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1 Summary

We give three examples for parameter estimation and evaluation

1. Gauss–Markov model for linear regression with two unknowns with evaluation.

2. Gauss–Markov model for linear regression for similarity transformation with evaluation.

3. Gauss–Helmert model for linear regression for similarity transformation with evaluation.

We provide the specific models and equations for the examples.
The discussion includes general hints how to use the evaluation methods in other applica-

tions and how to report evaluation results in publications.
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Partly we refer to problems addressed in the book. The results with concrete numbers
derived with the Matlab-code, are given in example boxes. The background color green
indicates recommended procedures, red indicates pitfalls, other text has light grey background.

For the theory we refer to Chap. 4. References to sections are given as ‘PCV-NUMBER’,
e.g., PCV-4.2, references to equation as ‘PCV-(NUMBER)’, e.g., PCV-(4.138). For the soft-
ware we refer to the home page of the book http://www.ipb.uni-bonn.de/book-pcv/.

2 GMM for linear regression with two unknowns with evalua-
tion

The scope of this example is to demonstrate the estimation and the evaluation in the linear
Gauss-Markov model. The Matlab-script file is GMM/DEMOS-GMM/demos_GMM_regression.m
under http://www.ipb.uni-bonn.de/book-pcv/#cod.

2.1 The Model and the Estimates

The observations ln, n = 1, ..., N depend linearly on the time t. The intercept x1 and the
slope x2 are unknown, see Fig. 1.
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Figure 1: Model for Example 1: linear regression

We assume all observations to be uncorrelated and have the same standard deviation
σ := σln :

E(ln) = x1 + x2tn , D(ln) = σ2 . (1)

Collecting the observations, parameters and coefficients in the corresponding vectors and
matrices, namely

l =


l1
. . .
ln
. . .
lN

 , x =

[
x1
x2

]
(2)

and the partitioned design matrix

A
N×2

=


1 t1
. . .

1 tn
. . .

1 tN

 = [1 t] := [C ,D] with C = 1 and D = t . (3)

the model reads as
E(l) = Ax , D(l) = σ2IN = w−1IN , (4)

2

http://www.ipb.uni-bonn.de/book-pcv/
http://www.ipb.uni-bonn.de/book-pcv/#cod


see PCV-(4.34). This is the same model we use for the fitting line in Chap. 10.5 for deriving
the uncertainty of the 2D line through given points. The normal equation matrix can be given
explicitly

N =

[
Nw w

∑N
n=1 xn

w
∑N

n=1 xn w
∑N

n=1 x
2
n

]
, (5)

see PCV-(4.40). The estimated residuals are

v̂ = (x̂1 + x̂2ti)− l , (6)

see PCV-(4.41). A numerical example is given in the box on page 4. The estimated sum of
the squared residuals and the estimated variance factor are

Ω = w
N∑

n=1

v2n and σ̂20 =
Ω

N − 2
, (7)

see PCV-(4.81) and PCV-(4.80).
The theoretical and the empirical covariance matrices are

Σx̂x̂ = σ20N
−1 and Σ̂x̂x̂ = σ̂20N

−1 . (8)

The covariance matrix of the residuals is

Σvv = Σll − AΣx̂x̂AT . (9)

For getting insight into the structure of the result, we reduce the times ti to their centroid

tn = tn − µt with µt =

∑N
n=1 tn
N

(10)

and obtain the design matrix for the centred model

A(c) = [1 tn]n=1,...,N . (11)

Hence the new mode reads as
E(ln) = x

(c)
1 + x2t

(c)
i , (12)

where the intercept refers to the abscissa at centroid µt. A numerical example is given in the
following box. The the covariance matrix of the unknown parameters then is diagonal

Σx̂x̂ =
σ20

wN
∑N

n=1)t
2
n

[ ∑N
n=1 t

2
n 0

0 N

]
=
σ20
w


1

N
0

0
1∑N

n=1 t
2
n

 (13)

Hence the standard deviation of the estimated intercept in the centred model, which is at the
centroid, is

σx̂1
=

σ√
N
, (14)

which decreases with increasing number N of observations.
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Example 2.1: Linear regression with two parameters (1). Figure 2 shows the result of
an example generated with demos_GMM_regression.m and initialization of the random number
generator with init_rand=15. We will refer to this numerical example in the following.
The true values are given by:

x̃ =

[
0.5
1.0

]
, σ = 0.5 , t =


−1
1
2
14

 , l̃ =


−0.5
1.5
2.5
14.5

 , ẽ =


−0.6271
−0.3932
−0.5604
3.5861

 , l =


0.1271
1.8932
3.0604
10.9139

 .
(15)

The true errors ẽ result from sampling from N (0, σ2) with σ = 0.5. We also introduce an outlier
in order to demonstrate the difficulty to identify outliers. Observation l4 is changed by the error
∇l4 = −4; this error is 8 times the standard deviation of the assumed observational noise. The
estimated parameters and estimated residuals

x̂ =

[
1.1956
0.7008

]
, v̂ =


0.3678
0.0032
−0.4633
0.0922

 . (16)

Observe, this result can be obtained by just assuming the observations have the same standard
deviation, though this needs not be known.
If we would have ground truth, i.e., the true values for the parameters, we could report the
differences

x̂− x̃ =

[
0.1956
0.2008

]
. (17)

Without knowing anything about the observational process, i.e., the structure of the problem
and the level of the observational noise, this difference cannot be evaluated. Moreover, if
we – as a reader of such a result – would have a different experimental setup, using the same
functional model (here a linear regression with two parameters), e.g., more observations, possibly
distributed differently, then we would not be able to predict the performance in our situation.
This indicates, that even if we give the differences x̂− x̃ of the estimates to some ground truth,
the reader does not learn something from this difference, if not provided with more information;
this will be discussed below.

