

Chapter 3 Coordinate Transformations applied to Geodetic Sensors

Module MGE-01: Coordinate Systems

Dr.-Ing. Christoph Holst & Dr.-Ing. Tomislav Medic

WS 2020/21

Institute of Geodesy and Geoinformation

- **1. Need for coordinate transformations**
- 2. Realization of sensor coordinate systems
- 3. Local transformations between sensors (Registration)
- 4. Transformation in global coordinate system (Geo-referencing)

Her Majesty: TOTAL STATION

Her Majesty: TOTAL STATION

- Large complex object more stations
- Single coordinate system necessary
- Local transformation between sensors (registration)

Main example: Building 3D model

Terrestrial laser scanner (TLS)

Step1: TLS Registration

Step1: TLS Registration

Step1: TLS Registration

Merging to one single point cloud <=>

Coordinate transformations

• **Registration** to local coordinate system x,y,z

Ζ

Point cloud

Mathematical approximation

Arbitrary local coordinate system

Χ

Step 2: Positioning on earth

- Transformation to global, earth centered coordinate system
- E.g., X,Y,Z_{ITRF} or X,Y,Z_{WGS84}
- Geo-referencing

- Official coordinates are split in position (2D) and height (1D)
- Position is (UTM-)projection due to curved earth

- Coordinate system of acquisition often not the one of interest
- Several different local coordinate systems => Merging in one of them => Registration
- 2. Sensor gives local coordinates but geocentric coordinates are needed => Transformation in global coordinate system => Geo-referencing

3. Sensor gives 3D geocentric coordinate system but official coordinates (2D+1D) are of interest => **Projection**

- 1. Need for coordinate transformations
- 2. Realization of sensor coordinate systems
- 3. Local transformations between sensors (Registration)
- 4. Transformation in global coordinate system (Geo-referencing)

GNSS Receivers

observables: x,y,z

Coordinate system: geocentric, ITRF2014 / WGS84

- Photogrammetry geometry from images
- Structure-from-Motion (SfM) point clouds

Camera

- observables: x,y
- Coordinate system: local, image coordinate system

Camera

Horizontal encoder: φ

Total station

Coordinate system: local, intersection of vertical, horizontal and collimation axis

 $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} d \cdot \sin \theta \cdot \sin \varphi \\ d \cdot \sin \theta \cdot \cos \varphi \\ d \cdot \cos \theta \end{bmatrix}$

• Spherical / polar to Cartesian coordinates θ , φ , $d \rightarrow x$, y, z

- observables: θ , φ , $d \rightarrow x$, y, z
- Coordinate system: local, intersection of vertical, horizontal and collimation axis

2D Laser Scanner

Ψ (measured with angular encoder)

augustt198.github.io

Autonomous driving

velodynelidar.com

bizjournals.com

- 1. Need for coordinate transformations
- 2. Realization of sensor coordinate systems
- 3. Local transformations between sensors (Registration)
- 4. Transformation in global coordinate system (Geo-referencing)

Local transformations

 $\mathbf{x}_i = \begin{bmatrix} x & y & z \end{bmatrix}_i^{\mu}$

 $\mathbf{X}_{i} = \begin{bmatrix} X & Y & Z \end{bmatrix}_{i}^{T}$

- Coordinates in starting system:
- Coordinates in target system:

• Euler angles: $\varepsilon_x, \varepsilon_y, \varepsilon_z$

$$\boldsymbol{R}_{3}(\varepsilon_{z})\boldsymbol{R}_{2}(\varepsilon_{y})\boldsymbol{R}_{1}(\varepsilon_{x}) = \boldsymbol{R}(\varepsilon_{x},\varepsilon_{y},\varepsilon_{z}) = \boldsymbol{R}$$

• Alternative: Axis-angle representations: θ , $\boldsymbol{r} = [r_1 \quad r_2 \quad r_3]^T$

$$\boldsymbol{R} = \begin{bmatrix} 1 & & \\ & 1 & \\ & & 1 \end{bmatrix} + \sin\theta \begin{bmatrix} 0 & -r_3 & r_2 \\ r_3 & 0 & -r_1 \\ -r_2 & r_1 & 0 \end{bmatrix} + (1 - \cos\theta) \begin{bmatrix} 0 & -r_3 & r_2 \\ r_3 & 0 & -r_1 \\ -r_2 & r_1 & 0 \end{bmatrix}^2$$

• Quaternions (not handled here)

7 DoF / 7 parameters:

- Scale change (1DoF)
 - Rotation (3DoF)
 - Translation (3DoF)

How to determine these 7 parameters?

- 7 or more observations (coordinates) in each system
 - 7 = analytical solution
 - >7 = adjustment (MGE-03 Statistics & Adjustment theory)
- 3 well distributed points (otherwise ill posed problem)
- known correspondences !

