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Introduction

There exist lots of camera designs:
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Panoramic Imaging

3D Video Conferencing

SurveillanceSurveillance

Automatic Vehicle Navigation

Shape Computation

Aerial Mosaics

• Many applications require/benefit from a specific type of imaging system
• Work underlying this tutorial started by considering omnidirectional

systems (large field of view)

Introduction

Some applications:



Introduction

Videoconferencing:
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Introduction

Surveillance:



Introduction

Surveillance:
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Introduction

Robot navigation (including obstacle avoidance):

Taylor et al. – GRASP Santos Victor et al. – ISR/IST



Introduction

Panoramic imaging, here mosaicing:

Problematic for dynamic scenes:



Introduction

Panoramic imaging with omnidirectional cameras: 

CatadioptricFisheye



Introduction

Design of tailor-made imaging systems: 

Usual:

Desired:



Introduction

Design of tailor-made imaging systems: 

Fisheye

By Julian Beever



Introduction

Different cameras “sample light rays” in different ways: 

Perspective cameras:

Single viewpoint cameras:

Non-single viewpoint cameras:
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Introduction

Each camera type comes with a particular model and often, particular
calibration and structure-from-motion algorithms

Main motivations for my related works:
• Propose generic camera models and calibration algorithms

• Highlight common principles underlying structure-from-motion
algorithms for different camera models

• Generalize (parts of) the structure-from-motion theory, e.g.
multi-view geometry (epipolar, trifocal and quadrifocal geometry)
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Imaging Models

Perspective cameras:

• Imaging model well-known…
• Interior orientation (intrinsic parameters)

allows to perform projection: 3D points → image points)
and back-projection: image points → projection rays (lines of sight)
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Imaging Models

Single viewpoint cameras:

• Perspective projection plus radial or decentering distortion

- again, interior orientation (intrinsic parameters) allows to perform
projection and back-projection

- imaging model well-known…

- calibration approaches:
- plumbline calibration: use images of straight line patterns to

estimate “non-perspective” parameters
- calibration with control points: compute all parameters of

the model using bundle adjustment
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Imaging Models

Single viewpoint cameras:

• Fisheyes
- several models have been proposed (ad hoc or derived from

actual lens designs)
- e.g. equi-angular model (existence of distortion center and optical axis such

that distance of image point to distortion center is proportional to angle between
projection ray and optical axis)
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Imaging Models

Catadioptric systems (camera + mirror):

• Knowledge of mirror shape and position relative to camera, together
with camera’s interior orientation, allows to perform back-projection
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Imaging Models

Back to single viewpoint cameras:

• Central catadioptric systems
- with appropriate mirror shape and position, system has a single

effective viewpoint (cf. next slide)

- practically relevant: parabolic mirror + orthographic camera,
hyperbolic mirror + perspective camera

- various imaging models have been proposed:
- models whose parameters represent correlations between

mirror shape/position and interior orientation of camera
- unifying models for all types of central catadioptric cameras

- calibration approaches:
- plumbline approaches (sometimes with closed-form solutions)
- calibration with control points: compute all parameters of

the model using bundle adjustment



Imaging Models

mirror (hyperbolic)
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Imaging Models

Single viewpoint cameras:

• Central catadioptric system using multiple planar mirrors and cameras
(so-called Nalwa pyramid)

- perspective camera + planar mirror
≡ perspective camera with effective optical

center on the other side of the plane

- Nalwa pyramid: assemble pairs
(camera, mirror) such that effective optical
centers coincide

→ possibility to construct a high-resolution
panoramic image



Imaging Models

Non-single viewpoint cameras:

• Non-central catadioptric systems
- spheres, cones or any non-quadric

mirrors give non-central system:
projection rays do not intersect
in a single point

- calibration approaches have been
developed for individual systems

- example:
- mirror that leads to

equi-angular imaging model



Imaging Models

Other non-single viewpoint cameras:

• Pushbroom cameras
- Moving linear camera acquires 1D images that are stitched

together to a 2D image (motion is usually a lateral translation)

• So-called non-central mosaics
- Acquired by a camera rotating about an axis not containing the

optical center (from each image, take one or several columns of pixels
and stitch them all together)
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Imaging Models

Other non-single viewpoint cameras:

• So-called multi-perspective images

- Acquired like a non-central mosaic but with camera looking inwards
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Imaging Models

All above imaging models are subsumed by the following
generic imaging model:

A pixel “watches along” one viewing ray
Camera model is lookup table, containing for each

pixel the coordinates of the associated ray

Calibration = computation of all these rays
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Imaging Models

Comments on the generic imaging model:

• is idealized (in reality, a pixel sees more than a line)

• other sampling than pixel-wise is possible (e.g. sub-pixel)

• more complete model, including radiometric properties, is
used by Grossberg and Nayar (ICCV 2001)