�

The standard deviation of the slope is

σx̂2
=

σ
N∑

n=1

t
2
n

. (18)

With the root mean square distance of the observed times from their centroid

RMSEt :=
1

N

√√√√ N∑
n=1

t
2
n . (19)

We hence have the standard deviation of the estimated slope

σx̂2
=

σ√
N

1

RMSEt
. (20)

A numerical example is given in box on page 7.
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Figure 2: Result of regression. From top left to bottom right: (1) original data ln; (2)
estimated residuals v̂n, (3) redundancy numbers rn; (4) estimated errors ∇ln; (5) minimal
detectable outliers ∇0ln; (6) test statistics zn; (7) sensitivity factors µn. Explanation see
text.

2.2 The Estimation

The estimation is realized in the Matlabfunction GaussMarkovModelLinear.m. It in a first
step follows Alg. 1, PCV-p.91. An additional routine diagnostics_1d.m performs the sensi-
tivity analysis. Given a set rU of parameters of interest it determines all diagnostic parameters
of interest:

• the covariance matrix of the estimated parameters

Σx̂x̂ = (ATW llA)−1 (21)

assuming the a priori variance factor is σ20 = 1. It allows to derive the standard devi-
ations of the estimated parameters σx̂u

=
√

Σx̂ux̂u
from the diagonal elements of the

covariance matrix. It does not depend on real observations, but only on the mathemat-
ical model of the design, i.e., the geometric configuration and the assumed uncertainty
of the observations.

• the residuals v̂i and the estimated varaince factor

v̂n = aT
n x̂ + an − ln and σ̂20 =

v̂TW llv̂

N − U
. (22)

• the test statistics zn (PCV-(4.284))

zn =
−v̂n
σv̂n

. (23)
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• the redundancy numbers as diagonal elements of the redundancy matrix (PCV-(4.61))

rn = Rnn . (24)

• the minimum size ∇0li of detectable outliers (PCV-(4.304), (4.300))

∇0li = δ0
σli√
ri
. (25)

We use δ0 = 4.13, see PCV-p.67, Table 3.2.

• the sensitivity factor w.r.t. all 4 parameters (PCV-(4.292))

µx,n =

√
1− rn
rn

; (26)

• the sensitivity factor w.r.t. the selected set rU of parameters (in PCV-(4.296) referred
to as parameter set k)

µx1,n =

√
un
rn

. (27)

2.3 Evaluating the Precision of the Estimates

2.3.1 Simulations vs. Theoretical Derivations

We have three methods to derive the theoretical precision of estimates, which in a first step
are equivalent:

1. Using the Cramer-Rao bound based on the numerical determination of Σx̂x̂ for well
selected cases, see PCV-(4.49). This requires only one simulation and estimation for
each configuration.

2. Using the Cramer-Rao bound based on an algebraic derivation. In this case we derive
algebraic expressions for the design matrix, the normal equation matrix and its inverse,
as in PCV-13.3.6.1 done for the relative orientation of the image pair. This gives di-
rect insight into the dependencies of the standard deviations of the parameters of the
configuration.

3. Using sampling techniques as described in PCV-4.6.8.2: For each configuration (choice
of the functional and mathematical model) this requires K > 25 samples and therefore
estimates for obtaining an accuracy of better than 5%.

Depending on the complexity of the problem, we can choose between them.
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Example 2.2: Linear regression with two parameters (2). The following information
presumes, that some a priori standard deviation σ of the observations is known, i.e., the user of
the estimation software knows how accurate the observations are.
All residuals are below σ, hence the result appears fine, though we know there is an outlier in
the 4-th observation.
The estimated variance factor is

σ̂0 =

∑N
n=1 v̂

2
n/σl2n

N − U
= 0.8467 . (28)

For determining σ̂0 we exploit the assumption, that the observations are mutually uncorrelated.
The estimated variance factor σ̂2

0 is not significantly deviating from the a priori value σ2
0 = 1.

However, since the redundancy R = N −U = 4− 2 = 2 is very low, this value is very uncertain,
see the discussion on the estimated variance factor in PCV-4.2.3.

The theoretical covariance matrix and the theoretical standard deviations of the parameters are

Σx̂x̂ =

[
+0.0915 −0.0072
−0.0072 +0.0018

]
, σx̂1

= 0.3025 , σx̂2
= 0.0426 . (29)

This is the Cramer-Rao bound, the lower bound for the achievable precision in this experiment,
i.e., for this design, the distribution t of the observations, the assumed model and the assumed
noise level σ.
The evaluation of the deviations of the estimates x̂ = (1.1956, 0.7008) from the ground truth
x̃ = (0.5, 1.0) now can be related to the theoretical covariance matrix, which depends on both,
the design of the experiment and the assumed noise level of the observations. This deviation is
significant, since the test statistic (the Mahalanobis distance of x̂ from x̃)

X = (x̂− x̃)TΣ−1
x̂x̂ (x̂− x̃) = 53.45 > χ2

2,0.99 = 9.21 . (30)

is larger than the tolerance, see the test PCV-(3.32).
Such a comparison is valuable for both the author (having performed the experiment and pub-
lishing this in a paper) and the reader (of a conference or journal paper): It tells whether all
information of the observations is exploited. For the author this indicates, that there appear
not to be any hidden systematic errors left. For the reader this indicates, that the method
appears to be adequately designed. This of course has to seen in the context of the size of the
experiment, which here is too small.

