Recognition and 3D Reconstruction from Video

David Nistér

50 Thousand Images

UK :
Center for Visualization \& Virtua

Scalable Recognition with a Vocabulary Tree

David Nistér, Henrik Stewénius

Towards Urban 3D

Reconstruction From Video

A. Akbarzadeh, J.-M. Frahm, P. Mordohai, B. Clipp, C. Engels, D. Gallup, P. Merrell, M. Phelps, S. Sinha, B. Talton, L. Wang, Q. Yáng, H. Stewénius, R. Yang, G. Welch, H. Towles, D. Nistér and M. Pollefeys

Center for
Visualization \& Virtual Environments

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Automatic Dense Reconstruction from

 Uncalibrated Video Sequences

ERICSSON
三

Video collection

2x4 cameras
1024x768@30Hz

Video Data

TIT \square Center for
 Visualization \& Virtual

| EN | 030 V $6810: 22 \mathrm{PM}$ |
| :--- | :--- | :--- |

UK
 Visualization \& Virtual

Outline

- Feature Extraction and Description
- Matching, Tracking and Indexing
- Geometry
- Surface Reconstruction

The transformation hierarchy

$\left[\begin{array}{cc}s K R & t \\ 0 & 1\end{array}\right]$

$\mathbf{U K}$

Euclidean

Projective

Center for
Visualization \& Virtual

- Viewpoint Change

- Lighting Variation

Center for

Visualization \& Virtual Environments

- Scale Change

Invariance or Covariance

- Detection and image transformation commutes

Detect $(\operatorname{Transform}(\mathrm{I}))=$ Transform $(\operatorname{Detect}(\mathrm{I}))$

Center for

Visualization \& Virtual
Environments

Rotation-Invariant Detection

- Moravec
- Förstner
- Harris

Center for
Visualization \& Virtual Environments

Feature Detection

Harris Corners

Feature Detection

Harris Corners

Feature Detection

Harris Corners

Autocorrelation

$$
A(d)=\sum_{x}(I(x)-I(x+d))^{2}
$$

Feature Detection

Harris Corners

Feature Detection

Feature Detection

Rotation+Scale Invariant Detection

- DoG Points
- Lindeberg, Schmid \& Mohr, Lowe

Center for
Visualization \& Virtual

DoG Points

- 'Blob’ detector

Affine Invariant Regions

- Tuytelaars \& Van Gool
- Mikolajczyk and Schmid
- Matas et al.

Center for
Visualization \& Virtual

Harris and Hessian Affine

- Mikolajczyk and Schmid

MSER

- Matas et al.
- Similar to watershed, but thresholded at minimal change rather than segmented when watersheds join

MSER

- Extremal regions are 'continuous-invariant'
- MSER's are affine invariant if growth is measured in relative terms

Demonstration of live feature tracking and MSER's

Center for
Visualization \& Virtual
Environments

Selecting a coordinate system

Region Description

- Image Patch
- Normalized Image Patch
- SIFT Descriptor
- DCT Descriptors
- Wavelets

SIFT Descriptor

Center for
Visualization \& Virtual

2D Tracking

KLT

Feature Matching/Tracking

Normalized Correlation
$\frac{\sum f g-\sum f \sum g}{\sqrt{\sum f^{2}-\left(\sum f\right)^{2}} \sqrt{\sum g^{2}-\left(\sum g\right)^{2}}}=\left(\sum f g-s_{f} s_{g}\right) * r_{f} r_{g}$

Center for
Visualization \& Virtual

Feature Matching/Tracking

Only retain bidirectional matches No loops because of symmetry $d(a, b)=d(b, a)$

Feature Matching/Tracking

Feature Matching/Tracking

Feature Matching/Tracking

Feature Matching/Tracking

Matching vs Tracking

- Detection, while a tremendous strength in terms of scalability, is a weakness for repeatability

KLT Tracker

GPU KLT
 work of Sudipta Sinha

Image 1024×768
1000 features
1024×768 video, Time: 30.120 msec , Features: (Tracked 19 out of 29) (Added

GPU-KLT

GPU-KLT Timings: 1024×768 video, 1000 features.