• conceptually, allows to consider a stereo or multi-camera
system as a single camera: union of their pixels and associated rays
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Imaging Models

Alternative model: caustic of a camera (surface touching all projection rays),
also sometimes called viewpoint locus
(caustic of a single viewpoint camera
is a single point)

Detector

Viewpoint locus
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Non-parametric calibration Basic idea

Goal: compute projection ray for each pixel, in some 3D coordinate system

Input: images of calibration objects

• General approach applicable for non-central cameras

• Variants for special cases (central and axial cameras)
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Non-parametric calibration Basic idea

Approach using known motion: [Gremban-etal-ICRA’88,Champleboux-etal-ICRA’92,
Grossberg-Nayar-ICCV’01]
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camera

Non-parametric calibration Basic idea

Approach using known motion:
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Approach using known motion:

camera

Non-parametric calibration Basic idea
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Using color coded grid:

Non-parametric calibration Matching

• Sparse matches, only for center pixels of circular targets
• We interpolate, for example using an homography:

- for a pixel p, determine 4 closest pixels that have a match
- compute 2D homography between these 4 image points and the matched

points on the planar grid
- apply this homography to compute point on grid that matches p
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Non-parametric calibration Matching

Better: structured light, e.g. acquiring images of a
flat screen displaying a series of Gray code images
(series of vertical and horizontal stripe patterns)

• Each screen pixel has its own unique sequence
of black-white successions

• Dense matching between image and calibration
grid (screen)
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camera

Unknown motion:

Non-parametric calibration General approach
[Sturm-Ramalingam-ECCV’04]
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camera

Unknown motion:

Estimate
motions that
make points
collinear

Non-parametric calibration General approach

Q

Q’
Q’’

R’, t’ R’’, t’’

[Sturm-Ramalingam-ECCV’04]
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camera

Unknown motion:

Estimate
motions that
make points
collinear

Q

Q’
Q’’

R’, t’ R’’, t’’

Q1
Q2
Q3
Q4

Q’1
Q’2
Q’3

Q’4R’ + t’

Q’4

Q’’1
Q’’2
Q’’3

Q’’4R’’ + t’’

Q’’4

Non-parametric calibration General approach
[Sturm-Ramalingam-ECCV’04]
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camera

Our approach (unknown motion):

Estimate
motions that
make points
collinear

Q

Q’
Q’’

R’, t’ R’’, t’’

Q1
Q2
Q3
Q4

Q’1
Q’2
Q’3

Q’4R’ + t’

Q’4

Q’’1
Q’’2
Q’’3

Q’’4R’’ + t’’

Q’’4

rank < 3

4x3

Non-parametric calibration General approach
[Sturm-Ramalingam-ECCV’04]
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Q1
Q2
Q3
Q4

Q’1
Q’2
Q’3

Q’4R’ + t’

Q’4

Q’’1
Q’’2
Q’’3

Q’’4R’’ + t’’

Q’’4

rank < 3

4x3

Non-parametric calibration General approach
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Q1
Q2
Q3
Q4

Q’1
Q’2
Q’3

Q’4R’ + t’

Q’4

Q’’1
Q’’2
Q’’3

Q’’4R’’ + t’’

Q’’4

rank < 3

4x3

Q1
Q2
Q3
Q4

Q’1
Q’2
Q’3

Q’4R’ + t’

Q’4

Q’’1
Q’’2
Q’’3

Q’’4R’’ + t’’

Q’’4

det = 0

a trifocal tensor
Σ Q Q’ Q’’i j k

i,j,k=1

4

T     = 0i,j,kdet =

Non-parametric calibration General approach
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Q1
Q2
Q3
Q4

Q’1
Q’2
Q’3

Q’4R’ + t’

Q’4

Q’’1
Q’’2
Q’’3

Q’’4R’’ + t’’

Q’’4

rank < 3

4x3

Q1
Q2
Q3
Q4

Q’1
Q’2
Q’3

Q’4R’ + t’

Q’4

Q’’1
Q’’2
Q’’3

Q’’4R’’ + t’’

Q’’4

det = 0

Non-parametric calibration General approach

Σ Q Q’ Q’’i j k
i,j,k=1

4

T     = 0i,j,kdet =
a trifocal tensor
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Q1
Q2
Q3
Q4

Q’1
Q’2
Q’3

Q’4R’ + t’

Q’4

Q’’1
Q’’2
Q’’3

Q’’4R’’ + t’’

Q’’4
4x3

Non-parametric calibration General approach

4 such tensors exist, striking out one row in turn:

det = 0

Each one has a particular structure, see the following slide for two examples
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Non-parametric calibration General approach
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Non-parametric calibration General approach

Σ Q Q’ Q’’i j k
i,j,k=1

4

T     = 0i,j,k

(3)  Estimation of tensors, based on linear equations

and taking into account the tensors’ structure (e.g. coefficients that are zero)