�

Before trusting the Cramer-Rao bound and the algebraic derivations, it is useful to perform
comparisons between these measures and the result of simulations, in order to get experience
for which type of problems simulations appear necessary.

The checks of the implementation as discussed in PCV-4.6.8 are based on the required
coherence between the simulations and the other “one-shot” methods using the Cramer-Rao.
The evaluation can be based on statistical tests, which allow evaluation as a function also of
K. The test only work, if the underlying model is linear enough, i.e., second order effects
do not disturb. In order to avoid confusion between different sources for deviations, very
small standard deviations (for avoiding second order effects) and large number of iterations
(in order to avoid biased estimates) need to be chosen.

A numerical example is given in box on page 8.
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Example 2.3: Linear regression with two parameters (3). We want to check the
correctness of the implemented software. For this we refer to PCV-4.6.8 and generate a
sufficiently large number of samples for the observations for a fixed parameter vector, following
the mathematical model of the estimation procedure, hence without outliers. We choose K = 25

in order to obtain accurate results for the check. We refer to the result with init_rand=15.
The check leads to the following results:
• The mean of the estimated variance factors is s2 = 0.6654. This appears small compared

with the expected value E(σ̂0
2) = 1. However, the confidence interval [Tl, Tu] for a

significance level is [0.4981, 1.6983]. Hence we have

s2 = 0.7672 ∈ [0.5593, 1.5923] , (31)

and the alternative hypotheses, that the estimated variance factors significantly deviate
from 1, is to be rejected.

• The theoretical covariance matrix and the empirical covariance matrix, derived from
K = 25 estimated parameter vectors x̂k are

Σxx =

[
+0.0915 −0.0072
−0.0072 +0.0018

]
, D(x̂) =

[
0.0834 −0.0065
−0.0065 0.0021

]
. (32)

The test statistic X2 (see (4.358)) for checking, whether the estimated covariance matrix
significantly deviates from the theoretical covariance matrix, is within the confidence
interval:

X2
Σ = 0.7528 ∈ [0.0717, 12.8382] . (33)

• Finally, we check whether the estimated parameters are biased using PCV-(4.360). The
mean of the estimated parameters is m̂x̂ = [0.5479, 1.0070]T. The Mahalanobis distance
from the true parameter vector [0.5, 1.0] also lies within the confidence region

X2
bias = 1.0756 ∈ [0.0100, 10.5966] . (34)

Hence, we have no reason to assume the implementation has errors.
�

2.3.2 The Ideal Dependencies

The theoretical precision of the result is representative for many estimation problems. We
summarize and interprete these results, and discuss its relevance for other estimation problems.

Recall, the theoretical precision of the estimated parameters is:

σx̂1
=

σ√
N

and σx̂2
=

σ√
N

1

RMSEt
(35)

• The standard deviations of the estimates σxu linearly increase with the standard devi-
ation σ of the observations.

• The standard deviations decreases with the square root of the number N of observations.
This strictly only holds for the centroid. The standard deviation of the slope only
decreases with

√
N if the average distance of the observations from the centroid remain

unchanged. This holds (approximately) if the density of the observation over time is
changed, but the time interval tN−t1 remains constant. This often is a reasonable model:
for example when analysing the absolute or relative orientation of images using well
distributed points in the images, then the average spread (RMSEx) would characterize
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the distribution of the observed image points independent of the number of image points.
Then the standard deviations of the pose parameters will approximately decrease with
1/
√
N , where N is he number of points in the image.

The graph of y = 1
√
N however visually is similar to the graphs of a = 1/N or y =

1/ logN . Showing the decay of the standard deviations of the parameters therefore
should be accompanied by a graph, showing

√
Nσx̂2

=
σx̂2

RMSEt
(36)

This ideally does not depend on the number of observations, if the configuration does
not change, only the density of the observations. Deviations easily can be seen.

• The standard deviation of the slope decreases linearly with the width RMSEt of the
data. This is typical for geometric problems, where the observed features “carry” the
information: The larger the width of the data, the more precise the solution. The width
in structure from motion problems may refer to

– the coverage of the image area,

– the viewing angle,

– the length of a straight line segment, or

– the area of a planar regions covered by 3D points.

The special structure of a geometric problem may also lead to other dependencies of
the width of the data: As an example: the standard deviation of the rotation angles (ω
and ϕ) of a camera across the viewing direction decrease quadratically with the width
d of the image area covered by image features. Here, a plot of d2σω for varying d should
show no dependency on d.

Numerical examples are given in the box on page 10.

2.3.3 Causes for Deviations from the Ideal Dependencies

Often these dependencies are derived by simulations to demonstrate the “robustness” of the
solution (actually the theoretical precision): showing the uncertainty of the estimated param-
eters as a function of the noise added to the observations. This is derived by repeating the
estimation K times, and reporting the RMSE of the parameters as a function of σ. If the
number K of samples is large enough the linear dependency should be visible in the graph.

Deviations from the linearity may either be have different causes, e.g., :

• a too low number K of samples. The relative precision of the estimated standard
deviation is appr.

√
1/K. For achieving a 5% accuracy at least K = 25 samples need

to be taken.

• the influence of the linearization of a non-linear model, see the discussion in Sect. 2.7.6.

• a lack of convergence of an iterative estimation scheme. This may even occur for a linear
problem, if no direct solution, e.g., by Gaussian elimination is used to solve the normal
equations, but e.g., a conjugate gradient method.
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Example 2.4: Linear regression with two parameters (4). We want to demonstrate
dependencies of the noise level σ using simulated data, and discuss how to visualize such results.