Indexing

- Fighting the curse of dimensionality
- Locality Sensitive Hashing (LSH)
- K-d tree
- Vocabulary Tree

Find nearest neighbor

tf-idf

- Term Frequency Inverse Document Frequency
- Is a weighting of words in a document

$$
(\mathrm{n} / \mathrm{N}) \log (\mathrm{D} / \mathrm{d})
$$

Center for
Visualization \& Virtual

Clustering

- K-Means
- K-Medioids
- Mean-Shift
- Spectral Clustering
- Graph-Cuts

Center for
Visualization \& Virtual

Center for
Visualization \& Virtual

Spectral-Clustering

Break into eigen-modes

Graph-Cuts

V

V
$+$

Machine Learning

- When parametric invariance is insufficient
- Supervised,Unsupervised,Semisupervised
- Support Vector Machines (SVM's)
- Boosting
- Neural Nets

Scalability

If we can get repeatable, discriminative features,
then recognition can scale to very large databases using the vocabulary tree and indexing approach described in Nistér \& Stewénius CVPR 2006.

Adding, Querying and Removing Images at full speed

Training and Addition are Separate

Common Approach
Our approach

$\mathbf{U K}$
Center for
Visualization \& Virtual Environments

$\mathbf{U K}$
Center for
Visualization \& Virtual Environments

Performance

$\mathbf{U K}$

Center for

Visualization \& Virtual

Environments

Recognition Benchmark Images

Henrik Stewénius and David Nistér

The set consists of 2604 groups of 4 images each for a total of 10416 images. All the images are 640×480.
If you use the dataset, please refer to:

- D. Nistér and H. Stewénius, Scalable Recognition with a Vocabulary Tree, CVPR 2006. PDF

Subsets

For users of subsets of the database please note that the difficulty is dependent on the chosen subset. Important factors are:

1. Difficulty of the objects themselves. CD-covers are much easier than flowers. See performance curve below.
2. Sharpness of the images. Many of the indoor images are somewhat blurry and this can affect some algorithms.
3. Similar or identical objects. All the pictures where taken by CS students/faculty/staff and thus keyboards and computer equipment are popular motives. So is computer vision literature.

Download

Please note BEFORE starting your download that the file is almost 2GB. Please save a local copy in order to save bandwidth at our server.

- Zipped File.

Performance

In the paper we give results either for a subset of 6376 images (all we had at that time) or a smaller subset of 1400 images. The smaller set was used when we did not have an efficient enough implementation in order to handle the larger set.

Performance Measures

- Our simplest measure of performance is to count how many of the 4 images which are top-4 when using a query image from

that set of four images.
A matlab implementation which computes this measure: Download.

Center for
Visualization \& Virtual
Environments

Center for
Visualization \& Virtual

Geometric Verification

Robust to Clutter and Occlusion

- Local Regions
- Like Web-search

Geometry

- Demonstration of real-time camera tracking

Visual Odometry work with Oleg Naroditsky and Jim Bergen

db_3D

Visual Odometry
 work with Oleg Naroditsky and Jim Bergen

- 365 m without loss of tracking
- 350 m (~ 3.5 minutes) without GPS
- Error in distance traveled $\sim 1 \%$
- Accumulated error in position ~ 3-5\%
- e.g. $\sim 10 \mathrm{~m}$ over $\sim 350 \mathrm{~m}$

Visual Odometry
 work with Oleg Naroditsky and Jim Bergen

Center for
Visualization \& Virtual

Visual Odometry

 work with Oleg Naroditsky and Jim Bergen

3D Tracker

$$
\begin{aligned}
& \text { Q } \\
& \text { (1) } \\
& \text { ■ } \\
& \text { © } \\
& \text { (4) }
\end{aligned}
$$

Geo Registered Cameras (With INS Data)

GPS Data Gathering

- Garmin GPS16
- \$200 unit
- 1 Hz updates
- Records
- Latitude-Longitude
- Pseudo-range up to 12 satellites
- Satellite's clock

3D Tracking and Geo-registration

$\mathbf{U K}$

3D Tracking and Geo-registration

Lever arm calibration

lever arm from
drawings

Lever arm calibration

Geometry Tools

Center for
Visualization \& Virtual

Bundle Adjustment

Trust Region Methods

Steepest Descent: Inefficient Alternation: Even worse

Quadratic Approximation: OK

Trust Region Methods

Can be inaccurate:
| Steepest Descent:Guefficient Alternation: Eyen worse Quadratic ApproxAmbatoximotion
$\underset{\mathrm{dx}}{\underset{\mathrm{dx}}{(2)}}$

Quadratic approximation:

$c(x+d x) \approx c(x)+\nabla c^{\mathrm{T}}(x) d x+d x^{\mathrm{T}} H_{c}(x) d x$
If accurate, then $H_{c}(x) d x=-\frac{1}{2} \nabla c(x)$ at minimum.

Trust Region Methods

Can be inaccurate:
Solution:
Back down dx

Quadratic approximation:
$c(x+d x) \approx c(x)+\nabla c^{\mathrm{T}}(x) d x+d x^{\mathrm{T}} H_{c}(x) d x$
If accurate, then $H_{c}(x) d x=-\frac{1}{2} \nabla c(x)$ at minimum.