Calibration algorithm:

(1)  Take images of calibration object in different poses

(2)  2D-3D matching  (pixels to points on object)

(4)  Extraction of motion parameters from tensors:

(6)  Compute projection rays: for each pixel join the associated calibration points

(7)  Bundle adjustment

- some can be directly read off (some rotation coefficients, cf. previous slide)
- others can be computed using orthonormality constraints on  R’ and  R’’

(5)  Put calibration grids in same 3D coordinate system
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Non-parametric calibration General approach

Results for non-central camera
(multi-camera system, considered as single non-central camera):
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Non-parametric calibration General approach

Results for non-central camera:
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Non-parametric calibration General approach

Results for non-central camera: after constraining rays into central clusters
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Non-parametric calibration Discussion

Intermediate discussion:

• this approach uses exactly 3 images
- only pixels covered by all 3 images of the calibration grid are calibrated
→ especially with large field of view, difficult to calibrate whole image

- results may not be highly accurate

→ methods for using multiple images (see later)

• the approach allows to calibrate non-central cameras!

- tensors are not computed uniquely (linear equation system of too low rank)
→ calibration fails

• BUT: if used with images acquired by central camera

→ variant of the approach for central cameras and a few other special
cases (see later)

• the approach is designed for 3D calibration objects

→ variant for using planar calibration objects (see next)
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Non-parametric calibration Using planar grids

Using planar calibration grids:         =         =        = 0

Q1
Q2
0
Q4

Q’1
Q’2
0

Q’4R’ + t’

Q’4

Q’’1
Q’’2
0

Q’’4R’’ + t’’

Q’’4

rank < 3

4x3

Q3 Q’3 Q’’3

• Tensors are different

• Extraction of motion parameters is more complicated, but possible



PCV'06 Tutorial on Modeling and Analysing Images of Generic Cameras, Peter Sturm 51

Non-parametric calibration

Using multiple images:

Using multiple images

• Idea:

(1)  Initial calibration using 3 images and above approach

(2)  Consider an additional image:

- Compute pose of calibration grid using already available
calibration information

- Extend the calibration to pixels covered by the additional grid

(3)  Repeat (2) for all images. Then, bundle adjustment.

…

• Also:

Possibility of performing initial calibration using multiple images
if the regions covered by the grids mutually overlap

[Ramalingam-etal-CVPR’05]
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Non-parametric calibration

If the calibration approach is used with images acquired by a central camera,
then tensors are not computed uniquely (linear equation system of too low rank)

→ calibration fails

We thus consider a hierarchy of generic imaging models:

• Non-central

• Axial (non-central, but all projection rays touch a line, the camera axis)

• Central (all projection rays go through a single point, the optical center)

- linear push-broom camera

- catadioptric system using a spherical mirror

Calibration approaches for these three models have been developed
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Non-parametric calibration

Approach for central model:

Approach for central model

C1
C2
C3
C4

Q1
Q2
Q3
Q4

Q’1
Q’2
Q’3

Q’4R’ + t’

Q’4

rank < 3

4x3

• Two images are sufficient (if 3D calibration object)

• Introduce coordinates of optical center  C as unknowns

• Constraint: collinearity of optical center and two calibration points

• Gives rise to yet another set of tensors

• Extraction of motion parameters and optical center from tensors

Similar approach for axial camera model (not shown here) [Ramalingam-etal-ACCV’06]
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Non-parametric calibration

Results for axial camera model
(for a stereo system, considered as single axial camera):

Approach for axial model
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Non-parametric calibration

Results for axial camera model
(for a stereo system, considered as single axial camera):

Approach for axial model

After constraining rays to cut a single axis
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Non-parametric calibration

Results for axial camera model
(for a stereo system, considered as single axial camera):

Approach for axial model

After constraining rays into central clusters
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Central model applied on pinhole camera with slight radial distortion

Non-parametric calibration Approach for central model
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Results for fisheye camera
(183° field of view)

Approach for central modelNon-parametric calibration
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Results for fisheye camera
(183° field of view)

Approach for central modelNon-parametric calibration
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Results for fisheye camera
(183° field of view)

Non-parametric calibration Approach for central model
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Distortion correction:

Non-parametric calibration Distortion correction

• Classical approach is based on analytical relationship between
distorted and undistorted image coordinates
(based on parametric calibration model)

• Generalization: approach for non-parametric calibration
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Non-parametric calibration Distortion correction

General distortion correction approach (for central cameras):

• Input: image and calibration information (projection rays for all pixels)

• Idea:
- attribute pixels’ color to their projection rays in 3D
- define some plane in 3D
- cut all projection rays: at each intersection point, paint a dot of the

ray’s color
- the painted plane shows a distortion corrected image

optical center

plane in 3D
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Non-parametric calibration Distortion correction