We repeat the simulations used for checking the correctness of the implementation for the fol-
lowing noise levels:

σ ∈ [0.01, 0.05, 0.1, 0.15, 0.20] , (37)

and visualize the corresponding standard deviations from the empirically determined covariance
matrices (32), right. There, for σ = 0.5 we would obtain σ̂x̂1

= 0.2889 and σ̂x̂2
= 0.0453. The

red lines in the top row of the figure shows the standard deviations σ̂x̂i
(σ), i = 1, 2 for the two

parameters. They approximately increase linearly with σ; the theoretical increase is shown as
dashed blue line. The discrepancies are due to the number K = 25 of samples used for the
simulation, which causes a relative error of 5%. This blue dashed curve usually is not known,
unless for a single choice of σ the theoretical covariance matrix Σx̂x̂ is determined, which for
equally weighted observations is

Σx̂x̂ = σ2(ATA)−1 , (38)

see (PCV-(4.49)). A linear dependency easily can be mistaken for an affine dependency, where
there is an offset at σ = 0, if the simulations do not start with a very small sigma.

Standard deviation of the the parameters as a function of the noise level. The empirical
dependency is given in red, the theoretical dependency is given in dashed blue. Top
left: Standard deviation σ̂x̂1

(σ). The dependencies should linearly increase. Top right:
Standard deviation σ̂x̂1

(σ). Bottom left: Standard deviation σ̂x̂2
(σ)/σ. Bottom

right: Standard deviation σ̂x̂2
(σ)/σ. The dependencies here should be a constant

If not a very small noise level σ for the observations is included in the simulations, it is recom-
mended to visualize the ratio

r1(σ) =
σ̂x̂1

(σ)

σ
, (39)

which should be a constant. This easily can be checked visually; see the bottom row.
�

• a Levenberg-Marquardt solution is used in the presence of a singular normal equation
system. Hence, the geometry of the problem represents a degenerate configuration.
Then the unknown parameters are not estimable, and the regularizer enforces a solution
close to the one yielding a minimum norm for the covariance matrix of the unknown
parameters. Then the estimates depend on the approximate values. This might lead to
a deviation of the linear relationship between the RMSE for the unknown parameters
and the assumed noise standard deviation.
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Example 2.5: Linear regression with two parameters (5). Similarly as for the noise
standard deviation, we want to demonstrate dependencies on the density of the observations using
simulated data, and discuss how to visualize such results. We therefore assume the observations
to be regularly spaced in a fixed interval, and vary N . We assume this interval to be 100, and
the noise standard deviation to be 0.2.

We assume the observations are taken in a fixed interval, and vary N . For the sequence

N ∈ [4, 6, 8, 11, 16, 23, 32, 45, 64, 91, 128, 181, 256, 362] (40)

the red line in the top row in Fig. 2.3.3 shows the estimated σ̂x̂i
, i = 1, 2. The standard deviations

are decaying, as expected.

Standard deviation of the the parameters as a function of observational density The
empirical dependency is given in red, the theoretical dependency is given in dashed
blue. Top left: Standard deviation σ̂x̂1

(N). Top right: Standard deviation σ̂x̂2
(N).

The theoretical dependencies follow approximately 1/
√
N . Bottom left: Standard

deviation
√
N

estσx̂1
(N). Bottom right: Standard deviation

√
N σ̂x̂2

(N). The dependencies here
should be a constant

In order to confirm the dependency on N , namely a decay with 1/
√
N , we show

r2(N) =
√
N σ̂x̂i

(N) , (41)

in the bottom row. It should be a constant.
Often the level of the theoretical precision is not known or difficult to obtain, e.g., since the
software does not provide the standard deviations of the estimates. In this case the blue dashed
curves in top row could be replaced by a best fitting function σx̂i

= ai/
√
N in order to visually

prove the type of dependency, and avoid the normalize plots in the bottom row.
�

• inconsistencies between the simulated data and the used model. Hence the simulation
checks both: the program for generating artificial data and the estimation routine.

• suboptimal implementation of the simulation or the estimation.
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2.4 Testing and the Sensitivity of the Estimation

The evaluation of the result can be based on useful measures for identifying outliers and
weaknesses in the geometric configuration, see the box on page 14 and Fig. 2, p. 5.

2.4.1 Detectability of Outliers and Testing

The largest residual is v̂3 = −0.463, much larger in magnitude than v̂4 = 0.092, though we
know that there is an outlier in l4.

To obtain insight into the geometry of the observational design we investigate the redun-
dancy matrix,1 which shows how deviations in the observation influence the residuals.

Relating the observations to the centroid the redundancy matrix is

R = I − A(ATA)−1A = I − 11T

1T1
− t t

T

t
T
t
. (42)

or with the mean position RMSEt

R = I − 1

N
11T +

1

N

t t
T

RMSE2
t

. (43)

In our case we obtain

∇v̂ = −R∇l with R =


0.5688 −0.3587 −0.3225 0.1123
−0.3587 0.6848 −0.2935 −0.0326
−0.3225 −0.2935 0.7210 −0.1051
0.1123 −0.0326 − 0 .1051 0.0254

 . (44)

Hence, even if the outlier in observation l4 would have a much larger size, the effect onto the
residual of observation l3 would be larger than the effect onto v̂4. It can be seen from the ele-
ments of the redundancy matrix: Since the off-diagonal term r34 = −0.1051 is approximately
4-times larger than the redundancy number, namely r4 = 0.0254|r43| > r4, residual v̂3 is more
influence by an outlier in l4, than the corresponding residual v̂4.

