Computer Vision and Remote Sensing

Lessons Learned

Wolfgang Förstner
Department of Photogrammetry
Institute for Geodesy and Geoinformation
Universitity Bonn
Outline

• Photogrammetry and its relatives
 – Remote Sensing: the family
 – Computer Vision: the cousin

• What did I learn?

• What did we learn from each other?
 – Feature based matching
 – Bundle adjustment
 – Bag of words model for object recognition

• What can we learn?
 – In research
 – In applications
Photogrammetry
• Since 19th century
 after invention of photography
• For mapping
• For close range applications
• Focus on exploitation of geometry

Remote Sensing
• Since 1970
 after launch of first satellites
• For geosciences
• For exploration
• Focus on exploitation of physics
Definition of Photogrammetry

Narrow sense:

Science to derive metric information from images

Wide sense:

Science to derive information from images

Difference to Computer Vision →
No difference to Remote Sensing →
Difference to **Computer Vision**
(e. g. subdomain „Physics based vision“)

application - vs. *method*-driven

same methods:
- Physics
- Image Processing
- Pattern Recognition
- Machine Learning
- Artificial Intelligence …
No difference to **Remote Sensing**

Geo is one application

High resolution satellites make geometry essential (in RS)

Geometric problems solved (in Ph)

- convergence
- overlap
- indistinguishable
Remote Sensing contains Photogrammetry
Our cousins

Computer Vision (CV) including Pattern Recognition (PR) and Machine Learning (ML) grow faster than Photogrammetry and Remote Sensing.
Situation

PR/ML most important partner for Computer Vision
What did I learn? (1/3)

• 1983 first contact:
 Franz Leberl's ISPRS WG 'Pattern Recognition in Photogrammetry'
 - 'Knowledge based aerial photo interpretation'
 - 'Saliency of Points'
 - 'Surfaces from mono (!) and stereo images'
 →
 - Seeing a wide new and field
 - Hearing a new language
 - New classes of problems

Everything vague

highly interesting

stimulating my curiosity
"Two roads diverged in a wood, and I—
I took the one less traveled by, and that has made all the difference."

Robert Frost
What did I learn? (2/3)

• 1984-1989
 – 3 months stay at Purdue
 – Workshops on Computer Vision
 – Visit of Stanford Research Labs

 →
 – Need for learning new tools
 information theory, heuristic search, graph matching
 – Openness of community
 personally, software exchange
 – Need for overcoming the language barrier (technical)
 What is structure from motion?
 – Accepting that CV people do Digital Photogrammetry
 Snakes, automatic stereo, interactive 3D building extraction
• Since 1990
 – Lecturing
 – Research in building extraction
 – Cooperation with CV and PR

→
 – How to teach Photogrammetry? Need for a common language

\[
k_x' = \frac{r_{11}(X - X_O) + r_{12}(Y - Y_O) + r_{13}(Z - Z_O)}{r_{31}(X - X_O) + r_{32}(Y - Y_O) + r_{33}(Z - Z_O)}
\]

\[
k_y' = \frac{r_{21}(X - X_O) + r_{22}(Y - Y_O) + r_{23}(Z - Z_O)}{r_{31}(X - X_O) + r_{32}(Y - Y_O) + r_{33}(Z - Z_O)}
\]

\[
x' = PX
\]

\[
P = KR[I_3 - X_O]
\]

– Questions: How to represent and use semantics and context? →
– Need for submitting papers at CV and PR conferences
 Double blind review process, acceptance rates of < 30 %
Examples of fruitful interaction

- Feature based matching
- Bundle adjustment
Basic idea from CV:

1981 Barnard/Thomson

Trans. on Pattern Analysis and Machine Intelligence

1. Detect distinct points
 Moravec operator: maximal minimal gradient

2. Find putative correspondences
 Measure graylevel differences

3. Find unique correspondencies
 Relaxation procedure

Three different theories
Modification from Geodesy:
1984 Paderes et al.
NASA Symp. on Math. Pattern Rec. and Image Analysis

1. Detect distinct points
 Maximal local expected precision

2. Find putatative correspondences
 Estimated precision

3. Find unique correspondencies
 Robust ML-estimate

one theory
Example result
Consequences in Photogrammetry

- Basis for many matching algorithms
 - Surface reconstruction
 - Automatic aerial triangulation
- Getting stimulated by CV research
 - Exploitation of scale space methods
 - Pyramids
 - Scale and rotation invariant features
 - Robust methods
 - Generalization to object recognition
 - Search in large data bases (CV)
 - Facade interpretation (Pho)
Orientation of images of weakly textured scenes

