camera, and the sines of three Euler angles parame-
terizing an incremental rotation from the current position (notice
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1 Initialize λ.
2 Compute cost function at initial camera and point configura-

tion.
3 Clear the left hand side matrix A and right hand side vector B.
4 For each track p
{

Clear a variable Hpp to represent block p of HPP (in our
case a symmetric 3×3 matrix) and a variable bp to represent
part p of bP (in our case a 3-vector).
(Compute derivatives) For each camera c on track p

{
Compute error vector f of reprojection in camera c of
point p and its Jacobians Jp and Jc with respect to the
point parameters (in our case a 2×3 matrix) and the cam-
era parameters (in our case a 2× 6 matrix), respectively.
Add J>p Jp to the upper triangular part of Hpp.
Subtract J>p f from bp.
If camera c is free
{

Add J>c Jc (optionally with an augmented diagonal) to
upper triangular part of block (c, c) of left hand side
matrix A (in our case a 6× 6 matrix).
Compute block (p, c) of HPC as Hpc = J>p Jc (in our
case a 3× 6 matrix) and store it until track is done.
Subtract J>c f from part c of right hand side vector B
(related to bC ).}}

Augment diagonal of Hpp, which is now accumulated and
ready. Invert Hpp, taking advantage of the fact that it is a
symmetric matrix.
Compute H−1

pp bp and store it in a variable tp.
(Outer product of track) For each free camera c on track p

{
Subtract H>

pctp = H>
pcH

−1
pp bp from part c of right hand

side vector B.
Compute the matrix H>

pcH
−1
pp and store it in a variable Tpc

For each free camera c2 ≥ c on track p
{

Subtract TpcHpc2 = H>
pcH

−1
pp Hpc2 from block (c, c2)

of left hand side matrix A.}}}
5 (Optional) Fix gauge by freezing appropriate coordinates and

thereby reducing the linear system with a few dimensions.
6 (Linear Solving) Cholesky factor the left hand side matrix B

and solve for dC. Add frozen coordinates back in.
7 (Back-substitution) For each track p
{

Start with point update for this track dp = tp.
For each camera c on track p

{
Subtract T>pcdc from dp (where dc is the update for camera
c).}

Compute updated point.}
8 Compute the cost function for the updated camera and point

configuration.
9 If cost function has improved, accept the update step, decrease

λ and go to Step 3 (unless converged, in which case quit).
10 Otherwise, increase λ and go to Step 3 (unless exceeded the

maximum number of iterations, in which case quit).

Table 1: Pseudo-code showing our implementation.

that the latter has no problems with singularities since the param-
eterization is updated after each parameter update step, and the
rotation updates should never be anywhere close to 90 degrees.
For the 3D points, we use the four parameters of a homogeneous
coordinate representation, but we always freeze the coordinate
with the largest magnitude, the choice of which coordinate to
freeze being updated after each parameter update step.

To robustify the reprojection error, we assume that the reprojec-
tion errors have a Cauchy-distribution (which is a heavy-tailed
distribution), meaning that an image distance of e between the
measured and reprojected distance should contribute

ln(1 +
e2

σ2
), (23)

where σ is a standard deviation, to the cost function (negative
log-likelihood). To accomplish this, while still exposing both the
horizontal and vertical component of error in the error vector f ,
the robustifier takes the input error (x, y) in horizontal and ver-
tical direction and outputs the robustified error vector (xr, yr)
where

xr =

√
ln(1 +

x2 + y2

σ2
)

x√
x2 + y2

(24)

yr =

√
ln(1 +

x2 + y2

σ2
)

y√
x2 + y2

. (25)

The key property of this vector is that the square sum of its com-
ponent is (23), while balancing the components exactly as the
original reprojection error.

3 EXPERIMENTS

We investigate the failure rate of camera tracking with n iter-
ations of bundle adjustment over the last m video frames each
time a frame is added, for various values of n and m. The frames
beyond the m most recent frames are locked down and not moved
in the bundle adjustment. However, the information regarding the
uncertainty in reconstructed feature points provided by views that
are locked down is still used. That is, reprojection errors are ac-
cumulated for the entire feature track lengths backwards in time,
regardless of whether the views where the reprojections reside are
locked down.

In the beginning of tracking, when the number of frames yet in-
cluded is less than m + 2 so that at most one pose is locked, the
gauge is fixed by fixing the first camera pose and the distance be-
tween the first and the most current camera position. Otherwise,
the gauge fixing is accomplished by the locked views.

It is interesting to note that when we set m = n = 1, we get
an algorithm that rather closely resembles a simple Kalman filter.
We then essentially gather the covariance information induced on
the 3D points by all previous views and then update the current
pose based on that (using a single iteration), which should be
at least as good as a Kalman filter that has a state consisting of
independent 3D points, with the potential improvement that the
most recent estimates of the 3D point positions are used when
computing reprojection errors and their derivatives in previous
views.

Note that bundle adjustment as well as Kalman filtering for the
application of camera tracking can be used both with or without
a camera motion model. We have chosen to concentrate on ex-
periments for the particular case of no camera motion model, i.e.
no smoothness on the camera trajectory is imposed, and the only
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Figure 2: Time per iteration versus the number of free views.
Time is dominated by derivative computations and outer prod-
ucts, while linear solving takes negligible time.
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Figure 3: Time per iteration versus the number of free views for
larger numbers of free views. Note that the cubic dependence of
the computation time in the linear solving on the number of free
views eventually makes the linear solving dominate the compu-
tation time. The real-time limit is computed as 1s/(30 ∗ 3)

constraints on the camera trajectory are the reprojection errors
of the reconstruction of tracked feature points. The no motion
model case is the most flexible, but also the hardest setting in
which to perform estimation. It therefore most clearly elucidates
the issue. While a motion model certainly simplifies the estima-
tion task when the motion model holds, it unfortunately makes
the ’hard cases even harder’, in that when the camera performs
unexpected turns or jerky motion, the motion model induces a
bias towards status quo motion.