Using the relative distances

dn =
tn

RMSEt
with |dn| ≤

√
N − 1 . (45)

the redundancy numbers rn thus are

rn = 1− 1 + d2n
N

= 1− un ∈ [0, 1] . (46)

They obviously sum to the redundancy R = N − U = N − 2.
The redundancy numbers show two extreme distribution.

• If the observations are equally spaced, e.g., tn = t0 + n∆t then the redundancy of the
middle observation (assuming N is odd) r(N+1)/2 = (N−1)/N , whereas the redundancy
number of the first (or the last) observation is r1 = (N − 1)/N (N − 2)/(N + 1) <
r(N+1)/2. Hence if the number of observations is larger than 40, all redundancy numbers

1The redundancy matrix only is symmetric if all observations have the same weight.
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are above 0.9. This simplifies the analysis, and allows to work with approximations. The
first approximation for the redundancy numbers

rn ≈ rn =
R

N
(47)

just assumes the redundancy numbers do not vary too much; this approximation is
assumed in the variance analysis using the triangulation, see PCV-15.4.1.3, Eq. (15.132).
The second approximation is rn ≈ 1 assuming U � N . Then also R ≈ I , which simplifies
the analysis of the residuals, as they are assumed to be uncorrelated.

• If N − 1 of the observations are clustered and one observation is far off, we obtain the
maximum redundancy number rn ≈ 11/(N − 1) for the observations in the cluster and
rn ≈ 0 for the observation far off, since it is necessary for determining the slope of the
line. Hence, no approximation of the redundancy numbers can be derived, and they
need to be used for a reliable analysis.

Testing the residuals is mandatory if outliers are to be expected. The standardized resid-
uals

zn =
−vn
σvn

=
−vn

σln
√
rn
, (48)

via the redundancy number rn take the geometry into account. They are more sensitive if
the redundancy number is small, i.e., at the borders of the observations. A less sensitive test
statistic for outlier detection is the normalized residual

z∗n =
−vn
σln

. (49)

The detectability of outliers can be characterized by the minimum size of an outlier which
can be detected reliably by a statistical test. Following PCV-(4.285) and PCV-(4.289) we
have this minimum size of a detectable outlier for the two tests

∇0ln = δ0
σln√
rn

and ∇∗0ln = δ0
σln
rn

=
1
√
rn
∇0ln . (50)

They differ by a factor 1/
√
rn ≥ 1. Hence is rn is small, say below 0.1, we not only see just

10% of the causing outlier in the residuals, but – in our example – instead of ∇0ln ≈ 12σn for
the statistical test we can only find outliers larger than ∇∗0ln ≈ 30σl.

2.4.2 The Theoretical Sensitivity w.r.t. all Parameters

We now analyse the sensitivity of the result w.r.t. to possible outliers.
The sensitivity factor w.r.t. all parameters is

µx,n =

√
1− rn
rn

=

√
1 + d2n

N − (1 + d2n)
. (51)

Leverage Points: The effect of observations, besides the number N of observations,
essentially depends on the relative distance of the observation to the centroid. Fig. 3 shows
this dependency for the case N = 10. Obviously, observations with small redundancy number
have a large influence onto the estimated parameters. Such points are called leverage points,
see PCV p. 127.

13



Example 2.6: Linear regression with two parameters (6). We collect the decisive
numbers w.r.t. outlier detection. We have the following indicators (see Fig. (2), p. 5)

n vn rn ∇̂ln zn z∗n ∇0ln ∇∗
0ln

1 0.3678 0.5688 -0.6466 0.9754 0.7356 2.6518 3.5159
2 0.0032 0.6848 -0.0047 0.0078 0.0064 2.4169 2.9206
3 -0.4633 0.7210 0.6425 -1.0911 -0.9265 2.3554 2.7739
4 0.0922 0.0254 -3.6362 1.1582 0.1844 12.5584 78.8571
Evaluation of outlier detection. We assumed δ0 = 4, see PCV, Table 3.2, p. 67

Observe the effect of using a suboptimal, non-sufficient test statistic z∗n: (1) the test statistic z∗n
(in this example) points towards a wrong observation, (2) outliers must be large by a factor of at
least 79 of their standard deviation to be detectable.
Reporting these numbers (except z∗n and ∇∗

0ln) for visual inspection of the result may be appro-
priate for problems with a not too large number of observations. A summarizing report however
is useful, where the extreme values are collected together with an indicator whether they are
acceptable. These extreme numbers are part of a self-diagnosis of the estimation procedure.

The minimum redundancy number belongs to the 4-th observation:

r4 = 0.025 . (52)

It indicates, that if the observation is changed by some amount, the effect onto the corresponding
residual is only approximately 2.5% of that amount. The other 97.5% of this amount influence
the parameters, as we will see, when analysing the sensitivity of the estimates.
The estimated size of a possible outlier in this observation is

∇̂l4 =
−v̂4
r4

= 3.64 , (53)

which is in the right order of magnitude.
A statistical test, does not indicate an outlier: the maximum test statistic occurs at the 4th
observation:

z4 = − v̂4
σv̂4

= 1.16 ≤ 2.58 . (54)

It correctly points towards the erroneous observation, though it is not significant; for a signifi-
cance level of S = 99% the two-sided test has a non-rejection region [−2.58,+2.58].
The largest size ∇0ln of a detectable outlier, when using a statistical test with zn, is in obser-
vation l4, namely

∇0l4 = 12.56 . (55)

An outlier in this observation needs to be larger than 25 times (!) the standard deviation of
σ = 0.5 to be detectable with a minimum probability of 80%. This three times larger, than the
outlier of size ∇l4 = −4 we introduced.

