0001
0002
0003
0004
0005
0006 clear all
0007 close all
0008
0009
0010
0011
0012
0013 addpath('Functions')
0014 addpath('Data')
0015
0016 display('--- analyse theoretical precision ---')
0017
0018 init_rand = 6;
0019 type_data = 6;
0020 type_robust = 1
0021
0022
0023
0024
0025
0026 out_C = 1;
0027 out_print = 0;
0028 Tol =0.15;
0029
0030 print_type = 0;
0031 plot_type = 0;
0032
0033 if init_rand==0
0034 init_rand=round(rand( sum(100*clock)))
0035 r=rand(3,1);
0036 end;
0037 rand('state',init_rand);
0038 randn('state',init_rand);
0039
0040
0041
0042 sigma_z=zeros(10,1);
0043 n=4
0044 d_max=10;
0045 for d=1:d_max
0046 [points,BB,delta_x,sigma_k,sigma_s,out_in,dem]=simulate_points_dem_15_flat(d,n);
0047 out_in=zeros(size(points,1),1);
0048
0049 Np = size(points,1);
0050
0051
0052
0053
0054 type_robust=0;
0055
0056 starttime = cputime
0057 [ds,S,Sigma,Np,Nr,Mc,ver,A,w,w_f,W] =...
0058 smooth_dem_robust_bilinear...
0059 (points,BB,delta_x,sigma_k,out_C,type_robust,type_data,out_in,...
0060 print_type,plot_type);
0061 complete_time_for_solution=cputime-starttime
0062
0063 figure
0064 hold on
0065 mesh(S);
0066 title(strcat('Height = \sigma_z, d=',num2str(2*d)))
0067 view([-33,63])
0068 sigma_centre=sqrt(S(2+(n-1)*d,2+(n-1)*d));
0069 sigma_z(d)=sigma_centre;
0070 end
0071
0072 std_z=sigma_z'
0073
0074 figure
0075 hold on
0076 d_range=1:d_max;
0077 plot(2*(1:d_max),sigma_z(1:d_max),'ob','MarkerSize',12)
0078 B=regress(sigma_z(d_range).^2,[ones(length(d_range),1),(2*d_range)'.^2])
0079 plot(2*(1:d_max),sqrt(B(1)+B(2)*(2*(1:d_max))'.^2),'-r','LineWidth',2)
0080 title(strcat('\sigma_z =',num2str(B(1)),' + ',num2str(B(2)),'d, (d > 1)'))