Quadratic approximation:
$c(x+d x) \approx c(x)+\nabla c^{\mathrm{T}}(x) d x+d x^{\mathrm{T}} H_{c}(x) d x$
If accurate, then $H_{c}(x) d x=-\frac{1}{2} \nabla c(x)$ at minimum.

Quadratic approximation:
$c(x+d x) \approx c(x)+\nabla c^{\mathrm{T}}(x) d x+d x^{\mathrm{T}} H_{c}(x) d x$
If accurate, then $H_{c}(x) d x=-\frac{1}{2} \nabla c(x)$ at minimum.

Bundle Adjustment

$$
H_{c}(x) d x=-\frac{1}{2} \nabla c(x)
$$

Block LU factorization:
Multiply by $\left[\begin{array}{cc}H_{S S}^{-1} & 0 \\ 0 & I\end{array}\right] \quad$ Multiply by $\left[\begin{array}{cc}I & 0 \\ -H_{C S} & I\end{array}\right]$
$\left[\begin{array}{ll}H_{S S} & H_{S C} \\ H_{C S} & H_{C C}\end{array}\right]\left[\begin{array}{l}d x_{S} \\ d x_{C}\end{array}\right]=\left[\begin{array}{l}g_{S} \\ g_{C}\end{array}\right.$

Bundle Adjustment

$$
H_{c}(x) d x=-\frac{1}{2} \nabla c(x)
$$

Block LU factorization:
Multiply by

Multiply by

$\left[\begin{array}{cc}I & H_{S S}^{-1} H_{S C} \\ 0 & H_{C C}-H_{C S} H_{S S}^{-1} H_{S C}\end{array}\right]\left[\begin{array}{l}d x_{S} \\ d x_{C}\end{array}\right]=\left[\begin{array}{c}H_{S S}^{-1} g_{S} \\ g_{C}-H_{C S} H_{S S}^{-1} g_{S}\end{array}\right]$

Center for
Visualization \& Virtual

Bundle Adjustment

Center for
Visualization \& Virtual

Bundle Adjustment

Center for
\checkmark Visualization $\&$ Enirtual

Bundle Adjustment

Center for
Visualization \& Virtual

3D Tracking

SBET Only

Bundled

Center for
Visualization \& Virtual

Hypothesis Generator

Probabilistic Formulation

Center for
Visualization \& Virtual

RANSAC- Random Sample Consensus

RANSAC- Random Sample Consensus

RANSAC

Preemptive RANSAC

Depth-first Preemption

Preemptive RANSAC

Breadth-first Preemption

$500 \times 200=100.000$
Overhead ~ 100 microseconds

Preemptive RANSAC

Observed Tracks

Preemptive RANSAC

Preemptive RANSAC

Relative Orientation

Calibrated vs Uncalibrated

Constraints

Constraints

SingularValues $(F)=\left[\begin{array}{lll}\sigma_{1} & \sigma_{2} & \sigma_{3}\end{array}\right]$
Uncalibrated: $\sigma_{3}=0 \longmapsto \operatorname{det} F=0$
Calibrated: $\sigma_{3}=0 \quad \sigma_{1}=\sigma_{2}$
$2 E E^{\mathrm{T}} E-\operatorname{trace}\left(E E^{\mathrm{T}}\right) E=0$

2 Views
8p
von Sanden, 1908
Longuet-Higgins, 1981
7p
R. Sturm, 1869
6p
Philip, 1996
5p
Kruppa 1913
Nister 2003

$$
H=\left[\begin{array}{ll}
h_{11} & h_{12} \\
h_{21} & h_{22}
\end{array}\right] \longleftarrow \text { Pure Rotation }
$$

The Epipoles and the Epipolar Line Homography

The Epipolar Constraint

The Kruppa Constraints

The Five Point Problem

Given five point correspondences,

What is R, t ?
E. Kruppa,

Zur Ermittlung eines Objektes aus zwei Perspektiven mit Innerer Orientierung,
1913.
O. Faugeras and S. Maybank, Motion from Point Matches: Multiplicity of Solutions, 1990.
J. Philip,

A Non-Iterative Algorithm for Determining all Essential Matrices Corresponding to Five Point Pairs, 1996.
B. Triggs,

Routines for Relative Pose of Two Calibrated Cameras from 5 Points, 2000.
D. Nister,

An Efficient Solution to the Five-Point Relative Pose Problem, 2002.

The solution is minimal in two respects:

It can operate on the smallest number of points required to get a finite number of solutions.