�

2.4.3 The Theoretical Sensitivity w.r.t. Centroid

We now investigate the sensitivity of then result for the case, that we are only interested in
one of the two parameters. We start with the sensitivity w.r.t. the centroid, i.e., the value
f(µt) with f(t) = x1 + x2t and µt =

∑
n tn/N .

The question is: How much influence does a non detectable outlier in one of the obser-
vations have onto the centroid. Hence the slope of the line is of no interest and treated as a
nuisance parameter. This is like we would be only interested in the position of an object in
3D space, and not interested in his orientation (rotation matrix).
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Figure 3: Sensitivity factor µx,n as a function of the relative distance d of the observation
from the centroid. For leverage points, i.e., single points lying far apart from the others the
relative distance is large. Changes in the corresponding observation have a large influence on
the parameters

We eliminate the scale following PCV-(4.122) and obtain the part C of the reduced design
matrix:

C = C = 1 and Σx1x1 = σ2
1

N
. (56)

We now need the value ux1n, see PCV-(4.128),

ux1,n =
1

N
. (57)

Therefore the sensitivity factor w.r.t. to the centroid is, see PCV-(4.296)

µx1,n =

√
un
rn

=

√
1

N − (1 + d2n)
≤ µx,n . (58)

Figure 4 shows the dependency of the sensitivity factor µx1,n on the relative distance of
an observation to the centroid. It is significantly smaller than µx,n, since parts of the non
detectable errors are absorbed by the slope, which is a nuisance parameter.

2.4.4 The Theoretical Sensitivity w.r.t. Slope

In a similar manner we can analyse the sensitivity of the estimated slope. This is similar to
analysing the sensitivity of the estimated rotation of an object, observed by a motion capture
system, taking the 3D coordinates of the centre of gravity as nuisance parameters.

Here we reduce the normal equation system to the slope, and obtain the reduced design
matrix

D = D = t and Σx2x2 = σ2
1

NRMSE2
t

. (59)

Here we now need ux2n:

ux2,n =
t
2
n

NRMSE2
t

=
d2

N
. (60)
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Figure 4: Sensitivity w.r.t. the centroid (red) compared to the sensitivity w.r.t. all parameters
(green). Moderate leverage points mainly influence the slope, hence have only a limited
influence onto the centroid. Only in extreme situations, where the distance of a point is very
far off, non-detectable outliers are large enough to still have an influence on the centroid

Therefore the sensitivity factor w.r.t. to the slope is

µx2,n =

√
d2

N − (1 + δ2n)
≤ µx,n (61)

The dependency of the sensitivity factor µx2,n on the relative distance of an observation to
the centroid is shown in Fig. 4. Obviously the difference is largest for points close to the
centroid, reducing the sensitivity factor to 0: this is plausible, since these observations have
no influence on to the slope at all.

Figure 5: Sensitivity w.r.t. the slope (red) compared to the sensitivity w.r.t. all parameters
(green). Points close to the centroid have no influence on the slope, as to be expected

3 Gauss–Markov Model for Planar Similarity Transformation
with Evaluation

This section gives more details on the estimation of a similarity transformation used for
generating Fig. 4.11. It at the same time explains the corresponding Matlab source file
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fig_4_11_test_sensitivity_factors_GMM_similarity.m.

3.1 The Mathematical Model

The geometric model is the following[
x′i
y′i

]
=

[
axi − byi + c
bxi + ayi + d

]
. (62)

It holds for the true or expected values.
We assume the coordinates xi = [xi, yi]

T are given fixed values, the transformed coordi-
nates x′i = [[x′i, yi]

T are observed and the 4 parameters [a, b, c, d] are unknown. We assume
the observed coordinates have the same uncertainty, with covariance matrix Σx′

ix
′
i

= σ2I 2.
Figure 6 shows

Figure 6: Results and diagnostic parameters for a similarity transformation, σ = 0.01 m.

We collect the N = 2I observations (lines 93/94) and the U = 4 unknown parameters
(lines 69) in the vectors

l :=


x′1
. . .
x′i
. . .
x′I

 and x :=


a
b
c
d

 . (63)

The N × U design matrix is (see lines 95/96) is

A = [AT
i ] =


[
xi −yi 1 0
yi xi 0 1

]
︸ ︷︷ ︸

AT
i

∣∣∣∣∣∣∣∣∣∣
i=1,...,I

 . (64)
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The Gauss–Markov model reads

l + v = Ax + a , Σll = σ2IN , (65)

with the constant vector a = 0. Observation wise this is

li + vi = AT
i x , Σlili = σ2I 2 , (66)

A numerical example is given in the box on 18
Example 3.7: Similarity transformation (1). Figure 6 shows the result of a similar-
ity transformation using GaussMarkovModelLinear_groups.m with initialization of the random
numbers with init_rand= 15. We used this configuration for generating the images in PCV-
Fig.4.11. We will refer to this figure in the following. The true values are given by:

x̃ =


2.0
0.5
3.0
−2.0

 , σ = 0.01 , [(xi, yi)] =


−7.0 7.0
1.0 1.0
2.0 2.0
−1.0 −2.0
−2.0 −1.0

 , l̃ =


−14.5 8.5

4.5 0.5
6.0 3.0
2.0 −6.5
−0.5 −5.0

 . (67)

The true errors ẽ are generated as sample from N (0, σ2).