General distortion correction approach (for central cameras):

• Input: image and calibration information (projection rays for all pixels)

• Idea:
- attribute pixels’ color to their projection rays in 3D
- define some plane in 3D
- cut all projection rays: at each intersection point, paint a dot of the

ray’s color
- the painted plane shows a distortion corrected image

optical center

plane in 3D



PCV'06 Tutorial on Modeling and Analysing Images of Generic Cameras, Peter Sturm 64

Non-parametric calibration Distortion correction

General distortion correction approach (for central cameras):

• Input: image and calibration information (projection rays for all pixels)

• Idea:
- attribute pixels’ color to their projection rays in 3D
- define some plane in 3D
- cut all projection rays: at each intersection point, paint a dot of the

ray’s color
- the painted plane shows a distortion corrected image

optical center

plane in 3D
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Non-parametric calibration Distortion correction

General distortion correction approach (for central cameras):

• Input: image and calibration information (projection rays for all pixels)

• Idea:
- attribute pixels’ color to their projection rays in 3D
- define some plane in 3D
- cut all projection rays: at each intersection point, paint a dot of the

ray’s color
- the painted plane shows a distortion corrected image

optical center

plane in 3D
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Non-parametric calibration Discussion

• How about stability?

- If unstable:
use more images, regularization, assumption of radial symmetry, …

- Possible overfitting when calibrating “not very non-central cameras” with
the general approach (result may be worse than with the central approach)

• General approach that allows to calibrate any camera

• Variants for central and axial camera modes

• Variants for using planar or 3D calibration objects

- Stability depends on:
- amount of “non-centrality”
- number of images
- accuracy of matches
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Non-parametric calibration Discussion

• Here, pixel-wise discretization of camera model

• Any other discretization (sub-pixel or super-pixel) is possible

• Trade-off between
- potential accuracy of calibration (the finer the discretization, the better)
- potential instability (the finer the discretization, the more unknowns…)
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Calibration:
Computation of distortion center and

distortion function: radius → view angle / focal length
Note: each distortion circle  ≡ perspective camera

Non-parametric calibration Radially symmetric cameras

Interesting special case: radially symmetric cameras

[Tardif-Sturm-OMNIVIS’05]
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Camera Screen

Calibration

Non-parametric calibration Radially symmetric cameras
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(1)  For each distortion circle:

Calibration

• compute homography screen ↔ image
• run classical plane-based calibration [Zhang’99, Sturm’99]

(2)  Bundle adjustment over all distortion circles

Non-parametric calibration Radially symmetric cameras
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Result of distortion correction
for fisheye

Non-parametric calibration Radially symmetric cameras
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Result for homemade “Christmas camera”

Non-parametric calibration Radially symmetric cameras
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Discussion:

• Effective calibration approach for general radial distortion

• Approaches for both, central and non-central cameras

• Self-calibration from two or more views of an arbitrary scene plane
[Tardif-etal-ECCV’06]

Other recent work:

Non-parametric calibration Radially symmetric cameras

• A single image is sufficient (but for stability, more images should be used)

• Handles field of view larger than  180° !

• Direct method for computation of distortion center [Hartley-Kang-ICCV’05]

• Multi-view geometry and self-calibration of radial cameras
[Thirthala-Pollefeys-ICCV’05]

• Epipolar geometry of radially symmetric cameras [Barreto-Daniilidis-ICCV’05]
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Self-calibration:
• The only existing works use special camera motions and

only work for central cameras
[Ramalingam-etal-OMNIVIS’05,Nistér-etal-ICCV’05,Grossman-etal-CVPR’06]

• In the following: illustration of basic idea

• Goal: compute directions of projection rays

• Input:
- images taken under special camera motions
- point tracks

Non-parametric self-calibration
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Flow curves for pure translations

Non-parametric self-calibration
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Flow curves for pure translations

Non-parametric self-calibration
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Flow curves for pure translations

Non-parametric self-calibration
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Flow curves for pure translations

Non-parametric self-calibration
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Flow curves for pure translations

Non-parametric self-calibration
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Flow curves for pure translations

• They actually are epipolar curves…

• Provide the following information on calibration:

- projection rays associated with pixels on a flow curve, are coplanar

• Flow curves for several translational motions give several coplanarity
constraints, that allow to do self-calibration

• Can be obtained from one image pair, but also from image sequence of course

Non-parametric self-calibration
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Self-calibration from several translational motions:

• Goal: compute directions of projection rays (their points at infinity)

• Coplanarity of projection rays  ≡ collinearity of points at infinity

• We have many collinearity constraints (one per flow curve)

→ ray directions can be computed only up to a projective transformation

• Collinearity is invariant to projective transformations

Non-parametric self-calibration
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Non-perspective cameras: flow curves not straight, but the following algorithm can
be applied without changes (but is difficult to illustrate…)