Closed form derivation of 10th degree polynomial.

First solution suited for numerical implementation that corresponds directly to the intrinsic degree of difficulty of the problem.

Nr of Roots

Nr of Solutions

10 Solutions

[0.067, 0.287] <> [0.329,1.297]
[$0.254,0.0646]<>[0.523,1.0807]$
[$0.239,-0.213]<>[0.517,0.645$]
$[-0.710,-0.693]<>[-0.141,0.157]$
[$0.661,-0.307]<>[0.950,0.773]$

The 5-point algorithm (Nistér PAMI 04)

 $2 E E^{\mathrm{T}} E-\operatorname{trace}\left(E E^{\mathrm{T}}\right) E$
 $$
\times+-
$$

Sturm Sequences for Bracketing

The 5-point algorithm (Nisté CVPR 03)

Center for
Visualization \& Virtual

The 5-point algorithm (Nistér PAMI 04)

$2 E E^{\mathrm{T}} E-\operatorname{trace}\left(E E^{\mathrm{T}}\right) E$

$$
x+-
$$

anc

Root Polishing by Bisection
R,t

The 5-point algorithm (Stewénius et al)

5-Point Matlab Executable

Recent Developments on Direct Relative Orientation, Henrik Stewenius, Christopher Engels, David Nister, ISPRS Journal of Photogrammetry and Remote Sensing

www.vis.uky.edu/~dnister

Numerical Accuracy for Random Scenes

Noise

Minimal Cases, Sideways Motion Depth 0.5
Baseline 0.1
Field of View 45 degrees

Direction

50 points
Depth 0.5
Baseline 0.1
Field of View 45 degrees

Center for
Visualization \& Virtual

Baseline

Minimal Cases, Sideways Motion
Depth 0.5
Baseline 0.1
Field of View 45 degrees
Center for
Visualization \& Virtual

Easy Conditions

Realistic Conditions

Centerfor
Visualization \& Virtual

Focal Length Miscalibration

0.05

0.3
0.5

1.3

1.5
0.7

Planar Ambiguity, Uncalibrated

2Degrees of Freedom

Planar Ambiguity, Calibrated

Depth

The 3 View 4 Point Problem

How Hard is this Problem?

Approximately This Hard

$$
2=8
$$

Uncertainty in Epipolar Geometry

work with Chris Engels

Single Estimate often ill posed

Representation of posterior likelihood well posed, but computationally challenging

Uncertainty in Epipolar Geometry

work with Chris Engels

Single Estimate often ill posed

Representation of posterior likelihood well posed, but computationally challenging

Epipoloscope

work with Chris Engels

Epipoloscope

work with Chris Engels

Hypothesis Generators

- Partially data-driven methods
- Five-point + epipole
- Three-point + epipole (uses intrinsic calibration)
- Fully data-driven methods:
- Eight-point
- Seven-point
- Five-point (uses intrinsic calibration)

Results

- Likelihood image using different methods

Five-Point

Seven-Point

Eight-Point

Results

- Convergence of the posterior

Results

- Estimation of Confidence Interval
- Confidence estimated by probability mass contained within certain interval

Results

- Comparison of Confidence Intervals

Results

- Comparison of Confidence Intervals
- Fully Data-driven

Five-Point
0.935666

Seven-Point
0.395411

Eight-Point
0.277246

Results

- Comparison of Confidence Intervals
- Partially Data-driven

Five-Point + epipole 0.407995

Results

- Baseline Selection

- Choose best pair of frames for pose, stereo, etc.

Triangulation

Triangulation

- 2 Stages: Correction \& Ideal Triangulation

Triangulation

- Rays Intersect <-> Rays Coplanar

Triangulation

- One parameter family - Balance the error

Triangulation

- One parameter family - Balance the error

Triangulation

- One parameter family - Balance the error

Triangulation

- One parameter family - Balance the error
- L2-Norm -> Sextic (Hartley \& Sturm)
- Max-Norm -> Quartic (Closed form, Nistér)
- Directional Error -> Quadratic (Oliensis)

Optimal 3 View Triangulation

work with Henrik Stewenius and Fred Schaffalitzky

47 Stationary Points

Nr of Stationary Points for Triangulations in N Views

$$
4.5 \mathrm{~N}^{3}+3 \mathrm{~N}^{2}+0.5 \mathrm{~N}-2
$$

Sampson Approximation

Squared Mahalanobis Distance

$$
M(x)=x^{\mathrm{T}} C_{x x}^{-1} x
$$

$$
M(f) \approx f^{\mathrm{T}}\left(J C_{x x} J^{\mathrm{T}}\right)^{-1} f
$$

Where $C_{x x}$ is the covariance matrix of detected image features and f and J are the incidence function and its Jacobian