ẽ =


0.0159 0.0003
0.0033 0.0121
0.0026 0.0038
0.0108 0.0072
−0.0082 0.0204

 l =


−14.4841 8.5003

4.5033 0.5121
6.0026 3.0038
2.0108 −6.4928
−0.5082 −4.9796

 . (68)

The estimated parameters and the residuals, shown in Fig. 6 upper left, are

x̂ =


1.9986
0.4996
3.0023
−1.9899

 , v̂ =


−0.0008 0.0030
−0.0019 −0.0038
−0.0022 0.0027
−0.0079 0.0061
0.0129 −0.0080

 . (69)

�

3.2 The Estimation

The estimation is realized in the Matlab function GaussMarkovModelLinear_groups.m. It
in a first step follows Alg. 1, PCV-p.91. An additional routine diagnostics_GMM_multi_d.m
performs the sensitivity analysis. Given a set rU of parameters of interest it determines all
diagnostic parameters of interest:

• the covariance matrix of the estimated parameters

Σx̂x̂ = (ATW llA)−1 (70)

assuming the a priori variance factor is σ20 = 1.

• the residuals v̂i and the estimated variance factor

v̂i = AT
i x̂ + ai − li and σ̂20 =

v̂TW llv̂

N − U
(71)
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• the test statistics Xi (PCV-(4.302))

Xi = v̂T
i Σ
−1
v̂iv̂i

v̂i . (72)

• the diagonal d× d block R ii of the the redundancy matrix R (PCV-(4.299))

R ii = Σv̂iv̂iW lili . (73)

• the minimum size ∇0li of detectable outliers (PCV-(4.304), (4.300))

∇0li = δ0

√
λmax(R−1ii Σlili) . (74)

We use δ0 = 4.13, independent on the dimension. This is a useful choice if the group
size of the observations is not too large. As can be seen in Table 3.3, PCV-p.68, in our
case of d = 2 this corresponds to applying a test with significance number α = 0.3%
and requiring a minimum power of β0 = 80% for finding an outlier.

• the sensitivity factor w.r.t. all 4 parameters

µx,n =

√
λmax(R−1ii − I d) ; (75)

From PCV-(4.310) we have Σ
l̂i l̂i

Σ−1v̂iv̂i
= (Σlili −Σv̂iv̂i)Σ

−1
v̂iv̂i

= ΣliliΣ
−1
v̂iv̂i
− I 2 = R−1ii − I 2.

• the sensitivity factor w.r.t. the selected set rU of parameters (in PCV-(4.315) referred
to as parameter set k)

µx1,n =

√
λmax(U r U ,ii R−1ii ) . (76)

This holds since U r U ,ii = CT
i Σr U r UC iW lili (see PCV-(4.125))

The main results for the example are collected in the box on 21. It explicitly addresses tools
for self-diagnosis:

• The covariance matrix or the standard deviations of the estimated parameters tell the
sensitivity of the result w.r.t. randm errors in the observations.

• The estimated variance factor indicates the overall consistency of the model with the
data. Here it can be determined from

σ̂20 =

∑N
i=1 v̂

T
i W v̂iv̂i v̂i

N − U
=

∑N
i=1 |v̂i|2/σ2

2I − 4
with σ̂0

2 ∼ FN−U,∞ . (77)

The first expression for determining the estimated variance factor assumes the observa-
tional groups li to be uncorrelated, but may have individual and full covariance matrices
Σlili = W−1

lili
. The second expression exploits the assumption that all points have the

same isotropic uncertainty Σlili = W−1
lili

= σ2I 2. cFor a discussion on the evaluation of
the estimated variance factor see PCV-4.2.3.

• The maximal residual max(vn) (or max(|vi|)) should always be reported, though, if the
design is not homogeneous it does not tell whether there are no outliers. Observe, if the
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observations have the same standard deviation σ and are uncorrelated, the RMSEv of
the residuals (the dimension of the observational groups is d)

RMSEv =

√√√√ 1

N

N∑
n=1

v2n =

√√√√ 1

dI

N∑
i=1

|vi|2 (78)

is related to the variance factor by

σ̂20 =
N

N − U
1

σ2
RMSE2

v , (79)

a result which allows us to statistically test the root mean square error. If the observa-
tions have different weight or are correlated, the RMSEdoes not follow a χ2-distribution;
it does not lead to a sufficient test statistic, since the prior knowledge about stochastical
model is not used.

• The maximal redundancy number min(rn) should be above 0.1.

• The maximum test statistic max(zn) should always be reported in order to be sure
that the statistical test dose not suggest an outlier to be present, if it remains in the
non-rejection region which can be derived from the χ2-distribution.

• The maximum just detectable outlier max(∇0ln) indicates in a application oriented way
whether the geometry allows to identify outliers. Observe, the value 0.102 is more
than 10 times the standard deviation. This measure only is relevant if the goal of the
estimation is to find outliers.

• The maximum sensitivity factor max(µx,n) should always be reported. It should be lass
than5 or 10, since then non-detectable outliers have an influence of less than 20 or 40
times the standard deviation of the resultant estimates.

• The maximum sensitivity factor max
(
µxr U ,n

)
is very useful if the goal of the estimation

is to estimate the parameters in rU , and the user wants to have a guarantee that non-
detectable outliers do not perturb the result. Observe, this sensitivity factor may be
small, even if quite large outliers may stay undetected.

Such a summarizing self-diagnosis is useful for a quick evaluation of the quality of the result
of the estimation. Visualizing the individual numbers, as in Fig. 6, of course needs to be
adapted to the individual estimation problem. If the estimation process is one module within
a chain of modules, the characterizing numbers may be used by the subsequent module.