Non-parametric self-calibration
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Illustration for perspective camera:
Flow curves for 4 translational motions, with focii of expansion

Non-parametric self-calibration
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(1) Fix projective basis by attributing coordinates to
directions of rays associated with 4 focii of expansion

Illustration of algorithm idea for perspective camera:

images imageplane at infinity (ray directions)

Non-parametric self-calibration
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(1) Fix projective basis by attributing coordinates to
directions of rays associated with 4 focii of expansion

(2) Compute lines at infinity for flow curves with two
known ray directions

Illustration of algorithm idea for perspective camera:

images imageplane at infinity (ray directions)

Non-parametric self-calibration
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(1) Fix projective basis by attributing coordinates to
directions of rays associated with 4 focii of expansion

(2) Compute lines at infinity for flow curves with two
known ray directions

(4) Go to (2) until “convergence”

(3) Compute directions of rays lying on two flow
curves with known line at infinity

Illustration of algorithm idea for perspective camera:

images imageplane at infinity (ray directions)

Non-parametric self-calibration
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(1) Fix projective basis by attributing coordinates to
directions of rays associated with 4 focii of expansion
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(1) Fix projective basis by attributing coordinates to
directions of rays associated with 4 focii of expansion

(2) Compute lines at infinity for flow curves with two
known ray directions

(3) Compute directions of rays lying on two flow curves
with known line at infinity

(4) Go to (2) until “convergence”

Illustration of algorithm idea for perspective camera:

images imageplane at infinity (ray directions)

Non-parametric self-calibration
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(1) Fix projective basis by attributing coordinates to
directions of rays associated with 4 focii of expansion

(2) Compute lines at infinity for flow curves with two
known ray directions

(3) Compute directions of rays lying on two flow curves
with known line at infinity

(4) Go to (2) until “convergence”

Illustration of algorithm idea for perspective camera:

images imageplane at infinity (ray directions)

Non-parametric self-calibration
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Reminder: non-perspective cameras: flow curves not straight, but same algorithm
can be applied (but is difficult to illustrate…)

Non-parametric self-calibration
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Self-calibration from several translational motions:

• Ray directions can be computed up to a projective transformation

→ amount of calibration knowledge is now equivalent to that of
an uncalibrated perspective camera

→ any self-calibration method for perspective cameras can be
applied to complete the self-calibration

Complete self-calibration is possible by doing translational and rotational motions

Non-parametric self-calibration
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Complete self-calibration is possible by doing translational and rotational motions
• In first experiments, we used images of a calibration grid

(just for tracking and computing flow curves)

One input image and
calibrated region

Display of flow curves
on some other image

Non-parametric self-calibration
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Result of distortion correction using self-calibration result:

Non-parametric self-calibration
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Result of distortion correction using self-calibration result:

Non-parametric self-calibration
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Result of distortion correction using self-calibration result:

Non-parametric self-calibration
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SummaryNon-parametric self-calibration

Summary on non-parametric calibration:

• Approaches allowing to calibrate any camera:
compute projection ray for each pixel (or for other discretization)

• Tradeoff:
- generality of camera model (need fewer algorithms, potential accuracy)
- stability (may need many images for calibrating of non-central cameras)

• Self-calibration is possible but remains difficult

• Theoretical study of self-calibration requires continuous camera model

• Good results for radially symmetric and central cameras;
also for some non-central cameras (multi-camera systems, misaligned
catadioptric cameras)
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SummaryNon-parametric self-calibration

Summary on non-parametric calibration:

• Generic imaging model gives backprojection:

- for pixels, backprojection is given by the lookup table

- for other points, backprojection can be easily obtained using some
interpolation of rays associated with neighboring pixels

• Projection is more problematic, but can be done, e.g.:
- Finding closest rays to a 3D point and determining image point

by interpolating positions of pixels associated to these rays
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• Introduction

Contents

• Non-parametric calibration and distortion correction

• Non-parametric self-calibration

• Structure-from-motion

• General imaging models
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Motivation:

Structure-from-motion Introduction

• Many different SfM algorithms (pose, motion, triangulation, …) exist,
for different camera types

• But, in principle, if calibrated cameras are considered, one single
approach for each SfM problem is sufficient, for all camera types
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Calibration: determine, for each pixel, the
corresponding line of sight (“projection ray”)

Motion estimation: compute motion
such that matching rays intersect

Structure-from-motion Introduction
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Triangulation / 3D Reconstruction

Structure-from-motion Introduction
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Pose estimation of known object

A  + λ B1 1 1

A  + λ B2 2 2

A  + λ B3 3 3

dist (A  + λ B  , A  + λ B ) = d1 1 1
2

2 2 2 12
2

dist (A  + λ B  , A  + λ B ) = d1 1 1
2

3 3 3 13
2

dist (A  + λ B  , A  + λ B ) = d2 2 2
2

3 3 3 23
2

Structure-from-motion Pose estimation
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Pose estimation of known object