Sampson Approximation

For two views this leads to

$$
M\left(F, x, x^{\prime}\right)=\frac{\left(x^{\prime \mathrm{T}} F x\right)^{2}}{(F x)_{1}^{2}+(F x)_{2}^{2}+\left(x^{\prime \mathrm{T}} F\right)_{1}^{2}+\left(x^{\prime \mathrm{T}} F\right)_{2}^{2}}
$$

For three views, an approximation of the distance to trifocal incidence can be found by tensor contractions and Cramer's rule in <1 microsecond

Assuming Cauchy distribution

$$
D=\ln (1+M)
$$

2D-3D Pose

The 3-Point Problem

The 3-Point Problem

UIT $\quad \begin{aligned} & \text { Center for } \\ & \text { Visualization \& Virtual } \\ & \text { Environments }\end{aligned}$

$$
\pm
$$

$$
\pm
$$

$\mathbf{U K}$
Center for
Visualization \& Virtual Environments

$\mathbf{U K}$
Center for
Visualization \& Virtual Environments

$\mathbf{U K}$
Center for
Visualization \& Virtual Environments

$\mathbf{U K}$
Center for
Visualization \& Virtual Environments

$\mathbf{U K}$
Center for
Visualization \& Virtual Environments

$\mathbf{U K}$
Center for
Visualization \& Virtual Environments

$\mathbf{U K}$
Center for
Visualization \& Virtual Environments

$\mathbf{U K}$
Center for
Visualization \& Virtual Environments

$\mathbf{U K}$
Center for
Visualization \& Virtual Environments

$\mathbf{U K}$
Center for
Visualization \& Virtual Environments

$$
x
$$

UKK

Center for
Visualization \& Virtual

Seamlessly into the classical case

Environments

Moving Stereo Pair

Moving Stereo Pair

\bigcirc

Center for
Visualization \& Virtual

6-point pose

$[x]_{\times} P X=0$

Linear, stack 5 point constraints, results in pencil of cameras:

$$
P=(1-a) P_{1}+a P_{2}
$$

Projects world point onto image line
$X=(1-a) P_{1} X+a P_{2} X$
Correct point by perpendicular projection.
Add constraint and solve uniquely

Absolute Orientation 'Stitching'

B. Horn,
Closed-Form Solution of Absolute Orientation using Unit Quaternions

Absolute Orientation 'Stitching'

Absolute Orientation 'Stitching'

One camera overlap

Algebraic Geometry

Geometry-Algebra 'Dualism’

- Hilbert's Nullstellensatz

$$
\mathrm{I}(\mathrm{~V}(J))=\sqrt{J}
$$

Center for
Visualization \& Virtual
Environments

Hypothesis Generation

The 5-Point Relative

Pose Problem

The 3 View 4-Point Problem
0 (or thousands)

Generalized Relative Pose
$\overrightarrow{2048}$
3 View
Triangulation 47

Microphone-Speaker Relative Orientation

RISC

Research Institute for Symbolic Computation Linz, Austria

Suggested Literature

- D. Cox, J. Little, D. O’Shea, Ideals, Varieties, and Algorithms, Second Edition, 1996.
- D. Cox, J. Little, D. O’Shea, Using Algebraic Geometry, Springer 1998.
- T. Becker and Weispfennig, Gröbner Bases, A Computational Approach to commutative Algebra, Springer 1993.

Examples of Solved Problems

6-point generalized relative orientation (64 solutions) (Stewenius, Nistér, Oskarsson and Åström, Omnivis 2005)

6-point relative orientation with common but unknown focal length (15 solutions) (Stewenius, Nistér, Schaffalitzky and Kahl, CVPR 2005)

"Audio-Grammetry"

work with Henrik Stewenius, Jens Hannemann, Kevin Donahue

Microphone-Speaker Location

work with Henrik Stewenius, Jens Hannemann, Kevin Donahue

Sparse

Dense

Sparse Reconstruction

Dense Reconstruction

Dense Reconstruction

Stereo

- Feature Based Stereo
- Classical Stereo
- Dynamic Programming
- Belief Propagation
- Graph Cuts
- Color Segmentation
- Plane Sweep
- Level Sets

Discontinuity Energy

Dissimilarity Energy

Center for
Visualization \& Virtual

Multi-View Depth Reconstruction

Dynamic Programming Belief Propagation

Dynamic Programming

\checkmark Depth

Image Scanline

Image Belief Propagation

Image Scanlines

Columns

Graph Cuts

V

V
$+$

Graph Cuts

$$
(f, f)
$$

(f, g)
(g, f)
(g, g)