20



Example 3.8: Similarity transformation (2). The quality of the result of the estimation
needs to be documented. The covariance matrix of the estimates is

Σx̂x̂ = 10−4


0.0102 0 0.0142 −0.0142

0 0.0102 0.0142 0.0142
0.0142 0.0142 0.2398 0
−0.0142 0.0142 0 0.2398

 (80)

Observe, the parameters x̂1 = â and x̂2 = b̂ representing scale and rotation are uncorrelated,
also the two translation parameters x̂3 = ĉ and x̂4 = d̂ are uncorrelated. This is caused by the
assumption that the observed points are uncorrelated and have the same standard deviation, thus
the uncertainty of the point group is isotropic.
The standard deviations of the parameters are

σx̂1
= σx̂2

= 0.0010 , σx̂3
= σx̂4

= 0.0049 . (81)

The estimated variance factor is
σ̂2
0 = 0.7863 . (82)

The quality of the observations can be characterized by the following statements, which are
taken from the Matlab output:
Maximal residual ....................... = 0.01520 at observation 5
Minimal redundancy number .............. = 0.16260 at observation 1
Maximal test statistic ................. = 1.25145 at observation 5
Maximum of minimal detectable outlier .. = 0.10242 at observation 1
Maximal sensitivity factor ............. = 2.26936 at observation 1
Maximal sensitivity factor translation . = 0.63752 at observation 4

Here we have assumed the user is also interested in the sensitivity of the estimated translation
parameters x3 and x4 only, see PCV-Fig.4.11 right.
The quality measures indicate, that there is no reason to assume the model not to be consistent
with the data and that the geoemtric configuration is acceptable.

�

4 Gauss–Helmert Model for Planar Similarity Transformation

This section has two goals:

1. Demonstrate the sensitivity analysis for the Gauss–Helmert model.

2. Discuss the conditions for the equivalence of the Gauss–Helmert model and the Gauss–
Markov model.

4.1 Sensitivity Analysis for the Gauss–Helmert Model

The sensitivity analysis aims at investigating the ability to find outliers in the observations
and to determine the effect of non-detectable errors on the estimated parameters.

Let the group of observations related to the i-th constraint be collected in the vector v̂i.
We assume that constraints do not share observations, see PCV-4.8.2.5. The direct approach
would require the inversion of the covariance matrix Σv̂iv̂i of the corresponding group of
estimated residuals. Let the size of this group be Ni.

It can be derived from PCV-(4.456)

Σv̂v̂ = ΣllBW gg(BTΣllB − AΣx̂x̂AT)W ggBTΣll . (83)
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Assuming Σll = Diag({Σlili}) the covariance matrix related to the i-th group is

Σv̂iv̂i︸ ︷︷ ︸
Ni×Ni

= ΣliliB
T
i︸ ︷︷ ︸

Ni×G

Z︸︷︷︸
G×G

BT
i Σlili︸ ︷︷ ︸
G×Ni

with Z = W gg(BTΣllB − AΣx̂x̂AT)W gg . (84)

Since generally G < Ni the rank of this Ni ×Ni is only G, thus it cannot be inverted.
However, testing the group li related to the i-th set of constraints is equivalent to testing

the residual cg,i of that constraint. This equivalent to use the residual

vg = BTv (85)

and use the linearized Gauss–Markov model (see PCV-457)

g(l, x̂a) + v̂g = −A∆̂x with D(vg) = BTΣllB , (86)

for testing w.r.t. outliers in the values cg,i. This type of diagnosis is realized in the Mat-
lab function diagnostics_GHM_constraints_multi_d.m.

4.2 Estimation a Similarity Transformation using the Gauss–Helmert Model

If the observations can be expressed as functions of the unknown parameters, the Gauss–
Markov model is the most appropriate model for estimation. If the similarity transformation
has to be estimated from point pairs, which both are observed, we obtain constraints between
the observations (xi, yi, x

′
i, y
′
i) and the unknown parameters (a, b, c, d):

gi :=

[
x̃′i
ỹ′i

]
−
([

a −b
b a

] [
x̃i
ỹi

]
+

[
c
d

])
=

[
0
0

]
. (87)

This constraint not easily can be transformed into a Gauss–Markov model. Therefore, here
the Gauss–Helmert model is the appropriate choice for estimation.

The model is linear in the unknown parameters and, starting from approximate values
zero, can be written as

g(̂l
a

i , x̂
a) + AT

i ∆̂x + B i∆̂li = 0 , D(li) = Σlili , (88)

with

x :=


a
b
c
d

 , li =


xi
yi
x′i
y′i

 , (89)

and

gi := 0 , AT
i :=

[
−xi yi −1 0
−yi −xi 0 −1

]
, BT

i :=

[
−a +b 1 0
−b −a 0 1

]
. (90)

The covariance matrix of the observations is assumed to be block diagonal, i.e., the observa-
tional groups are mutually uncorrelated. However, the covariance matrix of each group may
contain arbitrary correlations. What is relevant in our context, the covariance matrix also
may be singular, as long as the covariance matrix Σgigi = BT

i ΣliliB i is regular.

22



Hence we can simulate the model used in the previous section, where the coordinates
(xi, yi) are assumed to be fixed, non-stochastic values by using the covariance matrix

D(li) = D



xi
y
i
x′i
y′
i


 =


0 0 0 0
0 0 0 0
0 0 σ2x′

i
σx′

iy
′
i

0 0 σx′
iy

′
i

σ2y′i

 . (91)

The estimation process does not need the inverse covariance matrix of the observations, there-
fore this way of modelling fixed observations does not lead to numerical difficulties.

The Matlab function demo_GHM_similarity.m allows to simulate the result of the
Gauss–Markov model with the boolean variable simulate_GMM_similarity=true, yielding
the same result. Since the model is linear, only one iteration needs to be performed.
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