
Modern C++ for Computer Vision and Image Processing

Institute of Geodesy and Geoinformation

Homework. 2: Intro to classes in C++

Igor Bogoslavskyi, E-Mail igor.bogoslavskyi@uni-bonn.de

Handout : Wed, 18.04.2018
Handin: Wed, 09.05.2018

In this exercise you will implement a simple version of an image class that can store grayscale values. You are
given an initial project sceleton, where you will need to fill in existing files and to add new files so that the below
presented functionality is met.

To start:

1. Unpack the provided archive into the homework 2 folder

2. All your code must be in igg image folder, no need for task x folders

The end result would be a class that:

• Can be filled from disk from a *.pgm file

• Can be written to a *.pgm file

• Can compute a histogram over its pixels

• Can be resized

You will not need to implement the actual reading/writing to disk for now. This functionality is provided to you via
a shared library libio tools.so (libio tools.dylib for a Mac) that you can find in lib/ folder of the project
sceleton igg image along with the appropriate header file io tools.h.

1. (2 points) Create a library with the name image with the following functionality:

• Image can be created empty or of any size, i.e. there are constructors:

– Image();

– Image(int rows, int cols);

Make sure the data gets resized to accomodate all the requested elements.

• Size of an image can be accessed with getter functions

– int rows();

– int cols();

for variables rows and cols . Make sure to be using const correctly for the getter fucntions.

• Pixel values can be accessed and modified through the function at(int row, int col). Make sure this
function can be called in both of the scenarious:

– int val = image.at(row, col);

– image.at(row, col) = 255;

Make sure you use const where needed.



• The Image class has a single std::vector to store two-dimentional data. You will need to compute a
single index from row and column values to store and retrieve pixel values to and from the data vector.
Make sure your image stores pixel data in row-major order, i.e. every row is stored sequentially in data .
For more info see:
https://en.wikipedia.org/wiki/Row-_and_column-major_order

2. (2 points) Reading and writing to disk.

• Link your code with the given libio tools.so(.dylib) library. Use find library() CMake function
to use the provided library with your code.

• Implement functions to read and write the data from disk using the provided library as a proxy. Your
class must have the following functions:

– bool FillFromPgm(const std::string& file name);

– void WriteToPgm(const std::string& file name);

These functions should convert the data stored within the Image class to and from ImageData struct and
call functions ReadFromPgm and WriteToPgm from the file igg image/io tools.h

3. (2 points) Compute a histogram over the pixels. This function should take as input the number of bins in
the histogram. A histogram counts how many pixels fall into each bin and provides a vector of these values
normalized by the total number of pixels. For example, a histogram with two bins will store a normalized
count of all pixels with the value below 255/2 in the bin number 0 and a normalized count of all the pixels
with value higher than 255/2 in the bin number 1.

The interface should be as follows:

std::vector<float> ComputeHistogram(int bins);

Note again, that you must make a decision if the function should be const.

4. (4 points) Resizing the image:

• void DownScale(int scale);

• void UpScale(int scale);

The scale is an integer factor. For example DownScale(2) should result in an image half the size of the
original, while UpScale(2) in an image twice bigger than the original.

When downscaling, you must just pick every k pixel depending on the scale parameter.

When upscaling some pixels will not have a value. Fill these pixels using the nearest neighbor algorithm.

An example result is illustrated below.

UpScale(2)

DownScale(2)

IMPORTANT: The interfaces provided above are stripped from const modifiers. It is part of this exercise to
think where const is appropriate and add it where needed.
IMPORTANT: Use Google Tests to evaluate your work. The evaluation script will inject our custom tests into
your framework and will run those tests against your code. Do not remove tests folder from the project.

2

https://en.wikipedia.org/wiki/Row-_and_column-major_order