Multi-View Depth Reconstruction

work with Q. Yang, L. Wang, R. Yang

- Plane-sweep stereo on GPU

Middlebury Stereo Record

work with Q. Yang, L. Wang, R. Yang

Double-BP
Highly computationally demanding even for small images

Color-weighted correlation
Real-time for small images and few disparity levels

Error Threshold = 1		Sort by nonoce	Sort by all		Sort by disc
Algorithm	$\begin{gathered} \text { Avg. } \\ \text { Rank } \\ \nabla \end{gathered}$	$\begin{gathered} \substack{\frac{\text { Tsukuba }}{\text { around tuth }} \\ \text { nonocc } \\ \\ \\ \\ \\ \\ \\ \\ \\ \text { all } \\ \text { disc }} \end{gathered}$	$\underbrace{\substack{\text { Venus } \\ \text { nonocc } \\ \text { nound truth }}} \quad \text { all } \quad \text { disc }$	$\begin{array}{cc} \substack{\text { Teddy } \\ \text { qround tuth }} \\ \text { nonocc } & \text { all } \\ & \text { disc } \end{array}$	$\begin{array}{\|ccc} \substack{\text { Cones } \\ \text { yround tuth h }} \\ \text { nonocc } & \text { all } & \text { disc } \\ & \nabla & \end{array}$
Double-BP [15]	1.3	$\underline{0.88} 11.29: 4.761$	$0.14{ }^{1} 0.60 \sim 2.001$	3.5518 .7129 .701	$\underline{2.90} 19.2427 .801$
Segm+visib [4]	3.3	1.3051 .5726 .926		$\underline{5.00}{ }^{5} 6.54{ }_{1} 12.32$	3.7238 .62110 .24
SymbP+occ [7]	3.4		$\underline{0.162} 00.33: 2.192$		
AdaptWeight [12]	4.7	1.3871 .8546 .905	$\begin{array}{llll}0.713 & 1.194 & 6.134\end{array}$		3.9759 .7948 .262
SemiGlob [6]	6.3	3.26123 .961012 .815	$1.0051 .57{ }^{1} 511.310$	$6.02312 .24 \quad 16.33$	
Layered [5]	7.8		1.3471 .8566 .857	8.64814 .3618 .56	6.591114 .71114 .410
6C+occ [2]	7.9	$1.19{ }^{3} \quad 2.0176 .243$	1.64102 .1996 .75 .5	11.2 1117.41119 .89	$5.369 \quad 12.4913 .09$
MulticamGC [3]	8.4	$\begin{array}{lllll}1.27 \\ 4 & 1.996 & 6.484\end{array}$	$\underline{2.79} 143.13123 .603$	12.01217 .61222 .011	4.898 11.88 12.17
Tensorvoting [9]	9.3	3.79 134.79138 .869	1.2381 .88711 .511	$\underline{9.769} 17.01024 .013$	
CostRelax [11]	10.1	4.76156 .081520 .318	1.41 و 2.481018 .514	$8.18715 .98 \quad 23.812$	$3.914 \begin{array}{llllll} & 10.25 & 11.86\end{array}$
RealTime-GPU [14]	10.2	$\underline{2.05} 114.221210 .612$	1.92122 .981120 .315	$\underline{7.235} 14.47{ }^{17.65}$	6.411013 .71016 .512
Reliablty-DP [13]	11.4		$\underline{2.3513} 3.481412 .213$	9.82 1016.9 g 19.58	12.9 1719.91719 .714
TreeDP [8]	11.7			$15.915 \quad 23.915 \quad 27.118$	10.01418 .31418 .913

Depth Map Fusion

- Main lesson: simple stereo with many correlations on many images + fusion is the winning recipe

GPU Stereo

CPU

GPU

GPU Stereo

CPU (Xeon 3GHz): 3.2s

GPU (NVIDIA 7800 GTX): 70ms

ICP

Alignment of Video onto 3D Point Clouds

 work with Wen-Yi Zhao and Steve HsuPose Estimation

Motion Stereo

ICP Alignment

Fusion

- Curless \& Levoy

Median Fusion

\uparrow Stability $=$ Occlusion-Passing

Center for
Visualization \& Virtual

$\vee=\eta$

Depth Map Fusion

-Resolves inconsistencies. Cleans up results very efficiently
-Suited for GPU implementation (essentially consists of rendering back and forth many times)