We measure the failure rate by defining a frame-to-frame failure
criterion and running long sequences, restarting the estimation
from scratch at the current position every time the failure crite-
rion declares that a failure has occurred. Note that this failure cri-
terion is not part of an algorithm, but only a means of measuring
the failure rate. For our real-data experiments, we perform simple
types of known motion, such as forward, diagonal, sideways or
turntable motion, and require that the translation direction and ro-
tation do not deviate more than some upper limit from the known
values.

The initialization that occurs in the beginning and after each fail-
ure is accomplished using the first three frames and a RANSAC
(Fischler and Bolles, 1981) process using the five-point relative
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Figure 4: Computation time versus number of free views and
number of iterations.
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Figure 5: Failure rate as a function of the number of free cameras
and the number of iterations.

orientation method in the same manner as described in (Nistér,
2004). In each RANSAC hypothesis, the five-point method pro-
vides hypotheses for the first and third view. The five points are
triangulated and the second view is computed by a three-point re-
section (R. Haralick, 1994). The whole three-view initialization
is then thoroughly bundle adjusted to provide the best possible
initialization.

4 METHOD

For each new single view that is added, the camera position is
initialized with a RANSAC process where hypotheses are gen-
erated with three-point resections. The points visible in the new
view are then re-triangulated using the reprojection in the new
view and the first frame where the track was visible. The bun-
dle adjustment with n iterations of the m most recent views is
then performed. In both the RANSAC processes and the bundle
adjustment the cost function is a robustified reprojection error.
Thus, we do not attempt to throw out outlying tracks before the
bundle adjustment, but use all tracks and instead employ a robust
cost function.

5 RESULTS AND DISCUSSION

Representative computation time measurements are shown in Fig-
ures 2, 3 and 4. In Figure 2, the distribution of time over cost
function computation, derivatives, outer product, linear solving
and back-substitution is shown as a bar-plot for a small number
of free views.
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The time is per new view and iteration and was measured on the
sequence shown in Figure 1, which has 640× 480 resolution and
1000 frames in total. The computations were performed on an
Alienware with Intel Pentium Xeon processor 3.4GHz, 2.37GB.
The average number of tracks present in a frame is 260, and the
average track length is 20.5. Note that the computation time is
dominated by derivative computation and outer products. Note
also that real-time rate can easily be maintained for ten free views.
Figure 3 shows how the computation times grow with an increas-
ing number of views. Note that the linear solving, due to the cubic
dependence on the number of views eventually becomes the dom-
inant computational burden and that real-time performance is lost
somewhere between 50 and 100 free views. Note however that
the other computation tasks scale approximately linearly (since
the track lengths are limited). When the track length for each fea-
ture is constant, increasing the number of feature points results in
a linear increase in computation time for all steps in the bundle
adjustment except for the linear solver, which is independent of
this number.

Some investigations of the failure rate as well as computation
time for various amounts of bundle adjustment are shown in Fig-
ures 5, 6 and 7. Note that already one iteration on just the most
recent view results in a significant decrease of the failure rate, but
to get the full benefit of bundle adjustment and ’reach the valley
floor’, suppressing failures as much as possible, three iterations
on three views or perhaps even four iterations on four views is de-
sirable. Note that this does not necessarily mean that additional
accuracy can not be gained with more iterations over more views,
only that the gross failures have largely been stemmed after that.
Also, with bundle adjustment very low failure rates can often be
achieved. For example the sequence in Figure 1 can be tracked
completely without failures for 1000 frames and over seven laps.
Decreases in failure rate at such low failure rates require large
amounts of data and computation to measure, but are clearly still
very valuable.

In Figure 6 the level curves over the (n, m) space are shown for
computation time and failure rate. The ’best path’ in the (n, m)
space is also shown there and in Figure 7, meaning that for a
given amount of computation allowed, the n and m resulting in
the lowest failure rate is chosen.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we have investigated experimentally the fact that
bundle adjustment does not only increase the accuracy of the
camera trajectory, but also prevents error-buildup in a way that
decreases the frequency of total failure of the camera tracking.
We have also shown that with the current computing power in
standard computing platforms, efficient implementations of bun-
dle adjustment now provide a very viable option even for real-
time applications.

We have found that bundle adjustment can be performed for a few
tens of the most recent views every time a new frame is added,
while still maintaining video rate. At such numbers of free views,
the most significant components of the computation time are re-
lated to the computation of derivatives of the cost function with
respect to camera and 3D point parameters, plus the outer prod-
ucts that the feature tracks contribute to the Schur complement
arising when eliminating to obtain a linear system for the camera
parameter updates. The actual linear solving of the linear sys-
tem takes negligible time in comparison for a small number of
views, but the linear solver, which has a cubic cost in the number
of views, eventually becomes the dominating computation when
a number of views approaching a hundred are bundle adjusted
every time a new frame arrives. This can probably be improved
upon by exploiting the secondary structure that still remains in
the linear system, which is something we hope to do in future
work.

Our results are, as expected, a strong proof that proper bundle ad-
justment is more efficient that any ad-hoc structure from motion
refinement, and the results are well worth the trouble of proper
implementation.
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