Structure-from-motion Pose estimation

• 3 quadratic equations:
up to 8 solutions

• Central camera: solutions come in
mirrored pairs (for a solution in front
of the camera, another one behind
exists too)

• Non-central camera: no such simple
symmetry exists

• With 4 points, unique solution
in general

[Chen-Chang-PAMI’04,Nistér-CVPR’04,Ramalingam-etal-OMNIVIS’04]
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R, t

Structure-from-motion Motion estimation

Motion estimation: unknown scene • Pixel matches gives
rise to ray matches

• Represent rays using
Plücker coordinates

• Displacement for
Plücker coordinates:

R
0R

-[t] Rx 6x6

L 1

• Rays intersect if

L’ =1

L2
T Id

0Id
6x6

0 L’ =01

Essential matrix
R
0R

-[t] Rx
6x6

E=

L   E L   = 02 1
T

→
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Structure-from-motion Motion estimation

Motion estimation:
(1)  Estimation of  E  (possible using linear equations: minimum 17 matches)

(2)  Extraction of R  and  t  from  E  (simple)

Note: scale of motion can be estimated if non-central cameras!
(but may be unreliable if cameras not very non-central)

Variants for: axial, x-slit, central cameras

[Pless-CVPR’03,Sturm-etal-Bookchapter’06]
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Motion estimation and 3D from pinhole+fisheye

fisheye

pinhole

Structure-from-motion 3D reconstruction

3D Model
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Motion estimation and 3D from pinhole+fisheye

Structure-from-motion 3D reconstruction

3D Model
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Structure-from-motion Epipolar geometry

Perspective epipolar geometry:
• Epipolar line of a pixel p computed via the fundamental matrix: v=Fp

Such a parametric epipolar geometry exists for some omnidirectional
cameras, e.g. para-catadioptric ones

It also exists between cameras of different types, e.g. a stereo pair
consisting of a perspective and a para-catadioptric camera

[Svoboda-etal-ECCV’98,Feldman-et-al-ICCV’05,Sturm-OMNIVIS’02]



PCV'06 Tutorial on Modeling and Analysing Images of Generic Cameras, Peter Sturm 112

Structure-from-motion Epipolar geometry

Non-parametric epipolar geometry:
• Consider a pixel in one image and

the associated projection ray
• Determine projection rays of other

camera that cut that ray
• The associated pixels form

an “epipolar curve”

Here: illustration with central
cameras, but concept is
applicable to whatever
camera, i.e. also
non-central ones
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Structure-from-motion Epipolar geometry

Non-parametric epipolar geometry:
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• Consider points (or other features) in images

• Which geometric constraints exist that tell if points are potential matches?

Multi-view geometry for perspective images:

Structure-from-motion Multi-view geometry

- 2 images: epipolar geometry (fundamental/essential matrix)

0qq 1

T

2
=E

- 3 or 4 images: trifocal and quadrifocal tensors

• Constraints between projection rays

Multi-view geometry for generic imaging model:
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• Consider points        in  n images with projection matrices

• They are potential matches if scalars and a 3D point        exist with:

Perspective multi-view geometry:

Structure-from-motion

• This can be written as:

• Existence of null-vector implies rank-deficiency of

• is of size 3n × 4+n
→ all submatrices (4+n) × (4+n) have zero determinant

Perspective multi-view geometry
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• where: matching tensors depend exactly on the projection matrices T
n = 2: fundamental (essential) matrix
n = 3: trifocal tensors
n = 4: quadrifocal tensors

Structure-from-motion Perspective multi-view geometry

• Determinants of submatrices can be written as:

• Uses of matching tensors:
- Matching constraints
- Useful for motion estimation from image correspondences
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- let       and be any 2 points on a 3D line
- Plücker coordinates can be defined as:

- they are independent of the choice of and

Structure-from-motion Multi-view geometry

• Projection rays are represented by Plücker coordinates:

Multi-view geometry for generic imaging model:

[Sturm-CVPR’05]
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• Consider projection rays         for  n calibrated cameras

• Rays are potential matches if scalars and and a 3D point        exist with:

Structure-from-motion Multi-view geometry

• For the moment, parameterize rays by  two points         and each.