$T T$ Center for
Visualization \& Virtual

$T T \square$ Center for
 Visualization \& Virtual

Depth Map Fusion

Sparse Mesh Generation

Computation times CPU

Single CPU processing times for single video stream
Running the whole system with:
1024×768 resolution for Radial, Tracker 2D, Tracker 3D, Geo registration 512×384 resolution for Stereo, Fusion, 3D model generation

seconds

Computation times CPU+GPU

Single CPU + GPU processing times for single video stream

```
Running the whole system with:
1024×768 resolution for Radial, Tracker 2D, Tracker 3D, Geo registration
\(512 \times 384\) resolution for Stereo, Fusion, 3D model generation
```

seconds

Center for
Visualization \& Virtual
Environments

Camera Geometry

- Often leads to polynomial formulations, or can at least very often be formulated in terms of polynomial equations

Polynomial Formulation

- $\mathrm{p}_{1}(\mathrm{x}), \ldots, \mathrm{p}_{\mathrm{n}}(\mathrm{x})=\mathrm{A}$ set of input polynomials (n polynomials in m variables)

$$
\mathrm{x}=\left[\begin{array}{lll}
y_{1} & \ldots & y_{m}
\end{array}\right]
$$

Center for
Visualization \& Virtual

Algebraic Ideal

- $\mathrm{I}\left(\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{n}}\right)=$ The set of polynomials generated by the input polynomials
(through additions and multiplications by a polynomial)
p and q in $I=>p+q$ in I
p in $\mathrm{I} \quad=>\mathrm{pq}$ in I
The ideal I consists of 'Almost' all the polynomials implied by the input polynomials
(More precisely, the radical \sqrt{I} of the ideal consists of all)

Remember Row Operations:

- Multiplying a row by a scalar
- Subtracting a row from another
- Swap rows

Add:

- Multiplying a row by any polynomial

Multiplying by a Scalar

Adding

Basis (for Ideal)

- A basis for I is a set of polynomials
$\left(p_{1}, \ldots, p_{n}\right)$ such that $\mathrm{I}=\mathrm{I}\left(\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{n}}\right)$

Center for
Visualization \& Virtual

Algebraic Variety

- The solution set
(the vanishing set of the input polynomials)

Quotient Ring J/I

- The set of equivalence classes of polynomials when only the values on V are considered (i.e. polynomials are equivalent iff $p(x)=q(x)$ for all x in V)

Action Matrix

- For multiplication by polynomial on finite dimensional solution space

$$
\text { . } \mathrm{V}(\mathrm{I})
$$

Action Matrix

An 'Equivalence'

Compute Companion

Characteristic Polynomial

Requires
 Gröbner

Compute Action Matrix in Quotient Ring Basis for (Polynomials modulo Input Equations) Input Equations

Characteristic Polynomial

Companion Matrix

$$
a_{7} x^{7}+a_{6} x^{6}+a_{5} x^{5}+a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}
$$

Action Matrix

Action Matrix

Multiplication by a polynomial q is a linear operator A_{q}

$$
(\alpha \mathrm{p}+\beta \mathrm{r}) \mathrm{q}=\alpha(\mathrm{pq})+\beta(\mathrm{rq})
$$

The matrix A_{q} is called the action matrix for multiplication by q

Action Matrix

Action Matrix

Action Matrix

Action Matrix

Action Matrix

The values $q\left(x_{i}\right)$ of q at the solutions x_{i} are the eigenvalues of the action matrix

If we choose $\mathrm{q}=\mathrm{y}_{1}$, the eigenvalues are the solutions for y_{1}

Action Matrix

$$
\mathrm{b}^{\prime}=\left[\mathrm{r}_{1} \ldots \mathrm{r}_{\mathrm{o}}\right]
$$

$b^{\prime}(x) A_{q} p=q(x) b^{\prime}(x) p$

 for all p in J / I and x in $\mathrm{V}(\mathrm{I})$$$
b^{\prime}(x) A_{q}=b^{\prime}(x) q(x)
$$

$b(x)$ is a left nullvector of A_{q} corresponding to eigenvalue $q(x)$

Center for
Visualization \& Virtual
Environments

Monomial Order

- Needed to define leading term of a polynomial
- Grevlex (Graded reverse lexicographical) order usually most efficient

Gröbner Basis

- A basis for ideal I that exposes the leading terms of I (hence unique well defined remainders)
- Easily gives the action matrix for multiplication with any polynomial in the quotient ring

A Reduced Gröbner Basis is a Basis

 in the normal sense- A polynomial in the ideal I can be written as a unique combination of the polynomials in a reduced Gröbner basis for I
- The monic Gröbner basis for I is unique

Buchberger's Algorithm

Buchberger's Algorithm
 Compute remainders of S-polynomials until all remainders are zero