... use adequate features
Poorly textured room
• Lowe (2004): Distinctive image features from scale-invariant keypoints

• Förstner/Dickscheidt/Schindler (2009): Detecting Interpretable and Accurate Scale-Invariant Keypoints
Search objects in large data base

… use configurations of features
Particular object search

Find these landmarks ... in these images
Interprete facades

... use configurations of adequate features
Task: Given: rectified image of a facade
Derive: window structure
• Provide sample
• Learn corners (appearance and position)
1. Corners

2. Boxes

3. Aggregate
3. Aggregate
Bundle adjustment
Bundle adjustment

Basic idea from Photogrammetry
(Schmid 1957)

- Model perspective projection with distortions
- Take image measurements as noisy projections
- Optimally estimate all parameters
Consequences in CV

- The reference for all reconstruction tasks
- The workhorse for reconstructing large scenes
- Provide free code
Bill Triggs,
Philip McLauchlan,
Richard Hartley and
Andrew Fitzgibbon

This paper is a *survey* of the theory and methods of bundle adjustment *aimed at the computer vision community*, …

Most of the results *appeared long ago in the photogrammetry* and geodesy literatures, but many seem to be little known in vision, where they are gradually being *reinvented*.

By providing an accessible modern synthesis, we hope … to speed progress in visual reconstruction by promoting *interaction between the vision and photogrammetry communities*.
Trigss et al. 2000: Bundle adjustment

- **Gauss, Legendre ~1800**
 - Least squares, BLUE
 - Gaussian distribution
 - Gaussian elimination

- **Meissl 1962-5**
 - Free network adjustment
 - Uncertain frames
 - ‘Inner’ covariance & constraints

- **Baarda 1973**
 - S transforms & criterion matrices

- **Brown 1958-9**
 - Calibrated Bundle Adjustment
 - ~10’s of images

- **Brown 1964-72**
 - ‘Self-calibration’
 - ~5x less error using empirical camera models

- **Gyer & Brown 1965-7**
 - Recursive partitioning
 - ~1000 image aerial block

- **Baarda 1964-75**
 - Inner & outer reliability
 - ‘Data snooping’

- **Förstner, Grün 1980**
 - Photo-grammetric reliability
 - Accuracy = precision + reliability
 - Over-parametrization & model choice

- **Grün & Baltsavias 1985-92**
 - ‘Geometrically constrained multiphoto’ & ‘Globally enforced least-squares’ matching

- **Gauge freedom & uncertainty modelling**

- **Modern robust statistics & model selection**

- **Image-based matching**

- **Modern sparse matrix techniques**

Timeline:
- 1800
- 1960
- 1970
- 1980
- 1990
- 2000
References

Free software: bundle adjustment

Wolfgang Förstner

10. September 2009 CV+FE – lessons learned

Mbtuvqebufe Bvh/42-311
Bundler: Structure from Motion for Unordered Image Collections

Software written by Noah Snavely
Latest version: 0.3
Release date: May 4, 2009
Agarval et al.: Building Rome in a day (ICCV 2009)

Goal:
1. Use all images of rome from the internet (> 2 Mio.)
2. Make automatic bundle adjustment in 24 hours

Today: one order of magnitude slower
62 nodes with dual quad core processors

<table>
<thead>
<tr>
<th>Site</th>
<th># images</th>
<th># image pairs</th>
<th>CPU Time (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dubrovnik</td>
<td>57,845</td>
<td>498,982</td>
<td>22.5</td>
</tr>
<tr>
<td>Rome</td>
<td>150,000</td>
<td>2,712,301</td>
<td>21.0</td>
</tr>
<tr>
<td>Venice</td>
<td>250,000</td>
<td>6,119,207</td>
<td>65.0</td>
</tr>
</tbody>
</table>
Video

Dubrovnik

11,839,682 observations
2,662,981 points
57,845 images

Point cloud and cameras (varying focal length!) from bundle adjustment
Next step:

3D surface reconstruction

(➔ PhoWo 2013 ?)
What can we learn?

- **Research**
 - Educate our students
 - Techniques from CV/PR/ML
 - Openness
 - Submit papers
 - Cooperate (CV : Pho = 3 : 1)

- **Application**
 - Send developers to CV/PR conferences
 - Cooperate with universities:
 - Photogrammetrists which intensively cooperate with CV/PR
 - Photogrammetrists and CV/PR groups

... but ...
To travel is to discover that everyone is wrong about other countries

Aldous Huxley