Determination of parameters

• 7 or more observations (coordinates) in each system

Determination of parameters

Determination of parameters

Using artificial targets

- 1. Artificial targets (e.g. prism, target, sphere)
- aimed (e.g. total station) or automatically detected (TLS)

Using measured object

- 2. Well-defined keypoints (e.g. corners)
- aimed (e.g. total station) or automatically detected (TLS)

Using measured object

- 2. Point clouds
- Most often solved by ICP

Using measured object

- Geometrical features (planar patches or edges)
- Varying in all 3 dimensions
- (modified transformation equation)

Alternative:

- Directly observing transformation parameters with additional hardware/sensors
- Most often used for partial solution (some parameters) reducing DoF
- Reducing number of parameters increases efficiency and accuracy of result
- (Complete solutions not covered here)

EDM (laser): Time-of-Flight (ToF)

- ε_x , ε_y are Euler angles in x- and y-direction
- If reference system is levelled, ε_x , ε_y equal inclinations
- Deviations from horizontal plane => measurable by inclinometer

- 3D sensors often contain compensator
- Compensator = Inclinometer + unit correcting θ, φ
- Requirement for compensator: course levelling of sensor
- $= \varepsilon_x = \varepsilon_y = 0$ if using only sensors with compensator

$$\begin{bmatrix} X' \\ Y' \\ Z' \end{bmatrix} = \lambda \mathbf{R}_3(\varepsilon_z) \mathbf{R}_2(\varepsilon_y) \mathbf{R}_1(\varepsilon_x) \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \\ t_z \end{bmatrix}$$

Most times
$$\lambda = 1$$
; $\varepsilon_y = 0$; $\varepsilon_x = 0$ Often at static data acquisition

$$\begin{bmatrix} X' \\ Y' \\ Z' \end{bmatrix} = \mathbf{R}_3(\varepsilon_z) \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \\ t_z \end{bmatrix}$$

Composition of registrations

Summary:

- using identical artificial points (targets)
- using measured object (keypoints, point cloud, geometric features)
- using additional hardware
- Combination

• Relative sensor registration with no 3D observations

- Observations in 3D (but within 1 plane ~2D)
- no targets, keypoints, planes
- Lines & point clouds

- 2D image coordinates (no 3D space)
- collinearity equations
- Scale μ issue (all 7 DoF)

Other reason for sensor registration

- collinearity equations
- Point correspondences

riegl.com

Other reason for sensor registration

- 2D laser scanner Lines falling on a plane
- Varying in all 3 dimensions
- Measurement correspondence over time

Change detection & deformation monitoring

• Registration of measurements in different time points

- 1. Need for coordinate transformations
- 2. Realization of sensor coordinate systems
- 3. Local transformations between sensors (Registration)
- 4. Transformation in global coordinate system (Geo-referencing)

- Different realizations of global coordinate systems
- See next lectures in MGE-01
- E.g., X,Y,Z_{ITRF} or X,Y,Z_{WGS84}
- Center = Center of certain ellipsoid
- X-axis = Greenwich
- Z-axis = rotation axis of earth
- Y-axis = completion of righthanded coordinate system

- Same equation
- Scale change (1DoF)
- Rotation (3DoF)
- Translation (3DoF)
- 6 DoF / 6 parameters

$$\begin{bmatrix} X'\\Y'\\Z' \end{bmatrix} = \mathbf{R}_3(\varepsilon_z)\mathbf{R}_2(\varepsilon_y)\mathbf{R}_1(\varepsilon_x) \begin{bmatrix} X\\Y\\Z \end{bmatrix} + \begin{bmatrix} t_x\\t_y\\t_z \end{bmatrix}$$

- Task for positioning on earth: transformation to global, earth centered coordinate system
- How to get the 6 parameters?
- using identical, artificial points that are already given in global coordinate system
- 2. Using additional hardware **that acquires data in global coordinate system**

- Using additional hardware that gives global information, e.g.:
- GNSS for t_x , t_y , t_z (most times)
- Two GNSS for ε_z
- Inclinometers for ε_x , ε_y
- Compass for ε_z

$$\begin{bmatrix} X' \\ Y' \\ Z' \end{bmatrix} = \mathbf{R}_3(\varepsilon_z)\mathbf{R}_2(\varepsilon_y)\mathbf{R}_1(\varepsilon_x) \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \\ t_z \end{bmatrix}$$

• ...Static or kinematic

Static geo-referencing

Mobile multi-sensor systems

Google.com

Mobile multi-sensor systems

• Geo-referencing by: $p^g = T^g_b(t_s)T^b_sp^s$

3D geo-referenced point cloud

- Transformation between sensor coordinate systems frequent task in geodesy
- Usually similarity transformation is used => 7 DoF
- Registration: Transformation between local coordinate systems
- **Geo-referencing:** Transformation in global coordinate system

- Förstner, W., Worbel, P. B.: *Photogrammetric Computer Vision*, Springer: Cham, Switzerland, 2016
- Ogundare, J. O.: Precision Surveying: The Principles and Geomatics Practice, Wiley: London, UK, 2015