• Pose of cameras is parameterized as
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Structure-from-motion

• This can be written as:

• Existence of null-vector implies rank-deficiency of

• is of size 4n × 4+2n
→ all submatrices (4+2n) × (4+2n) have zero determinant

Multi-view geometry

• Rays are potential matches if scalars and and a 3D point        exist with:
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Structure-from-motion Multi-view geometry

• We obtain matching constraints of the form:

• When developping determinants of submatrices, coordinates of
points         and appear in terms of this form:

→ Plücker coordinates of 

• Matching tensors depend on pose matrices T
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Structure-from-motion Multi-view geometry

• Like for perspective images, matching tensors exist for 2, 3, and 4 cameras

• Example: two views

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

BA
BAtRRR
BAtRRR
BAtRRR

BA
BA
BA
BA

4,24,2

3,23,23333231

2,22,22232221

1,21,21131211

4,14,1

3,13,1

2,12,1

1,11,1

001000
00
00
00

001000
000100
000010
000001

M

[ ] 0L0R
RRtLMdet 1

 xT
2 =

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛−
=

essential matrix

of size 8x8

→ matching constraint is:

is rank-deficient, thus singular
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Structure-from-motion Multi-view geometry

• Matching tensors for non-central cameras are of size 6×6×…

• Reduced parameterizations exist:

- Axial cameras:  5×5×…

- X-slit cameras:  4×4×…
- Central cameras:  3×3×…

• Matching tensors between cameras of different types are straightforward, e.g.:

- Essential matrix of a non-central and a central camera:  6×3
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Structure-from-motion Summary

• When calibrated cameras are considered, an SfM problem (pose, motion, …)
can be solved with one and the same algorithm, whatever the type of camera

• Extension of structure-from-motion theory from perspective to general
camera model

Summary for structure-from-motion:

• But: results are not optimal (e.g. in the sense of reprojection errors)
→ methods are useful for embedding in RANSAC, but should be

followed by bundle adjustment if good accuracy required

• Some missing pieces, e.g. matching tensors for line images



Modeling and Analysing Images of Generic Cameras

Tutorial on

Srikumar Ramalingam INRIA Rhône-Alpes and UC Santa Cruz

Peter Sturm, INRIA Rhône-Alpes, Montbonnot/Grenoble, France

Rahul Swaminathan Deutsche Telekom Laboratories TU Berlin 

Jean-Philippe Tardif Université de Montréal

Bonn, September 19, 2006

With contributions from:

http://perception.inrialpes.fr/people/Sturm



PCV'06 Tutorial on Modeling and Analysing Images of Generic Cameras, Peter Sturm 125

References

Non-parametric calibration based on known motions:
• G. Champleboux, S. Lavallée, P. Sautot and P. Cinquin. Accurate Calibration of Cameras and

Range Imaging Sensors: the NPBS Method. ICRA 1992.
• K.D. Gremban, C.E. Thorpe and T. Kanade. Geometric Camera Calibration using Systems of

Linear Equations. ICRA 1988.
• M.D. Grossberg and S.K. Nayar. A general imaging model and a method for finding its parameters.

ICCV 2001.

General approaches for non-parametric calibration:
• S. Ramalingam, P. Sturm and S.K. Lodha. Towards Complete Generic Camera Calibration. CVPR 2005.
• S. Ramalingam, P. Sturm and S.K. Lodha. Theory and Calibration Algorithms for Axial Cameras.

ACCV 2006.
• P. Sturm and S. Ramalingam. A Generic Concept for Camera Calibration. ECCV 2004.



PCV'06 Tutorial on Modeling and Analysing Images of Generic Cameras, Peter Sturm 126

References

Radially symmetric cameras:
• J.P. Barreto and K. Daniilidis. Fundamental Matrix for Cameras with Radial Distortion. ICCV 2005.
• D. Claus and A.W. Fitzgibbon. A Rational Function Model for Fish-Eye Lens Distortion. CVPR 2005.
• D. Claus and A.W. Fitzgibbon. A Plumbline Constraint for the Rational Function Lens Distortion Model.

BMVC 2005.
• R.I. Hartley and S.B. Kang. Parameter-Free Radial Distortion Correction with Centre of Distortion

Estimation. ICCV 2005.
• J.-P. Tardif, P. Sturm and S. Roy. Self-Calibration of a General Radially Symmetric Distortion Model.

ECCV 2006.
• J.-P. Tardif and P. Sturm. Calibration of Cameras with Radially Symmetric Distortion. OMNIVIS 2005.
• S. Thirthala and M. Pollefeys. The Radial Trifocal Tensor: A Tool for Calibrating the Radial Distortion

of Wide-Angle Cameras. CVPR 2005.
• S. Thirthala and M. Pollefeys. Multi-View Geometry of 1D Radial Cameras and its Application to

Omnidirectional Camera Calibration. ICCV 2005.

Non-parametric self-calibration:
• E. Grossmann, E.-J. Lee, P. Hislop, D. Nistér and H. Stewénius. Are two rotational flows sufficient

to calibrate a smooth non-parametric sensor? CVPR 2006.
• D. Nistér, H. Stewénius and E. Grossman. Non-Parametric Self-Calibration. ICCV 2005.
• S. Ramalingam, P. Sturm and S.K. Lodha. Towards Generic Self-Calibration of Central Cameras.

OMNIVIS 2005.