Center for
Visualization \& Virtual
Environments

Buchberger's Algorithm
 Compute remainders of S-polynomials until all remainders are zero

Center for
Visualization \& Virtual
Environments

Buchberger's Algorithm
 Compute remainders of S-polynomials until all remainders are zero

Center for
Visualization \& Virtual

Buchberger's Algorithm
 Compute remainders of S-polynomials until all remainders are zero

Center for
Visualization \& Virtual

Buchberger's Algorithm
 Compute remainders of S-polynomials until all remainders are zero

Center for
Visualization \& Virtual
Environments

Buchberger's Algorithm
 Compute remainders of S-polynomials until all remainders are zero

Center for
Visualization \& Virtual
Environments

Buchberger's Algorithm
 Compute remainders of S-polynomials until all remainders are zero

Center for
Visualization \& Virtual
Environments

Buchberger's Algorithm
 Compute remainders of S-polynomials until all remainders are zero

Center for
Visualization \& Virtual
Environments

Buchberger's Algorithm
 Compute remainders of S-polynomials until all remainders are zero

Buchberger's Algorithm
 Compute remainders of S-polynomials until all remainders are zero

Buchberger's Algorithm
 Compute remainders of S-polynomials until all remainders are zero

Prime Field Formulation

- Reals $=>$ Cancellation unclear
- Rationals $=>$ Grows unwieldy
- Prime Field $=>$ Cancellation clear, size is limited, only small risk of incorrect cancellation if prime is large

Gaussian Elimination

- Expanding all polynomials up to a certain degree followed by Gaussian elimination allows pivoting

Unwanted Solutions

Can be removed by ideal quotients, or more generally saturation

Elimination Example

Centerfor
Visualization \& Virtual

Elimination Example

Action Matrix

Generalized Camera in M2

- Generalized Camera (good problem formulation) mmmmmmmmmmooomoomommooooooooommmmmmmm mmmmmmommoommmoo00000000000000000m000 ooooooooooororrrororoo

64 solutions

- Generalized Camera (bad problem formulation) mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm mmmmmmmmmmmommmommmmommmmmmmo ommmmmmm mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm

$$
\text { (total } 168 \text { lines) }
$$

rrrrrorrrrrrrorrrrrrrrrrrrorrrrrrrrrr
64 solutions

Stratified Self-Calibration

Introduction

Camera calibration and the search for infinity
Hartley, Hayman, de Agapito, Reid

Calibration with robust use of cheirality by quasi-affine reconstruction of the set of camera projection centres
 Nister

Self-calibration

Pre-calibration

Less problems with critical surfaces (when information used correctly)

What is the cue in selfcalibration?

Skew angle

Distortion of the cameras is the cue that drives selfcalibration

a

To move across the plane at infinity, a camera has to go through a 'geometric wormhole'

This makes the camera very angry and upset, in fact it will refuse

Quasi-affine transformations and cheirality

A projective transformation is quasi-affine with respect to a set iff it preserves the convex hull of the set
?
ConvexHull $(H(A))=H($ ConvexHull $(A))$

A projective transformation is affine iff
it is quasi-affine with respect to the set of all finite points

Each camera pair poses a question regarding the metric baseline

This

$\mathbf{U K}$
Center for
Visualization \& Virtual

The question is easily answered by cheirality since a point in front of or behind both cameras supports the former case and a point on different sides supports the latter.

A sequence of such binary decisions then deduces the convex hull of the camera centres.

Using cheirality, the convex hull of the points and the convex hull of the cameras can be respected (But not necessarily the convex hull of the union)

Center for

Metric configuration

$\mathbf{U K}$
Center for
Visualization \& Virtual Environments

Cheirality (QUARC reconstruction)

$$
\begin{aligned}
& \boldsymbol{P}_{n} \boldsymbol{H}^{-1} \simeq \boldsymbol{R}_{n}\left[\mathbb{R}_{n} \mid-\mathbb{R}_{n} t_{n}\right] \\
K_{n}= & {\left[\begin{array}{ccc}
k_{1} & k_{2} & k_{3} \\
& k_{4} & k_{5} \\
& & 1
\end{array}\right] } \\
& \left(\frac{k_{2}}{f}\right)^{2}+\left(\frac{k_{3}}{f}\right)^{2}+\left(\frac{k_{5}}{f}\right)^{2}+\left(\frac{k_{1}-k_{4}}{f}\right)^{2}, f=\frac{k_{1}+k_{4}}{2}
\end{aligned}
$$

Metric configuration

The points are not essential, convergence occurs even from this projective equivalent

