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Three Types of Operators 

§  Point operator 

§  Local operator 

 
§  Global operator 

f

f

f
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Local Operation Defined 
Through Convolutions 
§  Filters of the form 

§  are convolutions of the function    
and a kernel function     

 
 
 

reminder 

output 
image 

input 
image 

kernel 
defining 
operator 
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2D Box Filter Example 

Image courtesy: Seitz 

reminder 
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2D Box Filter Example 

Image courtesy: Seitz 

reminder 
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2D Box Filter Example 

Image courtesy: Seitz 

reminder 
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2D Box Filter Example 

Image courtesy: Seitz 

reminder 
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2D Box Filter Example 

Image courtesy: Seitz 

reminder 
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Box Filter & Binomial Filters 

§  Box filter realized by the kernel 
  

§  Binomial filter realized by the kernel 

§  Both are smoothing filters 

reminder 
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Smoothing Example 
reminder 
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Gradient Filters 
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Images are Functions 

§  An image is nothing else than a 
function 

§  with a 2-dimentional input in 
§  mapped to a 1-dimensional value in 
§  Maps 2D locations on the image plane 

to photon counts or intensities values 
§  Real world: 
§  Image domain: 
§  Image files: 
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Gradient Filter 

§  Approximating the first derivative of a 
function 
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Gradient Filter 

§  Approximating the first derivative of a 
function sampled in discrete steps 
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Gradient Filter 

§  Approximating the first derivative of a 
function sampled in discrete steps 
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Gradient Filter 

§  First derivative (1-dim) is given by 
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Gradient Filter 

§  First derivative (1-dim) is given by 

§  Thus, 
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Gradient Filter 

§  First derivative (1-dim) is given by 

 

§  We can define the vector 

§  so that  
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Gradient Filter 

§  We could also smooth the function by 
considering the left and right point 

§  Then, the gradient turns into 
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Gradient Filter 

§  We have 
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Gradient Filter 

§  We have 
§  Define analogously the weight vector   

§  such that 
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Gradient Filter 

§  The weight vector 

§  is a smoothed variant of our original 
weight vector 

 
§  This can be seen by 
 

Binomial gradient 
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Gradient Filter 

§  We define the first derivative of the 
image function as 

 
§  In contrast to smoothing kernels used 

before, the weight vector contains 
negative weights and sums up to 0  

§  First derivative of a constant signal 
equals to zero  
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Example 
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Gradient in Multiple Dimensions 

§  Gradient operator    (“Nabla”) is a 
vector consisting of the partial 
derivatives 

 

§  Thus, we can compute the 2D gradient 
images from the image function by 

here: matrix 
coordinates 
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Gradient of the Image Function 

§  Gradient vector of the image function 

§  with the magnitude of the gradient 

§  and the direction 

these are both 2D  
gradient images 
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Gradient Vector 

Thus, the 2D gradient vector of the 
image function can be written as 
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Example 

Image courtesy: Förstner 
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Sobel Operator 

§  The Sobel operator is the standard 
operator for computing gradients 
using a 3x3 window 

§  It is a combination of a Binomial filter 
and the gradient 

smoothing 

gradient 
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Sobel Operator 

§  The Sobel operator for a 3x3 window 

gradient 

gradient 
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Sobel-Based Edge Detection 
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Scharr Operator 

§  Improved Sobel operator 

 
§  Uses a different smoothing kernel  
§  Better suited for computing the 

direction of the first derivative 
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Scharr Operator 

§  Improved Sobel operator 

§  10-times more accurate than Sobel 
in determining the gradient direction 
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Scharr Operator 

§  Improved Sobel operator 
§  10-times more accurate than Sobel 

(only for the direction) 
§  Errors stay typically below 0.5 deg 

Image courtesy: Förstner 
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2nd Derivatives 
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2nd Derivative – 1 Dimensional 

§  We can also express the second 
derivative of a function f 
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2nd Derivative – 1 Dimensional 

§  We can also express the second 
derivative of a function f 

 
§  with the kernel  
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2nd Derivative – 1 Dimensional 

§  The second derivative can again be 
computed via a single convolution  

§  Kernel  

§  Thus, the second derivative is given by 
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2nd Derivative – 2 Dimensional 

§  The second derivative are given 
through the Hessian matrix  

§  Consists of the individual partial 
derivatives 
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2nd Derivative Kernels in 2D 

smoothing 

smoothing 

2nd derivative 

2nd derivative 

1st derivative 1st derivative 
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Further Derivatives 

§  We can easily extend this concepts to 
higher-order derivatives 

§  Image processing often uses the first 
derivate, and sometime the second 
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Laplace Operator 

The Laplace operator can be used for 
edge detection and is defined as 
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Laplace Operator 

A smoother variant of the Laplace 
operator is 
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Laplace Operator Example 

Image courtesy: J. Krieger 
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Summary  
 
§  Linear filters as local operators 
§  Convolution as a defining framework 
§  Introduction of important filters 
§  Part 1: Box filter & Binomial filter 
§  Part 2: Gradient filters, 1st and 2nd 

derivatives, Sobel and Scharr operator 
§  There are several other operators 
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Literature 

§  Szeliski, Computer Vision: Algorithms 
and Applications, Chapter 3 

§  Förstner, Scriptum Photogrammetrie I, 
Chapter “Lokale Operatoren” 
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Slide Information 
§  The slides have been created by Cyrill Stachniss as part of the 

photogrammetry and robotics courses. 
§  I tried to acknowledge all people from whom I used 

images or videos. In case I made a mistake or missed 
someone, please let me know.  

§  The photogrammetry material heavily relies on the very well 
written lecture notes by Wolfgang Förstner and the 
Photogrammetric Computer Vision book by Förstner & Wrobel. 

§  Parts of the robotics material stems from the great 
Probabilistic Robotics book by Thrun, Burgard and Fox. 

§  If you are a university lecturer, feel free to use the course 
material. If you adapt the course material, please make sure 
that you keep the acknowledgements to others and please 
acknowledge me as well. To satisfy my own curiosity, please 
send me email notice if you use my slides. 
  
Cyrill Stachniss,  cyrill.stachniss@igg.uni-bonn.de 