PCV'06 Tutorial on Modeling and Analysing Images of Generic Cameras, Peter Sturm 127

References

Pose estimation:
• C.-S. Chen and W.-Y. Chang. On Pose Recovery for Generalized Visual Sensors. IEEE-PAMI 2004.
• D. Nistér. A Minimal solution to the generalised 3-point pose problem, CVPR 2004.
• S. Ramalingam, S. Lodha and P. Sturm. A Generic Structure-from-Motion Algorithm for Cross-Camera

Scenarios. OMNIVIS 2004.

Motion estimation:
• R. Pless. Using Many Cameras as One. CVPR 2003.
• P. Sturm, S. Ramalingam and S.K. Lodha. On Calibration, Structure from Motion and Multi-View

Geometry for Generic Camera Models. In “Imaging Beyound the Pinhole Camera”, K. Daniilidis,
R. Klette and A. Leonardis (editors), 2006.

Epipolar geometry:
• D. Feldman, T. Pajdla and D. Weinshall. On the Epipolar Geometry of the Crossed-Slits Projection.

ICCV 2003.
• P. Sturm. Mixing Catadioptric and Perspective Cameras. OMNIVIS 2002.
• T. Svoboda, T. Pajdla and V. Hlavac. Epipolar Geometry for Panoramic Cameras. ECCV 1998. 

Multi-view geometry:
• P. Sturm. Multi-View Geometry for General Camera Models. CVPR 2005.



PCV'06 Tutorial on Modeling and Analysing Images of Generic Cameras, Peter Sturm 128

References

Others:
• S. Baker and S.K. Nayar. A Theory of Single-Viewpoint Catadioptric Image Formation. IJCV 1999.
• J.P. Barreto and H. Araujo. Geometric Properties of Central Catadioptric Line Images and Their

Application in Calibration. IEEE-PAMI 2005.
• D.C. Brown. Close-Range Camera Calibration. Photogrammetric Engineering 1971.
• D. Burkhard and D. Shealy. Flux density for ray propagation in geometrical optics. JOSA 1973.
• F. Devernay and O. Faugeras. Straight lines have to be straight. Machine Vision and Applications 2001.
• M.M. Fleck. Perspective Projection: The Wrong Imaging Model. Technical Report 95-01, Dept. of

Computer Science, University of Iowa, 1995.
• C. Geyer and K. Daniilidis. A Unifying Theory for Central Panoramic Systems and Practical

Applications. ECCV 2000.
• C. Geyer and K. Daniilidis. Paracatadioptric Camera Calibration. IEEE-PAMI 2002.
• S.B. Kang. Catadioptric self-calibration. CVPR 2000.
• B. Mičušik and T. Pajdla. Autocalibration and 3D Reconstruction with Non-Central Catadioptric

Cameras. CVPR 2004.
• J. Neumann, C. Fermüller and Y. Aloimonos. Polydioptric Camera Design and 3D Motion Estimation.

CVPR 2003.
• T. Pajdla. Stereo with Oblique Cameras. IJCV 2002.
• S. Seitz and J. Kim. The Space of All Stereo Images. IJCV 2002.
• R. Swaminathan, M.D. Grossberg and S.K. Nayar. A perspective on distortions. CVPR 2003.
• R. Swaminathan, M.D. Grossberg and S.K. Nayar. Caustics of Catadioptric Cameras. ICCV 2001.
• R. Swaminathan and S.K. Nayar. Nonmetric Calibration of Wide-Angle Lenses and Polycameras.

CVPR 1999.
• J. Yu and L. McMillan. General Linear Cameras. ECCV 2004.


	Contents
	Introduction
	Contents
	Contents
	Non-parametric calibration
	Non-parametric calibration
	Non-parametric calibration
	Non-parametric calibration
	Non-parametric calibration
	Non-parametric calibration
	Non-parametric calibration
	Non-parametric calibration
	Non-parametric calibration
	Non-parametric calibration
	Non-parametric calibration
	Non-parametric calibration
	Non-parametric calibration
	Non-parametric calibration
	Non-parametric calibration
	Non-parametric calibration
	Non-parametric calibration
	Non-parametric calibration
	Non-parametric calibration
	Non-parametric calibration
	Non-parametric calibration
	Non-parametric calibration
	Non-parametric calibration
	Non-parametric calibration
	Non-parametric calibration
	Non-parametric calibration
	Non-parametric calibration
	Non-parametric calibration
	Non-parametric calibration
	Non-parametric calibration
	Non-parametric calibration
	Non-parametric calibration
	Non-parametric calibration
	Non-parametric calibration
	Non-parametric calibration
	Non-parametric calibration
	Non-parametric calibration
	Contents
	Contents
	Structure-from-motion
	Structure-from-motion
	Structure-from-motion
	Structure-from-motion
	Structure-from-motion
	Structure-from-motion
	References
	References
	References
	References

